导航:首页 > 装置知识 > 电子衍射实验发射电子装置

电子衍射实验发射电子装置

发布时间:2022-09-28 23:00:32

Ⅰ 意识波粒二象的详细论证(3)

意识具有波粒二象性的革命性认识是以著名的单电子双缝实验为可靠的实验基础,以数学家冯·诺依曼对双缝实验整个过程的严谨数学分析而论证出只有意识才能导致波函数坍缩这一重要结论,在此基础上进一步逻辑推导出意识必然具有波粒二象性的全新认识。

单电子双缝实验是量子力学最根本最重要的一个实验,2002年,美国《物理世界》杂志将其评选为物理学十大最出色实验的第一名 [1] ,也可以说它是人类历史上最神奇的一个物理实验。这个小小实验把波粒二象性和量子之谜的诡异性展现得淋漓尽致,极大的冲击了我们的世界观,长期以来困惑了包括爱因斯坦在内的众多物理学家,围绕这个实验现象的解释,至今依然争论不休。物理学家理查德·费恩曼说:“单电子双缝实验包含了量子力学的核心,事实上,它包含着独一无二的奥秘。我们不能通过说明它如何作用来消除这个奥秘.我们只是告诉你,它是怎样起作用的。在告诉你它怎样起作用的同时,我们也将告诉你所有量子力学的基本特色。” [2]

单电子双缝实验是最严格可靠的经验现象,也是最深邃难解的经验现象,它也是唯一的将观察者的意识不得不考虑在内的物理实验,它是哲学思考最可靠的逻辑起点,包含了哲学的几乎所有重大问题和根本奥秘,涉及到实在和反实在(本体论)、先验和经验(认识论)、因果律(薛定谔演化和狄拉克抉择)、自由意志(海森堡抉择)、逻辑论(形式逻辑、辩证逻辑和量子逻辑)、时空本质(二象性时空)以及心物交互(相干叠加性)等几乎全部重大哲学问题,其中甚至暗含了灵魂不朽和终极归宿的神学问题,也是哲学、科学和神学重新获得统一的最关键的起点。甚至也可以这样说, 以单电子双缝实验为哲学思考的阿基米德基点,可以撬动整个宇宙。

关于这个实验可以详细查看以下动画演示,该动画非常形象生动的演示了电子双缝实验的神奇现象。

在电子双缝实验中,当我们将一束电子流经过中间的双缝打到最终的显示屏上,根据经验常识,电子只是类似足球一样的颗粒状的单一微小物体,在日常世界中,假如我们连续的踢出大量足球而经过中间有两道狭缝的墙,那么最终的球网上只会形成两道条纹,绝无可能形成多道干涉条纹。可是,电子双缝实验的结果却与我们的常识经验严重背离,屏幕上最终形成的是只有波才能形成的干涉条纹。

那么会不会是大量电子互相碰撞才造成如此呢?它们如果互相碰撞确实有可能改变电子运动的路径,虽然不一定形成干涉条纹,但还是应该把这种可能性彻底排除掉。于是我们可以改进实验装置, 让电子枪一个一个地先后发射电子,间隔时间可以超过一秒钟 ,然后再看一下实验结果究竟如何。

当一个电子被打过去时,屏幕上只出现一个亮点,更多的电子过去,就有更多的亮点出现。初看起来,这些点杂乱无章,而随着时间的推移,当越来越多的电子被打过去时,大量的电子形成的大量的点逐步组成了只有波才能形成的干涉条纹!

由于电子是一个一个的前后相隔很长时间才发射出去的,那么根据这个可以逻辑推断出单个电子必须是一种广延性的波,同时通过双缝进而自身和自身发生干涉,如此才能形成只有波才能形成的干涉条纹,可是这怎么可能呢?一个电子根本不可能是一个波,因为我们日常观察到的波都是多粒子的集群波动现象,单个的局域小粒子怎么可能是广延的集群性的波?又怎么可能如分身术一样同时通过两道狭缝?这是双缝实验产生的神秘难解的现象之一。

为了解决上面的困惑,我们需要观察电子到底是如何通过双缝的,是不是真的有神奇的“电子分身术”,于是我们在双缝旁边安装了探测器,看看电子到底从哪条缝通过,如何通过的,这个实验被称为“which-way”实验,1998年德国Konstanz大学的Dürr和Rempe完成了该实验。 [3]

实验结果再次超出了人们的想象,当我们去通过探测器观察电子到底如何同时通过双缝时,电子竟然又老老实实地从一个缝隙穿过去,干涉条纹也随之消失!屏幕上出现的是两条经典亮条纹!也就是说, 小小的观察竟然改变了电子的存在特性,使得电子从波动又变成了粒子,观察为什么会有如此的神奇作用? 这样的实验结果更让我们迷惑不已,这究竟是为什么呢?

单电子双缝实验最初是物理学家费曼在1961年提出的思想实验。由于这个实验需要的缝隙大小在纳米量级,当时的技术条件无法实现。1974年意大利Bologna大学的科学家Merli、Missiroli和Pozzi用“单电子”来实验[4],他们让单个电子穿过双棱镜,一种和双缝有类似功能的电子光学器件。让电子有间隔地、一个一个发射出去。然后在荧屏上记录电子的位置,最终观察到干涉条纹的出现。

真正实现了费曼提出的单电子双缝实验,是2013年美国和加拿大科学家罗杰·巴赫(Roger Bach)和达米安·波普( Damian Pope)等人所完成的实验[5]。他们在镀金硅膜上制造了一个宽62纳米,长4微米,缝间距为272纳米的双缝。为了每次遮住一条缝,一个由压电致动器控制的微小遮罩可以在两缝间来回滑动。实验中电子由一个钨灯丝产生,并在600伏电场中被加速,之后校准成电子束。在电子穿过双缝后,将会在一个多通道感光底片上被观测到。在这个实验中,两个狭缝都可以随意机械式地打开和关闭,最重要的是,它具备了一次检测一个电子的功能,该实验的电子源强度很低以至于每秒仅约一个电子被观测到,这保证每次仅单个电子将穿过双缝,经过长达两个多小时的实验,最终实验图像显示的依然是干涉条纹。

从1801年最早的杨氏双缝实验到2013年的单电子双缝实验,跨度达到200年,让我们见证了波粒二象和量子世界的神奇。

双缝实验有力的证明了电子这样的物质粒子也有波动性,但是对物质粒子波动性的理解却经过了长期的激烈争论,德布罗意以及薛定谔等量子物理的开创者们,包括爱因斯坦在内,对波动性的理解都受到了经典物理观念的影响,产生了种种错误,甚至爱因斯坦直到临死之前,都没有接受量子力学对波粒二象的理解。

对双缝实验的第一种解释是纯粒子观点的解释,这种观点认为电子只能是粒子,而不可能是波动。之所以形成干涉条纹是因为不同粒子之间相互作用而导致的,所谓的波动性是由于有大量电子分布于空间而形成一种疏密波,类似于空气振动出现的纵波,由于分子密度疏密相间而形成的一种波动性分布。但是这种看法却与实验现象是明显矛盾的,因为在试验中,我们让电子一个一个地从电子枪发射而出,虽然刚开始无法形成干涉条纹,但只要时间足够长,屏幕上仍将出现明暗相间的干涉条纹。这表明电子的波动性并不是很多电子在空间聚集在一起时才显现出来,单个电子也有波动性。将电子理解成纯粒子,夸大了粒子性的一面,抹杀了波动性的一面,这是一种片面的错误理解。

对双缝实验的第二种解释是纯波动观点的解释,这种观点认为电子并非离散性的小颗粒,而是三维空间连续分布的物质波包,波包大小即粒子大小,波包的群速度即电子的运行速度,因而产生了干涉现象,薛定谔早期就坚持这种观点。但是这种观点也遇到了非常严重的困难,因为经过严格的计算以后,随着时间的推移,单个粒子的物质波包必定要扩散,也就是说,粒子将会越来越胖,这又明显违背实验结果,因为试验中我们观察到的单个电子,都是局域在空间内的很小区域,是颗粒状的。而且如果电子是三维空间的物质波包,那么在电子衍射实验当中,电子波碰到晶体发生衍射,我们在空间中不同方向上将看到电子的一部分,这又和实验是严重矛盾的,我们从来观察到的都是一个一个的完整的电子。将电子理解成纯波动,夸大了波动性的一面,抹杀了粒子性的一面,也是一种片面的错误理解。

1926年,量子论的奠基人之一马克斯·波恩在《碰撞过程的量子力学》 [6] 这篇论文第一次提出波函数的统计诠释,从而化解了这个难题,并且被无数实验所确证,波恩也因此而获得1954年的诺贝尔物理学奖。根据波函数的统计诠释,电子的波动并非真实三维空间的物理波,而是一种抽象的概率波。在数学上,用一个函数表示描写粒子的波,这个函数叫波函数。描述粒子的波函数,实际上刻画的是粒子在空间的概率分布。当电子通过双缝时,概率波发生了自身和自身的相干叠加,此时表现为波动性,进而产生了干涉条纹。当电子到达屏幕时,我们对它进行观测,电子的波函数就发生了瞬时性的随机坍缩,进而呈现为显示屏的上的一个小亮点,此时表现为粒子性。虽然一个电子的出现是随机的,但大量电子却符合概率分布,于是,当大量电子出现的时候,便形成了干涉条纹。

电子从开始发射到通过双缝,再到达最后的屏幕上究竟是如何的行踪呢?彼得·柯文尼教授如此回答:"如果认为量子力学给出了最基本的描述,那么询问电子的行踪就没有意义,除非电子已经打到了屏幕上。因此我们只好得出结论说,电子是以某种方式扩散在空间和时间之中,它从两条狭缝中都穿过并且自己与自己发生干涉,直到最后奇迹般地瞬间瓦解在屏幕上某一点处,这地点完全是随机的。因而,我们可以说,电子是处处在,同时又是处处不在。" [7]

电子的处处在,意思是说它在全空间(整个宇宙)都有分布的概率,即便遥远的仙女星系依然有分布概率,只是概率值非常微小。电子的处处不在,意思是说尽管它在全空间都有分布的概率,但是它却没有出现在任何空间位置上(这里的空间是指物理空间),除非对电子的波函数进行观测,促使其坍缩到一个具体的空间位置上,让其显现出来。而电子一旦坍缩显现出来,那么它在全空间范围内的其他空间位置的不同的分布概率值,瞬间全部变为零,即便是遥远的仙女星系的概率分布值也瞬间变为了零。

经典物理中的波动,指的是某一实在的物理量在空间中通过介质的周期性连续传播过程,并且可以产生相干叠加现象,波动的特性由振幅 、频率 、波长等物理量来描述。经典波动弥散性的分布在空间中,一列波通过某地,另一列波同样也能通过某地,两列波在同一地点是可以相干叠加的,波具有可“入”性。经典物理中的粒子,则是一整份地出现在空间中的分立性(离散性)的客体,这种客体具有确定的位置,质量、电荷、动量等,并且在时空中有一条确定的连续性轨道,经典粒子整体性的集中于某个区域空间,一个粒子在某地,它就不能同时在另一地,一地被一粒子所占据,另外的粒子就不能占据,粒子是不可“入”的[8]。粒子运动的特征由动量、质量、密度、粒子的几何尺寸等物理量来描述。在传统的经典物理学看来,波动性和粒子性是完全对立的。一个弥散,一个集中;一个连续,一个分立;一个可叠加,一个不可叠加,二者不可能共存于一个客体中。

电子究竟是什么?它既不是经典粒子,也不是经典波动,但我们可以说它是粒子和波动两重性矛盾的统一,这就是波粒二象性。 电子不是经典的粒子,是因为它没有经典粒子确定的连续性轨道,它在空间中非连续性的跃迁,量子粒子保留了经典粒子的颗粒性(分立性,离散性)。电子不是经典的波动,是因为它并非真实的物理波,而是抽象的概率波,量子波动保留了经典波动的相干叠加性。马根瑙(H . Margenau )在指出对波粒二象性的一些常见误解后也说道:“电子既不是粒子也不是波动,按照今天最广泛地持有并且同已经建立起来的量子力学理论程式相协调的观点,一个电子是一件抽象的事物,它不再能使用日常经验所熟悉的样子去直觉地理解。” [9] 对波粒二象性,我们要尽量避免使用直观图像的方式去想象,因为任何直观的图像,都是来自于经验性的经典认识,而固守经典认识必定对波粒二象产生曲解,要真正理解波粒二象性,必须彻底抛弃经典物理和经验性认识的观念束缚。

当我们不观察时,电子是一种不确定的量子叠加态,由波函数所描述,并且波函数是全空间的概率性分布,因而是概率波,其实全空间性的波函数正是一个整体性的完整抽象粒子。当我们观察电子的波函数时,全空间性的整个电子波函数随机坍缩成了局域空间上的单一具体粒子。电子的叠加态似乎意味着它可以“同时”在很多地方,处处在,却又处处不在。但是我们却从未经验观察到这种奇怪的量子叠加态,我们看到的任何宏观物体以及自我都是只能在空间的一个位置上,而不可能既在北京,又在上海。

对波粒二象的解释,和我们的日常经验以及形式逻辑的排中律都有严重的冲突。也因此,量子力学的开创者们,包括德布罗意、薛定谔、爱因斯坦在内的物理学家,都难以接受玻尔、海森堡以及波恩等人提出的整个量子理论的解释。爱因斯坦和玻尔还为此争论了几十年,屡战屡败,屡败屡战,是物理学上持续时间最长,争论最激烈也最富有哲学意义的世纪辩论。虽然量子力学的解释众说纷纭,然而实验却一再证明了量子理论的正确性,可是它的基础问题却至今让人困惑不解,难怪玻尔说:“谁不惊异于量子理论,谁就不理解它”。物理学家理查德·费曼(Richard Feynman)也在康奈尔大学的一个讲座上说道:“我想我可以有把握地说,没有人真正理解量子力学”。

量子力学逐渐成为了一种计算工具,大多数物理学家们觉得只要理论实用就可以,干吗非要理解它呢?就像鸵鸟一样,将头埋在沙里,不去看它吧,这就是“闭嘴,计算”解释。这种实用主义和工具主义的闭嘴计算解释并不能让我这样喜欢追根问底的人满意,现在我们就要深入的考察波粒二象之谜,这就需要谈到冯诺依曼的一个惊天认识: 意识导致波函数坍缩 。

参考文献:
1.乔治·约翰逊.最美丽的十大物理实验[J]. 物理教学探讨. 2009(18): 24-25.
2.[美]费曼.《费恩曼物理学讲义(第3卷)》[M].上海科学技术出版社.2013
3.Merli P G, Missiroli G F and Pozzi G On the statistical aspect of electron interference phenomena[J].Am.J. Phys. 1976.44 306–7
4.Dürr S, Nonn T, Rempe G. Fringe Visibility and Which-Way Information in an Atom Interferometer[J]. Physical Review Letters. 1998, 81(26): 5705-5709.
5.Bach R, Pope D, Liou S. Controlled double-slit electron diffraction[J]. New Journal of Physics. 2013, 15.
6.M.Born,"Zur Quantenmechanik der Stossvorgange",Z. Physik 37,863-867
7.彼得·柯文尼. 《时间之箭-揭开时间最大奥秘之科学旅程》[M]. 湖南科学技术出版社, 2002.
8.赵国求. 波粒二象性的有机统一[J]. 武钢大学学报. 2000(02): 1-6.
9.关洪. 《一代神话:哥本哈根学派》[M].武汉出版社, 2002.

下一篇:※  意识波粒二象的详细论证(4)
上一篇: ※ 意识波粒二象的详细论证(2)

※意识波粒二象的完整系列论证

——

Ⅱ 电子衍射测定晶体结构的方法 (相关仪器,设备简介)

目前电子衍射的设备很多,但都要依附于超高真空设备中,
简单介绍几种如下:
1、如表面科学中的低能电子衍射(LEED),主要应用于高取向晶体表面晶格的研究,比如畸变,吸附。
LEED结构目前也应用在透射电子显微镜(TEM)中,利用聚焦到很小光斑的电子束对纳米结构中的局域有序做结构探测。
LEED只能够作晶格类型分析,不能进行元素分析。
2、反射式高能电子衍射(RHEED),主要应用于分子束外延等设备的原位监测,能够很好的反映表面晶格的平整度,观测材料生长中的衍射强度及位置的振荡。
3、电子显微镜附件,主要是场发射扫描电子显微镜(FESEM),一般属于附件,称选区电子衍射(SAD),可以利用质能选择器对反射电子作元素分析,能够分析很小的区域元素组成,但结果较为粗糙。
电子衍射的原理可以参考XRD,观测到的衍射花纹都是表面晶格的倒易格点,可能是一套,也可能是几套。
一般,除了纳米材料研究中在电镜用电子衍射中常将衍射花纹作为晶格类型的佐证外,常规的LEED和RHEED并不作体材料三维晶格研究,而只用于表面晶格的判定,因为电子衍射一般只能反映晶格的二维表面结构,而不同晶体结构的晶体之间,它们的某一表面取向上它的对称性及衍射斑点可能会完全一致。
电子衍射一般只用于测试二维晶体结构,无法简单作三维体晶格判定,更无法单独作元素判定。
所以你所说的ED测定晶格的说法是要注意的,ED很少或几乎没有单独研究三维晶体结构。
电子衍射结构其实很简单,简单讲就三个部件:
1、灯丝,用于产生电子
2、加速电压,
(1)
电子加速电压
(电压大小要单独可控)
(2)
xy平面内的转向电压
3、荧光屏,注意导电接地。
此外电子衍射还需要有一个超高真空腔体作为设备的基础;
还要有一个位置可调的多维样品架(样品台)系统;
如果需要做衍射斑点位置亮度分析,还要有CCD图像采集系统。

Ⅲ 电子衍射的电子显微镜中的电子衍射

在选区电子衍射时,由于中间镜和投射镜把物镜后焦面上形成的电子衍射花样放大,相机常数和斑点尺寸被放大Mi·Mp倍(Mi为中间镜的放大倍数,Mp为投影镜的放大倍数),所以电子衍射的分辨力不高。高分辨率衍射装置把试样放在投影镜附近,试样以上的透镜均参与照明系统提供细聚焦的平行电子束,试样以下的透镜关闭,此时相机常数与电流无关,犹如一台普通的电子衍射仪。如提高高压稳定度和精确测定λ值,可得到相对误差达10-4的晶面间距值,与X射线衍射精度相当。

Ⅳ 电子衍射原理

电子衍射是指当电子波落到晶体上时,被晶体中原子散射,各散射电子波之间产生互相干涉的现象。 它是由C.J.戴维孙和L.H.革末在1927年观察到的,可以用来作物相鉴定、测定晶体取向和原子位置。

中文名
电子衍射

装置
最简单的电子衍射装置

人物
C.J.戴维孙、L.H.革末

发现时间
1927年

电子衍射

电子-模型图

电子衍射当电子波(具有一定能量的电子)落到晶体上时,被晶体中原子散射,各散射电子波之间产生互相干涉现象。晶体中每个原子均对电子进行散射,使电子改变其方向和波长。在散射过程中部分电子与原子有能量交换作用,电子的波长发生变化,此时称非弹性散射;若无能量交换作用,电子的波长不变,则称弹性散射。在弹性散射过程中,由于晶体中原子排列的周期性,各原子所散射的电子波在叠加时互相干涉,散射波的总强度在空间的分布并不连续,除在某一定方向外,散射波的总强度为零。

历史
1927年,C.J.戴维孙和L.H.革末在观察镍单晶表面对能量为100电子伏的电子束进行散射时,发现了散射束强度随空间分布的不连续性,即晶体对电子的衍射现象。几乎与此同时,G.P.汤姆孙和A.里德用能量为2万电子伏的电子束透过多晶薄膜做实验时,也观察到衍射图样。电子衍射的发现证实了L.V.德布罗意提出的电子具有波动性的设想,构成了量子力学的实验基础。

装置
最简单的电子衍射装置。从阴极K发出的电子被加速后经过阳极A的光阑孔和透镜L到达试样S上,被试样衍射后在荧光屏或照相底板P上形成电子衍射图样。由于物质(包括空气)对电子的吸收很强,故上述各部分均置于真空中。电子的加速电压一般为数万伏至十万伏左右,称高能电子衍射。为了研究表面结构,电子加速电压也可低达数千甚至数十伏,这种装置称低能电子衍射装置。

Ⅳ 什么是电子衍射

当电子波(具有一定能量的电子)落到晶体上时,被晶体中原子散射,各散射电子波之间产生互相干涉现象。晶体中每个原子均对电子进行散射,使电子改变其方向和波长。在散射过程中部分电子与原子有能量交换作用,电子的波长发生变化,此时称非弹性散射;若无能量交换作用,电子的波长不变,则称弹性散射。在弹性散射过程中,由于晶体中原子排列的周期性,各原子所散射的电子波在叠加时互相干涉,散射波的总强度在空间的分布并不连续,除在某一定方向外,散射波的总强度为零。
中文名:电子衍射
装置:最简单的电子衍射装置
发现时间:1927年
人物:C.J.戴维孙和L.H.革末

Ⅵ 电子衍射的实验

电子衍射实验
一 实验目的
1 验证电子具有波动性的假设;
2 了解电子衍射和电子衍射实验对物理学发展的意义;
3 了解电子衍射在研究晶体结构中的应用;
二 实验仪器
电子衍射,真空机组,复合真空计,数码相机,微机
三实验原理
(一)、电子的波粒二象性
波在传播过程中遇到障碍物时会绕过障碍物继续传播,在经典物理学中称为波的衍射,光在传播过程表现出波的衍射性,光还表现出干涉和偏振现象,表明光有波动性;光电效应揭示光与物质相互作用时表现出粒子性,其能量有一个不能连续分割的最小单元,即普朗克1900年首先作为一个基本假设提出来的普朗克关系
E为光子的能量,v为光的频率,h为普朗克常数,光具有波粒二象性。电子在与电磁场相互作用时表现为粒子性,在另一些相互作用过程中是否会表现出波动性?德布罗意从光的波粒二象性得到启发,在1923-1924年间提出电子具有波粒二象性的假设,
E为电子的能量, 为电子的动量, 为平面波的圆频率, 为平面波的波矢量, 为约化普朗克常数;波矢量的大小与波长λ的关系为 , 称为德布罗意关系。电子具有波粒二象性的假设,拉开了量子力学革命的序幕。
电子具有波动性假设的实验验证是电子的晶体衍射实验。电子被电场加速后,电子的动能等于电子的电荷乘加速电压,即
考虑到高速运动的相对论效应,电子的动量
由德布罗意关系得
真空中的光速,电子的静止质量 ,普朗克常数,当电子所受的加速电压为V伏特,则电子的动能,电子的德布罗意波长
, ⑴
加速电压为100伏特,电子的德布罗意波长为。要观测到电子波通过光栅的衍射花样,光栅的光栅常数要做到 的数量级,这是不可能的。晶体中的原子规则排列起来构成晶格,晶格间距在 的数量级,要观测电子波的衍射,可用晶体的晶格作为光栅。1927年戴维孙_革末用单晶体做实验,汤姆逊用多晶体做实验,均发现了电子在晶体上的衍射,实验验证了电子具有波动性的假设。
普朗克因为发现了能量子获得1918年诺贝尔物理学奖;德布罗意提出电子具有波粒二象性的假设。导致薛定谔波动方程的建立,而获得1929年诺贝尔物理学奖;戴维孙和汤姆逊因发现了电子在晶体上的衍射获得1937年诺贝尔物理学奖。
由于电子具有波粒二象性,其德布意波长可在原子尺寸的数量级以下,而且电子束可以用电场或磁场来聚焦,用电子束和电子透镜取代光束和光学透镜,发展起分辨本领比光学显微镜高得多的电子显微镜。
(二)、晶体的电子衍射
晶体对电子的衍射原理与晶体对x射线的衍射原理相同,都遵从劳厄方程,即衍射波相干条件为出射波矢时 与入射波矢量 之差等于晶体倒易矢量 的整数倍
设倒易空间的基矢为 ,倒易矢量
在晶体中原子规则排成一层一层的平面,称之为晶面,晶格倒易矢量的方向为晶面的法线方向,大小为晶面间距的倒数的 倍
为晶面指数(又称密勒指数),它们是晶面与晶格平移基矢量的晶格坐标轴截距的约化整数,晶面指数表示晶面的取向,用来对晶面进行分类,标定衍射花样。
晶格对电子波散射有弹性的,弹性散射波在空间相遇发生干涉形成衍射花样,非弹性散射波则形成衍射花样的背景衬度。入射波与晶格弹性散射,入射波矢量与出射波矢量大小相等,以波矢量大小为半径,作一个球面,从球心向球面与倒易点阵的交点的射线为波的衍射线,这个球面称为反射球(也称厄瓦尔德球),见图1所示,图中的格点为晶格的倒易点阵(倒易空间点阵)。
晶格的电子衍射几何以及电子衍射与晶体结构的关系由布拉格定律描述,两层晶面上的原子反射的波相干加强的条件为
为衍射角的一半,称为半衍射角。见图2所示,图中的格点为晶格点阵(正空间点阵)。o为衍射级,由于晶格对波的漫反射引起消光作用, 的衍射一般都观测不到。
(三)、电子衍射花样与晶体结构
晶面间距不能连续变化,只能取某些离散值,例如,对于立方晶系的晶体,
a为晶格常数(晶格平移基矢量的长度),是包含晶体全部对称性的、体积最小的晶体单元——单胞的一个棱边的长度,图3为立方晶系的三个布拉菲单胞。立方晶系单胞是立方体,沿hkl三个方向的棱边长度相等,hkl三个晶面指数只能取整数;对于正方晶系的晶体
h,k,l三个方向相互垂直。h,k两个方向的棱边长度相等。三个晶面指数h,k,l只能取整数, 只能取某些离散值,按照布拉格定律,只能在某些方向接收到衍射线。做单晶衍射时,在衍射屏或感光胶片上只能看到点状分布的衍射花样,见图4;做多晶衍射时,由于各个晶粒均匀地随机取向,各晶粒中具有相同晶面指数的晶面的倒易矢在倒易空间各处均匀分布形成倒易球面,倒易球面与反射球面相交为圆环,衍射线为反射球的球心到圆环的射线,射线到衍射屏或感光胶片上的投影呈环状衍射花样,见图5。
衍射花样的分布规律由晶体的结构决定,并不是所有满足布拉格定律的晶面都会有衍射线产生,这种现象称为系统消光。若一个单胞中有n个原子,以单胞上一个顶点为坐标原点,单胞上第j个原子的位置矢量为 , 为晶格点阵的平移基矢量,第j个原子的散射波的振幅为 为第j个原子的散射因子,根据劳厄方程,一个单胞中n个原子相干散射的复合波振幅。
根据正空间和倒易空间的矢量运算规则,。复合波振幅可写为 ,上式中的求和与单胞中原子的坐标有关,单胞中n个原子相干散射的复合波振幅受晶体的结构影响,令。则单胞的衍射强度 , 称为结构因子。
对于底心点阵,单胞中只有一个原子,其坐标为[0,0,0],原子散射因子为 ,
任意晶面指数的晶面都能产生衍射。
对于底心点阵,单胞中有两个原子,其坐标为[0,0,0]和[1/2,1/2,0],若两个原子为同类原子,原子散射因子为 ,
只有当h,k同为偶数或同为奇数时, 才不为0,h,k一个为偶数另为奇数时, 为0,出现系统消光。
对于面心点阵,单胞中有4个原子,其坐标为[0,0,0]和[1/2,0,1/2],[0,1/2,1/2],若4个原子为同类原子,原子散射因子为 , 只有(h+k+l)为偶数时, 不为0,能产生衍射。
对于面心点阵,单胞中有4个原子,其坐标为[0,0,0]和[1/2,0,1/2],[0,1/2,1/2],若4个原子为同类原子,原子散射因子为 , 只有当h,k,l同为偶数可同为奇数时, 才不为0,能产生衍射。
对于单胞中原子数目较多的晶体以及由异类原子所组成的晶体,还要引入附加系统消光条件。
(四)、电子衍射花样的指数化
根据系统消光条件,可以确定衍射花样的对应晶面的密勒指数hkl,这一步骤称为衍射花样的指数化。对衍射花样指数化,可确定晶体结构,若已知电子波的波长,则可计算晶格常数,若已知晶格常数(由x射线衍射测定),则可计算电子波的波长,验证德布罗意关系。以简单格子立方晶系的多晶衍射花样为例,介绍环状衍射花样的指数化。
对于电子衍射,电子波的波长很短, 角一般只有1°~ 2°,设衍射环的半径为R,晶体到衍射屏或感光胶片的距离为L,由图6所示的几何关系可知 ,则布拉格定律为
, ⑵
式中 称为仪器常数。,电子衍射花样就是晶格倒易矢放大 倍的象。将立方晶系的晶面间距代入布拉定律得。晶面指数h,k,l只能取整数,令 ,则各衍射环半径平方的顺序比为 ,按照系统消光规律,对于简单立方、体心立方和面心立方晶格,半径最小的衍射环对应的密勒指数分别为100、110、111,这三个密勒指数对应的晶面分别是简单立方、体心立方和面心立方晶格中晶面间距最小的晶面。这三个晶格的衍射环半径排列顺序和对应的密勒指数见表1,将衍射环半径的平方比表1对照,一般可确定衍射环的密勒指数。衍射花样的指数化后,对已知晶格常数的晶体,仪器常数
, ⑶
若已知仪器常数,则可计算晶格常数
, ⑷
表1:简单格子立方晶系衍射环的密勒指数
衍射环序号 简单立方 体心立方 面心立方

Ⅶ (1)1927年戴维逊和革末完成了电子衍射实验,该实验是荣获诺贝尔奖的重大近代物理实验之一.如图1所示的

A、由题意可知,亮条纹是电子到达概率大的地方,暗条纹是粒子到达的概率小,故A正确内;
B、电子是实物粒子容,能发生衍射现象,该实验说明物质波理论是正确的,不能说明光子的波动性,故BD正确,C错误;
本题选择错误的,故选:C.

Ⅷ 电子衍射实验的介绍

电子衍射实验是曾荣获诺贝尔奖金的重大近代物理实验之一, 也是现代分析测试技术中,分析物质结构,特别是分析表面结构最重要的方法之一。现代晶体生长过程中, 用电子衍射方法进行监控, 也十分普遍。1927年Davsso和Germer首次实验验证了 De Broglie 关于微观粒子具有波粒二象性的理论假说,奠定了现代量子物理学的实验基础。本实验主要用于多晶体的电子衍射现象,测量运动电子的波长;验证德布罗意关系。

Ⅸ 电子衍射的方法

1、如表面科学中的低能电子衍射(LEED),主要应用于高取向晶体表面晶格的研究,比如畸变,吸附。
LEED结构也应用在透射电子显微镜(TEM)中,利用聚焦到很小光斑的电子束对纳米结构中的局域有序做结构探测。
LEED只能够作晶格类型分析,不能进行元素分析。
2、反射式高能电子衍射(RHEED),主要应用于分子束外延等设备的原位监测,能够很好的反映表面晶格的平整度,观测材料生长中的衍射强度及位置的振荡。
3、电子显微镜附件,主要是场发射扫描电子显微镜(FESEM),一般属于附件,称选区电子衍射(SAD),可以利用质能选择器对反射电子作元素分析,能够分析很小的区域元素组成,但结果较为粗糙。
电子衍射的原理可以参考XRD,观测到的衍射花纹都是表面晶格的倒易格点,可能是一套,也可能是几套。
一般,除了纳米材料研究中在电镜用电子衍射中常将衍射花纹作为晶格类型的佐证外,常规的LEED和RHEED并不作体材料三维晶格研究,而只用于表面晶格的判定,因为电子衍射一般只能反映晶格的二维表面结构,而不同晶体结构的晶体之间,它们的某一表面取向上它的对称性及衍射斑点可能会完全一致。
电子衍射一般只用于测试二维晶体结构,无法简单作三维体晶格判定,更无法单独作元素判定。
所以你所说的ED测定晶格的说法是要注意的,ED很少或几乎没有单独研究三维晶体结构。
电子衍射结构其实很简单,简单讲就三个部件:
1、灯丝,用于产生电子
2、加速电压,

电子加速电压
(电压大小要单独可控)

xy平面内的转向电压
3、荧光屏,注意导电接地。
此外电子衍射还需要有一个超高真空腔体作为设备的基础;
还要有一个位置可调的多维样品架(样品台)系统;
如果需要做衍射斑点位置亮度分析,还要有CCD图像采集系统。

Ⅹ 电子衍射的装置

最简单的电子衍射装置。从阴极K发出的电子被加速后经过阳极A的光阑孔和透镜L到达试样S上,被试样衍射后在荧光屏或照相底板P上形成电子衍射图样。由于物质(包括空气)对电子的吸收很强,故上述各部分均置于真空中。电子的加速电压一般为数万伏至十万伏左右,称高能电子衍射。为了研究表面结构,电子加速电压也可低达数千甚至数十伏,这种装置称低能电子衍射装置。 《量子力学》

阅读全文

与电子衍射实验发射电子装置相关的资料

热点内容
燃气灶离燃气阀门距离图 浏览:211
五菱宏光仪表盘上的表怎么调 浏览:202
网课批注设备哪个好 浏览:938
锋驭仪表台怎么设置中文 浏览:3
气动计数回路应用于哪些设备 浏览:500
一种可测量磁感应强度的实验装置 浏览:884
多液力元件传动装置 浏览:37
夹具中分度装置的作用 浏览:518
阀门cl4500是什么意思 浏览:495
机械键盘轴有多少种轴 浏览:640
轴承厚度英文怎么写 浏览:427
什么自来水阀门最耐用 浏览:212
2018印刷机械展什么时间 浏览:62
动漫机械奥特曼叫什么 浏览:529
福特福克斯仪表台充电器座怎么拆 浏览:12
肉桂酸熔点实验的装置图 浏览:249
上汽大通G10仪表里程怎么调 浏览:455
挂车发电机轴承怎么换 浏览:187
净水器接燃气阀门 浏览:714
1t机械硬盘供电多少 浏览:637