㈠ 牛顿环的实验原理什么
牛顿环的实验原理
衍射,当遮光物体很小时, 大小可以和波长相比较时, 就会发生衍射现象。 当波峰与波峰相遇时, 即为亮点 , 波峰与波谷相遇时, 极为暗点。
牛顿环仪是由一块曲率半径较大的平凸透镜,和一块光学平面玻璃片所组成的器件。在平凸透镜的凸面与玻璃片之间,有一空气薄层其厚度由中心接触点到边缘逐渐增大。若以平行单色光S垂直照射,则经空气层上下表面反射的两束光线有一光程差,在平凸透镜凸面相遇后,将发生干涉。用读数显微镜观察,便可以清楚的看到中心为一小暗斑,周围是明暗相间宽度逐渐减小的许多同心圆环。此即等厚干涉条纹。这种等厚环形干涉条纹称为牛顿环。
实验具体内容与要求
1、 接通钠光源,预热5分钟后,使读数显微镜物镜对准牛顿环的中央部分。
2、 调节读数显微镜,看到清楚的明暗条纹,且条纹与叉丝无视差。
3、 将牛顿环调整在量程范围内,然后用右手反转副齿轮,将十字叉丝移到右35暗环时再用右手正转,使叉丝开始向左推进,直到纵丝压到第30暗环环纹中央,记下显微镜读数即该暗环标度X30,再缓慢转动副齿轮,使纵丝依次对准第25、20、15、10等暗环环纹中央,记下每次暗环的标度X25, X20, X15, X10。
4、 继续转动副齿轮,使纵丝经过牛顿环中心暗斑到另一方,对准第10~30环,依次记下相应的标度X10,, X15,, X20,, X25,, X30,。
5、 算出相应的暗环直径,再计算R20-10, R25-15, R30-20,最后算出R即可。
㈡ 牛顿环实验思考题
楼主是南来京大学大一学生吗?说不自准我们是同学哟,嘿嘿!
1.由于光的波动性,因此光不是绝对直线传播的,总有光会漏到牛顿环装置上的,所以能观察到牛顿环,并且玻璃片角度越偏向45度,牛顿环越明显(做实验调试装置时你就应该感觉到了)。
2.这个问题书上有公式(第273页21-4),你抄一下公式就可以了。
3.画一张光路图,尽量精准一些,如果对自己的画图水平没有信心,可以在书上第272页图21-1上方虚线框中的图进行改造。(将曲率半径扩大,在原图上画一幅光路图就一切明了了。)答案是条纹向外移动。中心会变暗(实验时把房间灯关掉观察),因为第一圈亮环会向外移动,中心位置的暗斑面积扩大,接受光粒子的数量相应减少,亮度降低。
做一下最后总结:如果你是南京大学的学生,那么你做的四个光学试验中有两个体现了光的粒子性,两个体现了光的波动性。通过四个实验,我们应该充分了解光粒子性与波动性的结合,即波粒二象性。
㈢ 把牛顿环从空气放入水中,用相同的单色光观察到牛顿环变密
平凸透镜慢慢地垂直向上移动,光程差增加,
从透镜顶点与平面玻璃接触到两者距离为d的移动过程中,光程差增加了2d,
每变化一个波长,条纹数目变化一个,这是波动光学的基础,
所以,移过视场中某固定观察点的条纹数目等于2d/λ .
㈣ 牛顿环法测曲率半径的实验报告
一、实验名称:
用牛顿环测量透镜的曲率半径
二、实验目的:
1、观察光的等厚干涉现象,了解干涉条纹特点。
2、利用干涉原理测透镜曲率半径。
3、学习用逐差法处理实验数据的方法。
三、实验仪器:
牛顿环装置(其中透镜的曲率未知)、钠光灯(波长为589.3nm)、读数显微镜(附有反射镜)。
四、实验原理:
将一块曲率半径R较大的平凸透镜的凸面放在一个光学平板玻璃上,使平凸透镜的球面AOB与平面玻璃CD面相切于O点,组成牛顿环装置,如图所示,则在平凸透镜球面与平板玻璃之间形成一个以接触点O为中心向四周逐渐增厚的空气劈尖。当单色平行光束近乎垂直地向AB面入射时,一部分光束在AOB面上反射,一部分继续前进,到COD面上反射。这两束反射光在AOB面相遇,互相干涉,形成明暗条纹。由于AOB面是球面,与O点等距的各点对O点是对称的,因而上述明暗条纹排成如图所示的明暗相间的圆环图样,在中心有一暗点(实际观察是一个圆斑),这些环纹称为牛顿环。
五、实验步骤
1、调整测量装置
(1)用眼睛在牛顿环装置上方观察,若环中心不是黑斑或黑斑偏离中部太远,可以轻轻对牛顿环框架螺钉进行调节(切勿用力过大,以免损坏透镜)。
(2)启动钠光灯,让读数显微镜上的45°反射片对着钠光灯,然后调节反射片的倾斜度(实验用的显微镜已装在物镜头上),使显微镜视场中亮度最大。
(3)将显微镜对准牛顿环装置正表面调焦,找到清晰的牛顿环,注意调焦时使物镜接近牛顿环装置(不要相碰),缓慢扭动调节手轮,使显微镜自下而上缓慢地上升,直到看清楚干涉条纹为止。
(4)轻轻地移动牛顿环装置的位置,使条纹中心大致对准叉丝,且当测微手轮转动移动叉丝时,叉丝与圆环相切。如叉丝倾斜可调节显微镜的目镜筒。调节后,在实验过程中不能再动牛顿环装置。
2、观察干涉条纹的分布特征:
注意观察当环心暗纹和叉丝左右移动时条纹间隔的变化,并注意条纹级数的计算。
3、测量牛顿环的直径:
从环心(暗斑)开始,转动测微手轮。一边转动,一边数出暗纹的级数。例如,数到第m+2环后,反方向转动测微手轮,使十字叉丝交点对准第m条暗纹的中间,从显微镜的主尺和测微手轮上的游标刻度记下读数。
㈤ 用牛顿环测透镜曲率半径的思考题
1.中心处是暗斑,这是因为中心接触处的空气厚度,而光在平面玻璃面上反射时有半波损失,所以形成牛顿环中心处为暗斑(用反射光观察时)。当没有半波损失时则为亮斑。
㈥ 若把牛顿环装置(玻璃折射率为1.52),由空气中搬入折射率为1.33的水中,则干涉条纹如何变化
c干涉条纹变密,这个可以由牛顿环干涉条纹的半径公式得到,实际上牛顿环就是一个等厚干涉的例子,还是要看两束相干光线的光程差与波长的关系。
通常牛顿环光程差2nd+λ/2中的n隐去不写,是由于空气折射率n=1,放入液体后n留着即可。声光调制利用光在声场中的衍射现象进行调制。当声波传入到介质中时,介质中存在着疏密波,介质的折射率也相应地发生周期性的变化,形成以声波波长值为常数的等效相位光栅。
当光束以一定的角度入制射到此介质中时,光束即发生衍射。衍射光的强度、频率和方向都随声场的变化而变化。这样,就可以实现光束的调制和偏转。
声光衍射可分为喇曼-奈斯衍射和布喇格衍射两种。后者衍射效率高,常被采用。声光调制器通常由电声换能器、声光介质和吸声装置组成。声光调制具有驱动功率低、光损耗小、消光比高等优点。
(6)空气中有一观察牛顿环的实验装置扩展阅读:
牛顿环装置产生的干涉暗环半径为√(kRλ) ,其中k=0,1,2
牛顿还用水代替空气,从而观察到色环的半径将减小。他不仅观察了白光的干涉条纹,而且还观察了单色光所呈现的明间相间的干涉条纹。
牛顿环装置常用来检验光学元件表面的准确度.如果改变凸透镜和平板玻璃间的压力,能使其间空气薄膜的厚度发生微小变化,条纹就会移动。用此原理可以精密地测定压力或长度的微小变化。
按理说,牛顿环乃是光的波动性的最好证明之一,可牛顿却不从实际出发,而是从他所信奉的微粒说出发来解释牛顿环的形成。他认为光是一束通过窨高速运动的粒子流,因此为了解释牛顿环的出现,他提出了一个“一阵容易反射,一阵容易透射”的复杂理论。
根据这一理论,他认为;“每条光线在通过任何折射面时都要进入某种短暂的状态,这种状态在光线得进过程中每隔一定时间又复原,并在每次复原时倾向于使光线容易透过下一个折射面,在两次复原之间,则容易被下一个折射面的反射。”
㈦ 牛顿环实验的介绍
牛顿环仪是由一块曲率半径较大的平凸透镜,和一块光学平面玻璃片所组成的器件。在平凸透镜的凸面与玻璃片之间,有一空气薄层其厚度由中心接触点到边缘逐渐增大。若以平行单色光S垂直照射,则经空气层上下表面反射的两束光线有一光程差,在平凸透镜凸面相遇后,将发生干涉。用读数显微镜观察,便可以清楚的看到中心为一小暗斑,周围是明暗相间宽度逐渐减小的许多同心圆环。此即等厚干涉条纹。这种等厚环形干涉条纹称为牛顿环。
㈧ 牛顿环实验报告
牛顿环实验报告
一、【实验目的】
(1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; (3)学会使用读数显微镜测距。 【实验原理】
在一块平面玻璃上安放上一焦距很大的平凸透镜,使其凸面与平面相接触,在接触点附近就形成一层空气膜。当用一平行的准单色光垂直照射时,在空气膜上表面反射的光束和下表面反射的光束在膜上表面相遇相干,形成以接触点为圆心的明暗相间的环状干涉图样,
称为牛顿环,其光路示意图如图。
如果已知入射光波长,并测得第k级暗环的半径
rk,则可求得透镜
的曲率半径R。但实际测量时,由于透镜和平面玻璃接触时,接触点有压力产生形变或有微尘产生附加光程差,使得干涉条纹的圆心和环级确定困难。用直径此为计算R用的公式,它与附加厚光程差、圆心位置、绝对级次无
DD关,克服了由这些因素带来的系统误差,并且m、n可以是弦长。
二、【实验仪器】
JCD3型读数显微镜,牛顿环,钠光灯,凸透镜(包括三爪式透镜夹和固定滑座)。 【实验内容】 1、调整测量装置
按光学实验常用仪器的读数显微镜使用说明进行调整。调整时注意:
(1)调节45玻片,使显微镜视场中亮度最大,这时,基本上满足入射光垂直于透镜的要求(下部反光镜不要让反射光到上面去)。
(2)因反射光干涉条纹产生在空气薄膜的上表面,显微镜应对上表面调焦才能找到清晰的干涉图像。
(3)调焦时,显微镜筒应自下而上缓慢地上升,直到看清楚干涉条纹时为止,往下移动显微镜筒时,眼睛一定要离开目镜侧视,防止镜筒压坏牛顿环。
(4)牛顿环三个压紧螺丝不能压得很紧,两个表面要用擦镜纸擦拭干净。 2、观察牛顿环的干涉图样
(1)调整牛顿环仪的三个调节螺丝,在自然光照射下能观察到牛顿环的干涉图样,并将干涉条纹的中心移到牛顿环仪的中心附近。调节螺丝不能太紧,以免中心暗斑太大,甚至损坏牛顿环仪。
(2)把牛顿环仪置于显微镜的正下方,使单色光源与读数显微镜上45?角的反射透明玻璃片等高,旋转反射透明玻璃 ,直至从目镜中能看到明亮均匀的光照。
(3)调节读数显微镜的目镜,使十字叉丝清晰;自下而上调节物镜直至观察到清晰的干涉图样。移动牛顿环仪,使中心暗斑(或亮斑)位于视域中心,调节目镜系统,使叉丝横丝与读数显微镜的标尺平行,消除视差。平移读数显微镜,观察待测的各环左右是否都在读数显微镜的读数范围之内。
3、测量牛顿环的直径
(1)选取要测量的m和n(各5环),如取m为55,50,45,40,35,n为30,25,20,15,10。
(2)转动鼓轮。先使镜筒向左移动,顺序数到55环,再向右转到50 环,使叉丝尽量对准干涉条纹的中心,记录读数。然后继续转动测微鼓轮,使叉丝依次与45,40,35,30,25,20,15,10,环对准,顺次记下读数;再继续转动测微鼓轮,使叉丝依次与圆心右10,15,20,25,30,35,40,45,50,55环对准,也顺次记下各环的读数。注意在一次测量过程中,测微鼓轮应沿一个方向旋转,中途不得反转,以免引起回程差。
4、算出各级牛顿环直径的平方值后,用逐差法处理所得数据,求出 直径平方差的平均值代入公式求出透镜的曲率半径,并算出误差。 . 注意:
(1)近中心的圆环的宽度变化很大,不易测准,故从K=lO左右开始比较好; (2)m-n应取大一些,如取m-n=25左右,每间隔5条读一个数。
(3)应从O数到最大一圈,再多数5圈后退回5圈,开始读第一个数据。 (4)因为暗纹容易对准,所以对准暗纹较合适。 ,
(5)圈纹中心对准叉丝或刻度尺的中心,并且当测距显微镜移动时,叉丝或刻度尺的 某根线与圈纹相切(都切圈纹的右边或左边)。 【数据记录与处理】
㈨ 1.牛顿环装置由空气搬入折射率为1.33的水中,则干涉条纹,是变密,变疏,还是间距不变
变密
首先要知道:1,相邻干涉条纹在光程上差为1个波长
2,在水中和在空气中相比,波长变短
因为波长变短,所以相差一个波长时,水平方向的移动量也变小,也就是变得更密了
㈩ 在空气中做牛顿环实验,当平凸透镜垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹
选D,等厚干涉就是厚度(光程差)相等的地方,干涉级数相等。上升过程中,任一处A的厚度增加,级数也增加,说明是外圈的高级数条纹内移。