A. 刨片机如何制造
将木段、板皮或木片刨削成具有一定几何尺寸的工艺刨花的机械。是刨花板备料工段中的必备设备。刨片机上切削出的刨花其厚度应基本一致,厚度规格均匀的刨花愈多,说明刨片机的性能愈好。
刨片机根据切削刀头的形式可分为盘式刨片机和鼓式刨片机两类。
盘式刨片机
由切削刀盘和进给系统两大部分组成。按切削刀盘的安装位置可分为卧式和立式圆盘刨片机;按进料方式可分为间隙进料和连续进料两种。图1所示为盘式刨片机的4种类型。在刀盘径向有刀槽,在刀槽内安装刨削刀片,刀片的伸出量是控制刨花厚度的关键尺寸。为使刨花的长度一致,在径向还安装可调割刀或梳状刀。通常刀盘直径较大,刮削刀片10把甚至更多。割刀数在50把左右。
图3
B. 削片机的工作原理是什么
将木材切削成木片的机械。分盘式和鼓式两种。根据削片原料不同又分为原木削片机、板皮削片机、枝桠削片机、特种用途削片机、竹材削片机等。
沿革
20世纪40年代随着造纸工业大量采用木质纤维原料,削片技术开始得到发展。首先使用的是鼓式削片机,以后是盘式削片机。到50年代末60年代初,芬兰、美、苏等国研制了移动式削片机,60年代中叶,芬兰制造了全树削片机。此后,苏、美、联邦德国等出现了各种型式的联合削片机和全树削片机,伐区木片生产逐渐形成了独立的新工艺。1978年法国首先研制出立木削片机,接着美国、加拿大也研制出多种结构的这类机械。这时期还发展了以树根为对象的特殊削片装置——树根削片机。70年代以来,加拿大首先研制了以分离木片中的大片、枝条、树叶、碎屑、砂石等杂质为目标的双腔削片机。随后,美、苏等国也制造出这类的双腔、多腔削片机,并在木片生产中获得广泛应用。
中国从60年代初开始进行削片机的研制。其中,LX-950螺旋盘式削片机、SO3鼓式削片机、MZ563移动式削片机、ZMX1-刀盘削片机等是代表机型。70年代中期以来,对移动式削片机的研制有了较快发展,研制了以枝桠和间伐材为主要原料的LX650联合削片机、YX950移动式削片机、BX6110C型削片机、BX637自行式削片机,并生产了BX216、BX218鼓式削片机、BX627双腔削片机等新型结构。联合削片机、全树削片机等新技术也正在研究发展中。
机械组成
削片机主要由进料、切削、排料3部分组成。
进料装置
主要包括料槽和进料机构。通常布置在削片机壳体的后侧,有斜进料和水平进料两种方式。除螺旋面结构和部分斜进料的削片机外,都设有强制式进料装置。进料器有刺辊、人字形辊和齿链等形式。常用机械传动或液力驱动。进料器对木料起压紧和均匀供料作用,使进料速度和切削速度保持稳定,从而提高了木片质量。通常取进料速度为切削速度的1.1倍。料槽端面形状有圆形、方形和多边形。鼓式削片机(见图)的进料槽为方形或长方形,料口包容面积大是其特点;盘式削片机的进料槽为多边形。进料角对木片质量、规格及功率消耗影响极大。在鼓式削片机中,如果是斜料槽(布置在刀鼓中心水平面上方),刀鼓上飞刀与木料顺纹方向的切削角接近90°。切削时随着飞刀所处的位置不同,切削面也不断变化,使飞刀和底刀之间不能形成良好的剪切作用,其切削分力阻碍木料前进,造成切削时木料的跳动,致使碎料增加,木片的长度和厚度不均匀。木料越厚,木片规格差别越大,切削阻力和能耗也急剧加大。改用水平进料后(布置在刀鼓中心水平面下方),尽管相遇角还是在一定范围内变化,但切削分力对木料起着牵引作用,因而木料跳动现象减少,提高了木片质量。在盘式削片机中,斜进料方式常用于切削制材剩余物等短木料,进料槽轴线与刀盘平面的交角为45°~52°,与刀盘纵轴竖直面的交角为10°~30°。水平进料方式常用于切削原木、小径木、板皮、枝桠等木料,进料槽轴线与刀盘平面的交角在36°~42°之间。切削角的减少可以降低功率消耗,但切削角过小会增加长条木片的数量。进料槽的端部安装着底刀、旁刀。鼓式削片机采用四面刃的条形底刀,由于它的飞刀在切削时切削面不断变化,所以飞刀对底刀的间隙不允许调得很小,通常是1~2毫米。在盘式削片机中飞刀形成的切削面是恒定的,飞刀和底刀的间隙可调到0.5~0.7毫米,它采用多面刃的底刀可在机内或机外调整。通常进料槽内还设有安全销和保护罩等安全装置。
切削装置
包括刀盘、刀夹、飞刀、刀轴及联结支承装置。盘式削片机的刀盘通常由优质碳素钢铸造(大型的常用合金钢板组焊),具有一定重量,在切削时起飞轮作用,保证良好的连续切削条件。刀盘上装着飞刀和刀夹,飞刀在刀盘上的位置是依辐射方向前倾8°~15°。飞刀由高速钢、模具钢或高合金钢制成,刃部硬度为RC52~60,心部要求有足够的韧性。飞刀和刀夹用螺柱固定在刀盘上,飞刀伸出量可用齿槽、楔铁或浇铸巴氏合金方法调整。挨着飞刀后部的刀盘上开有刀槽,刀槽的宽度依形成木片的厚度决定,例如木片厚5毫米时,刀槽宽度约为100毫米。削下的木片经刀槽到达刀盘的另一侧,刀槽上还装有抗磨护板。通常,鼓式削片机的刀鼓采用低合金结构钢板焊接而成。挨着飞刀在刀鼓上开设适当宽度的弧形凹槽(或刀夹制成凹槽),切下的木块在这里挤压成片。飞刀及其压板用螺栓固定在刀鼓上,或采用刀架组件在机外换刀调整后装入刀鼓。
排料装置
保证木片及其废料的正常排放。分上、下排料两种方式。主要包括风扇叶片、排料管或网两部分。盘式削片机的叶片有板状、斗状和箱状数种,装在刀盘圆周上或刀盘背面。板状叶片随着刀盘高速旋转,推动木片产生圆周运动;由于叶片推动空气,产生具有一定风速、风压的气流,这样木片沿着机壳切线方向的排料管抛射出去。但这种结构容易打碎木片,增加碎屑量,所以板状叶片逐渐为斗状、箱状叶片所代替。大型盘式削片机由于圆周线速度大,在刀盘上不设叶片,而在排料管上安设风机吹送木片,或采用下排料方式。鼓式削片机通常不在刀辊圆周上安装叶片,采用下排料使木片通过筛网由输送带或气力送走,也可在鼓式削片机的排料管上安设风机,采用上排料方式排放木片。
发展趋势
随着造纸工业、人造板工业的不断发展和原材料的不断变化,各种新型削片机正不断涌现。削片机的结构正朝着提高木片质量,降低能耗,刀具更换调整方便、耐用、安全等方向进行改进。从简化生产工序、提高效率、降低费用的综合性能出发,新型结构的鼓式削片机、双腔或多腔削片机、带抓臂和自装料斗的联合削片机、立木削片机以及剥皮削片联合机等将取代单一的拖挂式削片机,并将在伐区木片生产中获得广泛应用。
削片—制材机
削片机与剖分锯机相配合的制材机械。原木通过削片—制材机,能够把中央部分锯剖成板材,并把板皮部分削成木片。
类型
①削片—制方机。有4个削片刀头或两组X形状双削片刀头,一次通过的削方机;两个锥形削片圆盘,在一次通过时削成毛方,二次通过时削成方材的削方机。中国上海杨浦木材厂MJX-200型削方机,属于一次通过削方机,可加工直径80~200毫米,长度0.8~3.0米的原木,所生产方材宽厚尺寸为60×60~160×160(10进位)毫米,进料速度为30米/分,生产率每台每班产方材6立方米、木片5立方米(木片尺寸25×18~2.5×3毫米)。②铣边机。又称削片—裁边机。用两个削片刀头代替双圆锯将毛边板的两侧板条铣削成木片而制取整边板。加拿大康卡尔2500型铣边机,其最大开档1100毫米,进料速度每分钟106米。③木丝—剖方机。用双轴或单轴多片铣刀代替多圆锯裁边机剖分小方的机械。切削呈木丝状可供纤维板、刨花板、造纸的原料。上海木材公司SMK-1型双轴多铣刀木丝—剖方机,铣刀厚为3.2毫米呈十字形,可加工木材宽度60~500毫米,所剖分方材宽度为50~150毫米,一次剖分1~5根小方,进料速度每分钟23米,生产率每小时6立方米,切削的木丝长度为4毫米。④削片—制方机与多圆锯纵锯机相联合的锯机。适合于小径木的削片制材生产。⑤削片—制方机与四联带锯相联合的锯机或双削片圆盘与双联带锯相联合的锯机。适用于大、中型原木高效率削片制材的生产。⑥单削片圆盘与跑车带锯相联合的锯机。锯割第一块板皮时,所得到的是毛边板,适用性广泛,出材率较高。
性能
可以同时完成将原木剖分为板材,并把加工剩余物削成工艺木片,通过气力运输集中到木片料仓,具有生产效率高、综合利用率高、机械化程度高、工艺简单、占地面积小的特点。削片—制材机通常用微机控制,自动调位定心,伺服油缸或步进油缸进尺,连续进给或跑车进给。联合机的木片产量为原木材积20~40%,木材综合利用率可达90%以上,但成材的出材率比普通跑车带锯要低5~15%。加拿大康卡尔4个削片刀头与双轴多圆锯机配合的削片制材联合机,其加工原木直径10~38厘米,相同直径原木可以连续进料,不同直径原木应相隔0.9米进料,进给速度18~55米/分,电机功率为221千瓦,每台班产量为300立方米。
C. 求各位大神帮忙!!DP最好的组词用拼音D开头的字和用拼音P开头的字,能组成最好的什么词
搭配、灯泡、店铺、打破、单片、碟片、吊牌、订票、跌破、刀片、盾牌、短片、貂皮、短篇、打牌、短跑、大片、点评、道袍、顶配、炖品、低频、盾牌
D. 机械设计课程设计---设计盘磨机传动装置!!!
我也在做这个题也 老兄
我只能提供样本给你哈 具体的还是得靠你自己啦
目 录
一 课程设计书 2
二 设计要求 2
三 设计步骤 2
1. 传动装置总体设计方案 3
2. 电动机的选择 4
3. 确定传动装置的总传动比和分配传动比 5
4. 计算传动装置的运动和动力参数 5
6. 齿轮的设计 8
7. 滚动轴承和传动轴的设计 19
8. 键联接设计 26
9. 箱体结构的设计 27
10.润滑密封设计 30
11.联轴器设计 30
四 设计小结 31
五 参考资料 32
一. 课程设计书
设计课题:
设计一用于带式运输机上的两级齿轮减速器.运输机连续单向运转,载荷有轻微冲击,工作环境多尘,通风良好,空载起动,卷筒效率为0.96(包括其支承轴承效率的损失),减速器小批量生产,使用期限10年(300天/年),三班制工作,滚筒转速容许速度误差为5%,车间有三相交流,电压380/220V。
参数:
皮带有效拉力F(KN) 3.2
皮带运行速度V(m/s) 1.4
滚筒直径D(mm) 400
二. 设计要求
1.减速器装配图1张(0号)。
2.零件工作图2-3张(A2)。
3.设计计算说明书1份。
三. 设计步骤
1. 传动装置总体设计方案
2. 电动机的选择
3. 确定传动装置的总传动比和分配传动比
4. 计算传动装置的运动和动力参数
5. 齿轮的设计
6. 滚动轴承和传动轴的设计
7. 键联接设计
8. 箱体结构设计
9. 润滑密封设计
10. 联轴器设计
1.传动装置总体设计方案:
1. 组成:传动装置由电机、减速器、工作机组成。
2. 特点:齿轮相对于轴承不对称分布,故沿轴向载荷分布不均匀,
要求轴有较大的刚度。
3. 确定传动方案:考虑到电机转速高,传动功率大,将V带设置在高速级。
其传动方案如下:
图一:(传动装置总体设计图)
初步确定传动系统总体方案如:传动装置总体设计图所示。
选择V带传动和二级圆柱斜齿轮减速器。
传动装置的总效率
为V带的传动效率, 为轴承的效率,
为对齿轮传动的效率,(齿轮为7级精度,油脂润滑)
为联轴器的效率, 为滚筒的效率
因是薄壁防护罩,采用开式效率计算。
取 =0.96 =0.98 =0.95 =0.99 =0.96
=0.96× × ×0.99×0.96=0.760;
2.电动机的选择
电动机所需工作功率为: P =P/η =3200×1.4/1000×0.760=3.40kW
滚筒轴工作转速为n= = =66.88r/min,
经查表按推荐的传动比合理范围,V带传动的传动比i =2~4,二级圆柱斜齿轮减速器传动比i =8~40,
则总传动比合理范围为i =16~160,电动机转速的可选范围为n =i ×n=(16~160)×66.88=1070.08~10700.8r/min。
综合考虑电动机和传动装置的尺寸、重量、价格和带传动、减速器的传动比,
选定型号为Y112M—4的三相异步电动机,额定功率为4.0
额定电流8.8A,满载转速 1440 r/min,同步转速1500r/min。
方案 电动机型号 额定功 率
P
kw 电动机转速
电动机重量
N 参考价格
元 传动装置的传动比
同步转速 满载转速 总传动 比 V带传 动 减速器
1 Y112M-4 4 1500 1440 470 230 125.65 3.5 35.90
3.确定传动装置的总传动比和分配传动比
(1)总传动比
由选定的电动机满载转速n 和工作机主动轴转速n,可得传动装置总传动比为 =n /n=1440/66.88=17.05
(2)分配传动装置传动比
= ×
式中 分别为带传动和减速器的传动比。
为使V带传动外廓尺寸不致过大,初步取 =2.3(实际的传动比要在设计V带传动时,由所选大、小带轮的标准直径之比计算),则减速器传动比为
= =17.05/2.3=7.41
根据展开式布置,考虑润滑条件,为使两级大齿轮直径相近,查图得高速级传动比为 =3.24,则 = =2.29
4.计算传动装置的运动和动力参数
(1) 各轴转速
= =1440/2.3=626.09r/min
= =626.09/3.24=193.24r/min
= / =193.24/2.29=84.38 r/min
= =84.38 r/min
(2) 各轴输入功率
= × =3.40×0.96=3.26kW
= ×η2× =3.26×0.98×0.95=3.04kW
= ×η2× =3.04×0.98×0.95=2.83kW
= ×η2×η4=2.83×0.98×0.99=2.75kW
则各轴的输出功率:
= ×0.98=3.26×0.98=3.19 kW
= ×0.98=3.04×0.98=2.98 kW
= ×0.98=2.83×0.98=2.77kW
= ×0.98=2.75×0.98=2.70 kW
(3) 各轴输入转矩
= × × N•m
电动机轴的输出转矩 =9550 =9550×3.40/1440=22.55 N•m
所以: = × × =22.55×2.3×0.96=49.79 N•m
= × × × =49.79×3.24×0.96×0.98=151.77 N•m
= × × × =151.77×2.29×0.98×0.95=326.98N•m
= × × =326.98×0.95×0.99=307.52 N•m
输出转矩: = ×0.98=49.79×0.98=48.79 N•m
= ×0.98=151.77×0.98=148.73 N•m
= ×0.98=326.98×0.98=320.44N•m
= ×0.98=307.52×0.98=301.37 N•m
运动和动力参数结果如下表
轴名 功率P KW 转矩T Nm 转速r/min
输入 输出 输入 输出
电动机轴 3.40 22.55 1440
1轴 3.26 3.19 49.79 48.79 626.09
2轴 3.04 2.98 151.77 148.73 193.24
3轴 2.83 2.77 326.98 320.44 84.38
4轴 2.75 2.70 307.52 301.37 84.38
5.齿轮的设计
(一)高速级齿轮传动的设计计算
1. 齿轮材料,热处理及精度
考虑此减速器的功率及现场安装的限制,故大小齿轮都选用硬齿面渐开线斜齿轮
(1)齿轮材料及热处理
① 材料:高速级小齿轮选用45#钢调质,齿面硬度为小齿轮 280HBS 取小齿齿数 =24
高速级大齿轮选用45#钢正火,齿面硬度为大齿轮 240HBS Z = ×Z =3.24×24=77.76 取Z =78.
② 齿轮精度
按GB/T10095-1998,选择7级,齿根喷丸强化。
2.初步设计齿轮传动的主要尺寸
按齿面接触强度设计
确定各参数的值:
①试选 =1.6
查课本 图10-30 选取区域系数 Z =2.433
由课本 图10-26
则
②由课本 公式10-13计算应力值环数
N =60n j =60×626.09×1×(2×8×300×8)
=1.4425×10 h
N = =4.45×10 h #(3.25为齿数比,即3.25= )
③查课本 10-19图得:K =0.93 K =0.96
④齿轮的疲劳强度极限
取失效概率为1%,安全系数S=1,应用 公式10-12得:
[ ] = =0.93×550=511.5
[ ] = =0.96×450=432
许用接触应力
⑤查课本由 表10-6得: =189.8MP
由 表10-7得: =1
T=95.5×10 × =95.5×10 ×3.19/626.09
=4.86×10 N.m
3.设计计算
①小齿轮的分度圆直径d
=
②计算圆周速度
③计算齿宽b和模数
计算齿宽b
b= =49.53mm
计算摸数m
初选螺旋角 =14
=
④计算齿宽与高之比
齿高h=2.25 =2.25×2.00=4.50
= =11.01
⑤计算纵向重合度
=0.318 =1.903
⑥计算载荷系数K
使用系数 =1
根据 ,7级精度, 查课本由 表10-8得
动载系数K =1.07,
查课本由 表10-4得K 的计算公式:
K = +0.23×10 ×b
=1.12+0.18(1+0.6 1) ×1+0.23×10 ×49.53=1.42
查课本由 表10-13得: K =1.35
查课本由 表10-3 得: K = =1.2
故载荷系数:
K=K K K K =1×1.07×1.2×1.42=1.82
⑦按实际载荷系数校正所算得的分度圆直径
d =d =49.53× =51.73
⑧计算模数
=
4. 齿根弯曲疲劳强度设计
由弯曲强度的设计公式
≥
⑴ 确定公式内各计算数值
① 小齿轮传递的转矩 =48.6kN•m
确定齿数z
因为是硬齿面,故取z =24,z =i z =3.24×24=77.76
传动比误差 i=u=z / z =78/24=3.25
Δi=0.032% 5%,允许
② 计算当量齿数
z =z /cos =24/ cos 14 =26.27
z =z /cos =78/ cos 14 =85.43
③ 初选齿宽系数
按对称布置,由表查得 =1
④ 初选螺旋角
初定螺旋角 =14
⑤ 载荷系数K
K=K K K K =1×1.07×1.2×1.35=1.73
⑥ 查取齿形系数Y 和应力校正系数Y
查课本由 表10-5得:
齿形系数Y =2.592 Y =2.211
应力校正系数Y =1.596 Y =1.774
⑦ 重合度系数Y
端面重合度近似为 =[1.88-3.2×( )] =[1.88-3.2×(1/24+1/78)]×cos14 =1.655
=arctg(tg /cos )=arctg(tg20 /cos14 )=20.64690
=14.07609
因为 = /cos ,则重合度系数为Y =0.25+0.75 cos / =0.673
⑧ 螺旋角系数Y
轴向重合度 = =1.825,
Y =1- =0.78
⑨ 计算大小齿轮的
安全系数由表查得S =1.25
工作寿命两班制,8年,每年工作300天
小齿轮应力循环次数N1=60nkt =60×271.47×1×8×300×2×8=6.255×10
大齿轮应力循环次数N2=N1/u=6.255×10 /3.24=1.9305×10
查课本由 表10-20c得到弯曲疲劳强度极限
小齿轮 大齿轮
查课本由 表10-18得弯曲疲劳寿命系数:
K =0.86 K =0.93
取弯曲疲劳安全系数 S=1.4
[ ] =
[ ] =
大齿轮的数值大.选用.
⑵ 设计计算
① 计算模数
对比计算结果,由齿面接触疲劳强度计算的法面模数m 大于由齿根弯曲疲劳强度计算的法面模数,按GB/T1357-1987圆整为标准模数,取m =2mm但为了同时满足接触疲劳强度,需要按接触疲劳强度算得的分度圆直径d =51.73 来计算应有的齿数.于是由:
z = =25.097 取z =25
那么z =3.24×25=81
② 几何尺寸计算
计算中心距 a= = =109.25
将中心距圆整为110
按圆整后的中心距修正螺旋角
=arccos
因 值改变不多,故参数 , , 等不必修正.
计算大.小齿轮的分度圆直径
d = =51.53
d = =166.97
计算齿轮宽度
B=
圆整的
(二) 低速级齿轮传动的设计计算
⑴ 材料:低速级小齿轮选用45钢调质,齿面硬度为小齿轮 280HBS 取小齿齿数 =30
速级大齿轮选用45钢正火,齿面硬度为大齿轮 240HBS z =2.33×30=69.9 圆整取z =70.
⑵ 齿轮精度
按GB/T10095-1998,选择7级,齿根喷丸强化。
⑶ 按齿面接触强度设计
1. 确定公式内的各计算数值
①试选K =1.6
②查课本由 图10-30选取区域系数Z =2.45
③试选 ,查课本由 图10-26查得
=0.83 =0.88 =0.83+0.88=1.71
应力循环次数
N =60×n ×j×L =60×193.24×1×(2×8×300×8)
=4.45×10
N = 1.91×10
由课本 图10-19查得接触疲劳寿命系数
K =0.94 K = 0.97
查课本由 图10-21d
按齿面硬度查得小齿轮的接触疲劳强度极限 ,
大齿轮的接触疲劳强度极限
取失效概率为1%,安全系数S=1,则接触疲劳许用应力
[ ] = =
[ ] = =0.98×550/1=517
[ 540.5
查课本由 表10-6查材料的弹性影响系数Z =189.8MP
选取齿宽系数
T=95.5×10 × =95.5×10 ×2.90/193.24
=14.33×10 N.m
=65.71
2. 计算圆周速度
0.665
3. 计算齿宽
b= d =1×65.71=65.71
4. 计算齿宽与齿高之比
模数 m =
齿高 h=2.25×m =2.25×2.142=5.4621
=65.71/5.4621=12.03
5. 计算纵向重合度
6. 计算载荷系数K
K =1.12+0.18(1+0.6 +0.23×10 ×b
=1.12+0.18(1+0.6)+ 0.23×10 ×65.71=1.4231
使用系数K =1
同高速齿轮的设计,查表选取各数值
=1.04 K =1.35 K =K =1.2
故载荷系数
K= =1×1.04×1.2×1.4231=1.776
7. 按实际载荷系数校正所算的分度圆直径
d =d =65.71×
计算模数
3. 按齿根弯曲强度设计
m≥
一确定公式内各计算数值
(1) 计算小齿轮传递的转矩 =143.3kN•m
(2) 确定齿数z
因为是硬齿面,故取z =30,z =i ×z =2.33×30=69.9
传动比误差 i=u=z / z =69.9/30=2.33
Δi=0.032% 5%,允许
(3) 初选齿宽系数
按对称布置,由表查得 =1
(4) 初选螺旋角
初定螺旋角 =12
(5) 载荷系数K
K=K K K K =1×1.04×1.2×1.35=1.6848
(6) 当量齿数
z =z /cos =30/ cos 12 =32.056
z =z /cos =70/ cos 12 =74.797
由课本 表10-5查得齿形系数Y 和应力修正系数Y
(7) 螺旋角系数Y
轴向重合度 = =2.03
Y =1- =0.797
(8) 计算大小齿轮的
查课本由 图10-20c得齿轮弯曲疲劳强度极限
查课本由 图10-18得弯曲疲劳寿命系数
K =0.90 K =0.93 S=1.4
[ ] =
[ ] =
计算大小齿轮的 ,并加以比较
大齿轮的数值大,选用大齿轮的尺寸设计计算.
① 计算模数
对比计算结果,由齿面接触疲劳强度计算的法面模数m 大于由齿根弯曲疲劳强度计算的法面模数,按GB/T1357-1987圆整为标准模数,取m =3mm但为了同时满足接触疲劳强度,需要按接触疲劳强度算得的分度圆直径d =72.91 来计算应有的齿数.
z = =27.77 取z =30
z =2.33×30=69.9 取z =70
② 初算主要尺寸
计算中心距 a= = =102.234
将中心距圆整为103
修正螺旋角
=arccos
因 值改变不多,故参数 , , 等不必修正
分度圆直径
d = =61.34
d = =143.12
计算齿轮宽度
圆整后取
低速级大齿轮如上图:
齿轮各设计参数附表
1. 各轴转速n
(r/min)
(r/min)
(r/min)
(r/min)
626.09 193.24 84.38 84.38
2. 各轴输入功率 P
(kw)
(kw)
(kw)
(kw)
3.26 3.04 2.83 2.75
3. 各轴输入转矩 T
(kN•m)
(kN•m)
(kN•m)
(kN•m)
49.79 151.77 326.98 307.52
6.传动轴承和传动轴的设计
1. 传动轴承的设计
⑴. 求输出轴上的功率P ,转速 ,转矩
P =2.83KW =84.38r/min
=326.98N.m
⑵. 求作用在齿轮上的力
已知低速级大齿轮的分度圆直径为
=143.21
而 F =
F = F
F = F tan =4348.16×0.246734=1072.84N
圆周力F ,径向力F 及轴向力F 的方向如图示:
⑶. 初步确定轴的最小直径
先按课本15-2初步估算轴的最小直径,选取轴的材料为45钢,调质处理,根据课本 取
输出轴的最小直径显然是安装联轴器处的直径 ,为了使所选的轴与联轴器吻合,故需同时选取联轴器的型号
查课本 ,选取
因为计算转矩小于联轴器公称转矩,所以
查《机械设计手册》
选取LT7型弹性套柱销联轴器其公称转矩为500Nm,半联轴器的孔径
⑷. 根据轴向定位的要求确定轴的各段直径和长度
① 为了满足半联轴器的要求的轴向定位要求,Ⅰ-Ⅱ轴段右端需要制出一轴肩,故取Ⅱ-Ⅲ的直径 ;左端用轴端挡圈定位,按轴端直径取挡圈直径 半联轴器与 为了保证轴端挡圈只压在半联轴器上而不压在轴端上, 故Ⅰ-Ⅱ的长度应比 略短一些,现取
② 初步选择滚动轴承.因轴承同时受有径向力和轴向力的作用,故选用单列角接触球轴承.参照工作要求并根据 ,由轴承产品目录中初步选取0基本游隙组 标准精度级的单列角接触球轴承7010C型.
D B
轴承代号
45 85 19 58.8 73.2 7209AC
45 85 19 60.5 70.2 7209B
45 100 25 66.0 80.0 7309B
50 80 16 59.2 70.9 7010C
50 80 16 59.2 70.9 7010AC
50 90 20 62.4 77.7 7210C
2. 从动轴的设计
对于选取的单向角接触球轴承其尺寸为的 ,故 ;而 .
右端滚动轴承采用轴肩进行轴向定位.由手册上查得7010C型轴承定位轴肩高度 mm,
③ 取安装齿轮处的轴段 ;齿轮的右端与左轴承之间采用套筒定位.已知齿轮 的宽度为75mm,为了使套筒端面可靠地压紧齿轮,此轴段应略短于轮毂宽度,故取 . 齿轮的左端采用轴肩定位,轴肩高3.5,取 .轴环宽度 ,取b=8mm.
④ 轴承端盖的总宽度为20mm(由减速器及轴承端盖的结构设计而定) .根据轴承端盖的装拆及便于对轴承添加润滑脂的要求,取端盖的外端面与半联轴器右端面间的距离 ,故取 .
⑤ 取齿轮距箱体内壁之距离a=16 ,两圆柱齿轮间的距离c=20 .考虑到箱体的铸造误差,在确定滚动轴承位置时,应距箱体内壁一段距离 s,取s=8 ,已知滚动轴承宽度T=16 ,
高速齿轮轮毂长L=50 ,则
至此,已初步确定了轴的各端直径和长度.
5. 求轴上的载荷
首先根据结构图作出轴的计算简图, 确定顶轴承的支点位置时,
查《机械设计手册》20-149表20.6-7.
对于7010C型的角接触球轴承,a=16.7mm,因此,做为简支梁的轴的支承跨距.
传动轴总体设计结构图:
(从动轴)
(中间轴)
(主动轴)
从动轴的载荷分析图:
6. 按弯曲扭转合成应力校核轴的强度
根据
= =
前已选轴材料为45钢,调质处理。
查表15-1得[ ]=60MP
〈 [ ] 此轴合理安全
7. 精确校核轴的疲劳强度.
⑴. 判断危险截面
截面A,Ⅱ,Ⅲ,B只受扭矩作用。所以A Ⅱ Ⅲ B无需校核.从应力集中对轴的疲劳强度的影响来看,截面Ⅵ和Ⅶ处过盈配合引起的应力集中最严重,从受载来看,截面C上的应力最大.截面Ⅵ的应力集中的影响和截面Ⅶ的相近,但是截面Ⅵ不受扭矩作用,同时轴径也较大,故不必做强度校核.截面C上虽然应力最大,但是应力集中不大,而且这里的直径最大,故C截面也不必做强度校核,截面Ⅳ和Ⅴ显然更加不必要做强度校核.由第3章的附录可知,键槽的应力集中较系数比过盈配合的小,因而,该轴只需胶合截面Ⅶ左右两侧需验证即可.
⑵. 截面Ⅶ左侧。
抗弯系数 W=0.1 = 0.1 =12500
抗扭系数 =0.2 =0.2 =25000
截面Ⅶ的右侧的弯矩M为
截面Ⅳ上的扭矩 为 =311.35
截面上的弯曲应力
截面上的扭转应力
= =
轴的材料为45钢。调质处理。
由课本 表15-1查得:
因
经插入后得
2.0 =1.31
轴性系数为
=0.85
K =1+ =1.82
K =1+ ( -1)=1.26
所以
综合系数为: K =2.8
K =1.62
碳钢的特性系数 取0.1
取0.05
安全系数
S = 25.13
S 13.71
≥S=1.5 所以它是安全的
截面Ⅳ右侧
抗弯系数 W=0.1 = 0.1 =12500
抗扭系数 =0.2 =0.2 =25000
截面Ⅳ左侧的弯矩M为 M=133560
截面Ⅳ上的扭矩 为 =295
截面上的弯曲应力
截面上的扭转应力
= = K =
K =
所以
综合系数为:
K =2.8 K =1.62
碳钢的特性系数
取0.1 取0.05
安全系数
S = 25.13
S 13.71
≥S=1.5 所以它是安全的
8.键的设计和计算
①选择键联接的类型和尺寸
一般8级以上精度的尺寸的齿轮有定心精度要求,应用平键.
根据 d =55 d =65
查表6-1取: 键宽 b =16 h =10 =36
b =20 h =12 =50
②校和键联接的强度
查表6-2得 [ ]=110MP
工作长度 36-16=20
50-20=30
③键与轮毂键槽的接触高度
K =0.5 h =5
K =0.5 h =6
由式(6-1)得:
<[ ]
<[ ]
两者都合适
取键标记为:
键2:16×36 A GB/T1096-1979
键3:20×50 A GB/T1096-1979
9.箱体结构的设计
减速器的箱体采用铸造(HT200)制成,采用剖分式结构为了保证齿轮佳合质量,
大端盖分机体采用 配合.
1. 机体有足够的刚度
在机体为加肋,外轮廓为长方形,增强了轴承座刚度
2. 考虑到机体内零件的润滑,密封散热。
因其传动件速度小于12m/s,故采用侵油润油,同时为了避免油搅得沉渣溅起,齿顶到油池底面的距离H为40mm
为保证机盖与机座连接处密封,联接凸缘应有足够的宽度,联接表面应精创,其表面粗糙度为
3. 机体结构有良好的工艺性.
铸件壁厚为10,圆角半径为R=3。机体外型简单,拔模方便.
4. 对附件设计
A 视孔盖和窥视孔
在机盖顶部开有窥视孔,能看到 传动零件齿合区的位置,并有足够的空间,以便于能伸入进行操作,窥视孔有盖板,机体上开窥视孔与凸缘一块,有便于机械加工出支承盖板的表面并用垫片加强密封,盖板用铸铁制成,用M6紧固
B 油螺塞:
放油孔位于油池最底处,并安排在减速器不与其他部件靠近的一侧,以便放油,放油孔用螺塞堵住,因此油孔处的机体外壁应凸起一块,由机械加工成螺塞头部的支承面,并加封油圈加以密封。
C 油标:
油标位在便于观察减速器油面及油面稳定之处。
油尺安置的部位不能太低,以防油进入油尺座孔而溢出.
D 通气孔:
由于减速器运转时,机体内温度升高,气压增大,为便于排气,在机盖顶部的窥视孔改上安装通气器,以便达到体内为压力平衡.
E 盖螺钉:
启盖螺钉上的螺纹长度要大于机盖联结凸缘的厚度。
钉杆端部要做成圆柱形,以免破坏螺纹.
F 位销:
为保证剖分式机体的轴承座孔的加工及装配精度,在机体联结凸缘的长度方向各安装一圆锥定位销,以提高定位精度.
G 吊钩:
在机盖上直接铸出吊钩和吊环,用以起吊或搬运较重的物体.
减速器机体结构尺寸如下:
名称 符号 计算公式 结果
箱座壁厚
10
箱盖壁厚
9
箱盖凸缘厚度
12
箱座凸缘厚度
15
箱座底凸缘厚度
25
地脚螺钉直径
M24
地脚螺钉数目
查手册 6
轴承旁联接螺栓直径
M12
机盖与机座联接螺栓直径
=(0.5~0.6)
M10
轴承端盖螺钉直径
=(0.4~0.5)
10
视孔盖螺钉直径
=(0.3~0.4)
8
定位销直径
=(0.7~0.8)
8
, , 至外机壁距离
查机械课程设计指导书表4 34
22
18
, 至凸缘边缘距离
查机械课程设计指导书表4 28
16
外机壁至轴承座端面距离
= + +(8~12)
50
大齿轮顶圆与内机壁距离
>1.2
15
齿轮端面与内机壁距离
>
10
机盖,机座肋厚
9 8.5
轴承端盖外径
+(5~5.5)
120(1轴)125(2轴)
150(3轴)
轴承旁联结螺栓距离
120(1轴)125(2轴)
150(3轴)
10. 润滑密封设计
对于二级圆柱齿轮减速器,因为传动装置属于轻型的,且传速较低,所以其速度远远小于 ,所以采用脂润滑,箱体内选用SH0357-92中的50号润滑,装至规定高度.
油的深度为H+
H=30 =34
所以H+ =30+34=64
其中油的粘度大,化学合成油,润滑效果好。
密封性来讲为了保证机盖与机座联接处密封,联接
凸缘应有足够的宽度,联接表面应精创,其表面粗度应为
密封的表面要经过刮研。而且,凸缘联接螺柱之间的距离不宜太
大,国150mm。并匀均布置,保证部分面处的密封性。
11.联轴器设计
1.类型选择.
为了隔离振动和冲击,选用弹性套柱销联轴器.
2.载荷计算.
公称转矩:T=9550 9550 333.5
查课本 ,选取
所以转矩
因为计算转矩小于联轴器公称转矩,所以
查《机械设计手册》
选取LT7型弹性套柱销联轴器其公称转矩为500Nm
E. 想知道:盘式削片机的工作原理、
基本原理是:一个圆盘竖直方向安装,一边盘面的圆周上装有切断刀具,圆盘中心有根主轴,所以圆盘可以高速转动。另有一根传送带,平行于主轴,可以将物料传送至圆盘的圆周边上。利用圆盘周边上的刀具将物料切断。
传送带速度和圆盘转速都是可调的,所以切片的厚度也是可调的。
F. 请问盘式削片机和劈木机的操作规程是怎样的
削片机的分类及结构特点
削片机按结构式一般可分为盘式削片机和鼓式削片机两大类。按进料方式分水平进料和倾斜进料两种型式;按安装型式又可分为固定式和移动式两类。
盘式削片机削出的木片质量一般比鼓式削片机好,所以,造纸业一般采用盘式削片机,但盘式削片机的原料适应范围较小,一般只能切削通直的大径规格材。
鼓式削片机对原料的适应范围广,不仅可以切削原木、小径木等规格材,而且可以切削多种采伐和加工剩余物,以及竹材、棉麻秆等非木质禾本植物,并且结构紧凑、能耗低、安全可靠、操作简便。所以在人造板行业中,采用鼓式削片机较多。
G. 盘式削片机的飞刀和定刀都是什么材质的,具体型号
盘式削片机的飞刀和定刀都是高速钢制作的,具体型号LB30N,LB30H。
高速钢是一种具有高硬度、高耐磨性和高耐热性的工具钢,又称高速工具钢或锋钢,俗称白钢。高速钢是美国的F.W.泰勒和M.怀特于1898年创制的。高速钢的工艺性能好,强度和韧性配合好,因此主要用来制造复杂的薄刃和耐冲击的金属切削刀具,也可制造高温轴承和冷挤压模具等。
H. 转鼓式木片机和盘式削片机的区别
工作方式不一样,盘式的直接用刀片切。木片均匀。
鼓式的对辊挤压过后再用刀切,省刀、省力、产量高。因为挤压过程中会造成木材劈裂,因此产出的木片有片状、有块状,不是很规则
普通盘式削片机:飞刀装于刀盘的端面,且前倾一定角度;飞刀运动的切削平面固定不变,切削木片的长度均匀;进料口为正方形,使原料堆积高,切削生产率可无需强制进料装置;鼓轮轴向短;普通盘式削片机也是间歇切削,但设计为多刀盘式削片机即可实现连续切削。
I. 削片机的削片机分类
1.削片机的机械结构分类
削片机按机械结构可分为两类:切削刀装在圆盘上的盘式削片机和切削刀装在圆柱形鼓上的鼓式削片机。盘式削片机主要用于切削原木,削出木片质量较好,在制浆造纸厂采用得较多,而鼓式削片机对木料品种适应性广,可用于板皮等各种木料。
2。盘式削片机分类
盘式削片机分为:普通削片机(4~6把刀),多刀削片机(8~12把刀)和螺旋面削片机三种。这三种削片机喂料方式又有斜口喂料和平口喂料(或称水平喂料)两种。长原木的削片,一般采用平口喂料,短原木和板皮的削片可采用斜口喂料,亦可采用平口喂料。
以上答案来源于:http://www.bopiji.com/content/81573.html
J. 木材削片机有哪些分类,各有什么优劣势
①鼓式削片机。主要用于切削直径或厚度在 120毫米以下的枝桠、小径木、板皮、板条等,切削后的木片,用作纤维板、纸浆的原料。
其切削机构是一个旋转的鼓轮,上面安装若干把飞刀,飞刀旋转时将木材加工成工艺木片。鼓轮外缘上有多个方形通孔,可使木片顺利排出;进料机构由进料接口、上下进料辊及进料调隙机构组成,从进料接口进入的木料被上下进料辊压住,并以一定的速度向切削机构进给,控制切削木片的尺寸;在加工厚木料时,由进料调隙机构进行调节。木片经筛选后,较大的须再次
进入刀片与档板间粉碎。这种削片机切削的木片质量较低。
②盘式削片机。由刀盘、切削刀、底刀、刀盘叶片等组成。刀盘正面有安装切削刀片的沟槽,沿径向偏10°~15°布置。
刀片底部垫有楔形调整块,用以调整刀片的伸出量;后部装有调距垫块,用以调整刃磨后刀片的补偿长度。在刀盘上顺着刀刃方向有贯通的缝隙,削好的木片可转到刀盘的另一面。刀盘外缘均匀配置叶片,叶片产生的气流将木片由出料口吹出,经过筛选,过大的进入再碎机粉碎。该机有少刀、多刀和螺旋面刀3种类型,前两种切削的木片均匀度都较差,螺旋面刀盘式削片机由于在切削过程中切削表面全部同刀盘接触,单位压力较小,木片切口整齐,碎木片少,刀盘磨损小,切削成的木片长度一致,切削木片合格率可达97%左右。为适应造纸、纤维板、刨花板行业对木片长度的不同要求,木片长度可在一定范围内调节。盘式木材削片机,结构紧凑合理,操作简便,生产能力大,木片合格率高,单位木片产量能耗低,是生产优质木片的理想设备盘式木片机