① 直流电机如何增大扭矩
对于一定的直流电机而言,其扭矩是一定的。
如果要在额定扭矩范围内调节输出扭矩,那么你可以通常调节输入电压或励磁电流的大小来进行。
如果你要提高其输出扭矩并超出电机的额定扭矩,那么你只能在电机的输出轴上加上一个变速齿轮箱,通过降低齿轮箱输出轴的转速来实现提高齿轮箱输出轴扭矩的目的。
② 如何提高电机转矩
可以通过机械设计解决问题,电机及减速器选型,驱动轮直径和从动轮等等,有些问题电气不能根本解决,就算解决是暂时的,不稳定的,变频器较低频率工作时不稳定,如果选择低频工作,控制需要更换伺服驱动器。当电机低频运行的时候,高的电压提升值将导致高的电机温升。如果电机长时间低频率运行,会有电机过热的危险。
转矩提升设置:
1、设置斜坡函数发生器的斜坡上升时间在驱动大惯量负载时,需要增加斜坡上升和斜坡下降时间使之和驱动器的加速能力相符合。具体来讲,就是设置参数P1120和P1121。
2、设置电压提升
2.1 设置频率设定值为0Hz。
2.2 起动变频器
2.3 监视变频器的输出电流(r0068),同时增加电压提升量(P1310),直到 r0068=电机额定电流*需要的启动转矩/电机额定转矩,需要的起动转矩为反抗转矩(负载转矩)与需要的加速转矩之和。
2.4 查看是否有A0501, A0504或A0506报警信息出现。如果有,以5%的步长递减设置P1310直到报警信息消失。
2.5 把相应的参数值乘以放大因子1.1作为设定值。
(2)增加电机扭矩的机械装置扩展阅读
如果仅改变频率而不改变电压,频率降低时会使电机出于过电压(过励磁),导致电机可能被烧坏。因此变频器在改变频率的同时必须要同时改变电压。输出频率在额定频率以上时,电压却不可以继续增加,最高只能是等于电机的额定电压。
例如:为了使电机的旋转速度减半,把变频器的输出频率从50Hz改变到25Hz,这时变频器的输出电压就需要从400V改变到约200V
③ 如何增加直流永磁电机扭矩
直流电机的转矩跟直流电机的电枢电流和励磁形成的磁场成正比,要增加转矩,只能增加电枢电流。
直流永磁电机的位置传感器编码使通电的两相绕组合成磁场轴线位置超前转子磁场轴线位置,所以不论转子的起始位置处在何处,电动机在启动瞬间就会产生足够大的启动转矩,因此转子上不需另设启动绕组。
由于定子磁场轴线可视作同转子轴线垂直,在铁芯不饱和的情况下,产生的平均电磁转矩与绕组电流成正比,与他励直流电动机的电流-转矩特性一样。
(3)增加电机扭矩的机械装置扩展阅读
永磁无刷直流电机的转速设定,取决于速度指令Vc的高低,如果速度指令最大值为+5V对应的最高转速:Vc(max)ón max,那么,+5V以下任何电平即对应相当的转速n,这就实现了变速设定。
当Vc设定以后,无论是负载变化、电源电压变化,还是环境温度变化,当转速低于指令转速时,反馈电压Vfb变小,调制波的占空比δ就会变大,电枢电流变大,使电动机产生的电磁转矩增大而产生加速度,直到电动机的实际转速与指令转速相等为止。
反之,如果电动机实际转速比指令转速高时,δ减小,Tm减小,发生减速度,直至实际转速与指令转速相等为止。
可以说,永磁直流电机在允许的电网波动范围内,在允许的过载能力以下,其稳态转速与指令转速相差在1%左右,并可以实现在调速范围内恒转矩运行。
由于永磁无刷直流电机的励磁来源于永磁体,所以不象异步机那样需要从电网吸取励磁电流;由于转子中无交变磁通,其转子上既无铜耗又无铁耗,所以效率比同容量异步电动机高10%左右,一般来说,永磁直流电机的力能指针(ηcosθ)比同容量三相异步电动机高12%-20%。
④ 我想让500W的电机扭矩增大但转速基本不变有齿轮传动可以实现吗怎么样实现或是其它方法
这是永远不可能实现的,轴上功率就是转速和扭矩的乘积,要想增大扭矩,又想转速不变,这就意味着创造出了永动机。
要想增大扭矩,又想转速不变,只有增大电动机的功率,否则,如来佛主也帮不了你。
⑤ 怎样提高电机的启动转矩
同一台电机,提高转矩只能提高电流,这个应该没有疑问的,能量守恒。如果改造电机或许也有方法,比如极对数增大,转速降低,转矩提升。如果是使用方面,机械传动比也是在保证电机扭矩不变的情况下,增大最终的输出扭矩。提高电机功率因数?或许也行,同样条件下,无功少了,有功增加,但怎么做到呢
⑥ 请问高人,在固定的电机转速和扭矩上,用什么方法或用什么机器能提高它的扭矩又能提高它的转速
提高它的转速可以使用变频器. 但不能超过电机的额定转速,否则电机的轴承会损坏.
电机扭矩不能提高,如果想要提高扭矩只能加齿轮或皮带减速器.但转速会下降.
也就是说,电机不变的情况下,又提高转速又提高扭矩是矛盾的.
只有更换大规格的变频电机,同时采用变频器,才能满足提高扭矩又能提高转速的要求.
⑦ 常见的电机启动方式中,哪种启动方式可以增大转矩,为什么
直接全压启动,老式的星三角启动(现在新的很少用的),软启动装置启动,变频器启动。转矩与电压有关,启动时间很短,增大转矩没有太大的实际用处。
⑧ 怎样增大电机转矩或者用变频器增大电机的转动力矩
降低电机的转速,可以增大电机转动力矩。
降低电机的转速,一般有两种方法,
1、是用变频器,把50HZ,降低了用,比如降低到5HZ,基本转矩就提高10倍,而电机效率并没有降低多少。
2、是用多极电机,比如原来是2极鼠笼电机现在改12极,基本转速降低6倍,转矩就提高很多,不过电机的电流会提高很多,甚至是1倍,当然功耗不会提高那么多,主要是漏磁,还有功率因数变小。除去电机本身的因素,用减速机也是提高整个传动轴的转矩的一种方法,不过效率就更低了。
⑨ 步进电机可以加减速箱来提升扭矩吗
不考虑运行速度的情况下完全可以!螺距太大 扭矩大过步进电机扭矩时候 减速箱的作用完全失去了 。减速箱的作用就是减缓速度,加大扭矩, 增大减速箱螺距没有意义
⑩ 提高有刷电机扭力的办法有哪些
为了增加步进电机的扭矩,以便客户能够移动更大的质量,大多数工程师首先考虑的是通过机架尺寸或长度,或两者的某种组合来增加电机的尺寸。当为下一代产品设计时,如果已经确定了封装和安装,这可能是不可能的。这里有一些其他的方法来提供必要的扭矩,而不必调整系统的其他方面。一个关键因素是电机绕组的主要变化以及如何配置它们。在相同尺寸的电机中,相同的绕组,无论是机架还是长度,都会有相同或相似的保持转矩值,大多数终端用户更关心电机的动态转矩。当涉及动态转矩时,电机绕组的微小变化将导致不同转速下不同类型的电机性能。
一些绕组擅长在低速范围内提供高转矩,绕组中的其他调整将在低速范围内提供较低的转矩,在高速范围内提供较高的转矩。还有其他的绕组调整,提供了一个良好的扭矩在所有范围,但需要一个高电流输出。改变绕组提供的主要标准是改变工作范围,改变电流输入要求,并在运行过程中改变谐振点,每个客户在这些方面都有不同的需求,在调整扭矩输出时必须考虑整个频谱。如果所有其他规范都允许,电机尺寸越大,自动输出的扭矩就越大,这是由于电机外壳内的转子尺寸所致,它可以产生更多的磁通量,从而产生更大的旋转力扭矩更大。
电机在长时间运行时会发热,一台运行了很长一段时间的电机,在不考虑环境条件的情况下,其自身温度可达到大约90℃, 一个较热的环境自然会增加内部温度,某些内部电机部件可能开始出现故障,当达到非常低的温度时,这种影响可能相反。可能需要根据材料规格进行各种内部调整,这是选择正确电机时必须进行的必要评估。解决方案包括电线结构、使用材料和一些专有元件,这些元件允许其电机在高达130℃和低至-70℃的环境温度下进行操作。
扭矩很大程度上取决于运行速度,在新设计的每一步中都必须考虑到这一点,电机速度越高,扭矩就越低,这种关系是非线性的,扭矩的降低速度与转速的增加速度不一样。这个比率在不同的电机和绕组之间变化很大,最好的通过一个电机的扭矩与速度的关系是审查其动态扭矩曲线,它为工程师提供了所需的数值,以便更详细地描述电机的实际运行方式,曲线也会根据驱动器类型和驱动电机的方式而改变。
步进电机的精度是电机物理设计所固有的,这主要是由于电机的步距角。最常见的步进角是1.8°和0.9°电机,这个角度是指它每走一步的角度距离。这意味着1.8°电机的精确度较低,它们在另一方面提供了更强的扭矩值(和更低的速度),而0.9°电机的精确度较高,它们在略高的速度下运行(并提供更少的扭矩)。高负荷和低负荷在电机的额定规格范围内,则电机的总体精度在高负荷和低负荷下大致相同。当工作点接近或高于动态扭矩曲线规格时,步进电机可能会开始失速或跳过步骤,这是因为电机基本上不能产生足够的转矩来克服负载。
速度和转矩的相互作用取决于驱动器的类型和驱动电机的方法,这种组合会对精度产生很大影响,每个可用的驱动程序都有不同的行为。在驱动马达方面,可以“微步”电机,微步操作允许驱动程序将每个步骤分成多个步骤。传统的1.8°马达每转200步,通过半步进,产生更多的步骤取决于电机的驱动方式,这允许用户采取0.9°每步而不是完整的1.8度步骤,导致400步每1转。当以这种方式操作电机时,电机不会反映出与0.9°电机相同的性能。选择微步电机,电机变得越不准确。用1.8度的电机微步操作时,可能只移动了0.9度,但步进精度却大幅度降低,这对于某些应用来说是完美的。例如,微步进的最佳应用通常是消除系统中的共振,以及平滑马达的运动轮廓,以便在更快或更慢的时间内达到特定的速度。
结论
选择定制和半定制电机设计选项能满足特定需求的,同时满足低成本的要求,电机制造经常会开发出模块化结构方法,提供快速的样机进行评估,然后投入生产,这种灵活性能够满足设计阶段的短交付周期以及应用程序的制造阶段的高产量。有很多方法可以调整电机的扭矩规格,所有这些方法都会对其他规格产生级联效应,并最终对一般操作产生级联效应。