导航:首页 > 装置知识 > 流体流型实验装置

流体流型实验装置

发布时间:2022-09-18 02:17:54

Ⅰ 流体压强与流速的关系创新实验

一、实验名称:流体压强与流速的关系
二、实验设计思路:实验用具有漏斗和乒乓球,要求在倒置的漏斗里放一个乒乓球,用手指托住乒乓球。然后从漏斗口向下用力吹气,并将手指移开。观察乒乓球会下落吗?
三、实验目的:探究流体压强与流速的关系。
四、实验所涉及的科学道理:这个实验利用的实验原理是水流的流速不相同,根据“在流体中,流速越大的地方压强越小”的原理,会产生压力差,导致“乒乓球”被牢牢吸在漏斗内。
五、实验操作步骤:
(1)取一干净的玻璃漏斗,应一根乳胶管将漏斗的颈部与自来水水龙头相连。
(2)将一只乒乓球放进漏斗的喇叭口中,用手指托住乒乓球,把漏斗倒置。
(3)打开水龙头,让一股细水流从漏斗的喇叭口流出,并将手指移开。学生凭想象,乒乓球应从漏斗中被水流冲出。然而我们却观察到:乒乓球被牢牢地“吸”在漏斗的颈部。
六、实验现象分析:
水流为什么冲不走乒乓球呢?由于水流经漏斗颈部流入喇叭口时,截面积迅速增大,流速立即变小,根据“流体压强与流速的关系”,在同一管道中流速大的地方其压强比流速小的地方要小。可见,乒乓球下方水流压强要远远大于其上方水流的压强,这就给乒乓球施加了一个向上的压力,再加外部大气压的作用,就足以支持乒乓球停留在漏斗喇叭口的底部而不被水流冲走。
七、实验所用器材:
玻璃漏斗一个,一米长左右的橡胶管一根,乒乓球一只。
八、实验装置
九、实验效果以及其他需要说明的问题:
实验效果:2010年秋季开学后在我们学校八年级十个班级中演示效果很好,解决了原来所用人用嘴吹气不稳定、持续时间短、实验现象不明显且不卫生的缺点,而且实验器材方便、操作简单、学生感兴趣。
说明:本实验最好教室里要有自来水,如果没有自来水,可以在实验室进行。做这个实验时要注意,开始时不要把乒乓球和漏斗贴得太紧,先让水流流出后再放手,否则不易成功。
(亲,我很不容易哦。采纳把!)

Ⅱ 流体压强与流速的关系有哪些实验

一、实验名称:流体压强与流速的关系
二、实验设计思路:实验用具有漏斗和乒乓球,要求在倒置的漏斗里放一个乒乓球,用手指托住乒乓球。然后从漏斗口向下用力吹气,并将手指移开。观察乒乓球会下落吗?
三、实验目的:探究流体压强与流速的关系。
四、实验所涉及的科学道理:这个实验利用的实验原理是水流的流速不相同,根据“在流体中,流速越大的地方压强越小”的原理,会产生压力差,导致“乒乓球”被牢牢吸在漏斗内。
五、实验操作步骤:
(1)取一干净的玻璃漏斗,应一根乳胶管将漏斗的颈部与自来水水龙头相连。
(2)将一只乒乓球放进漏斗的喇叭口中,用手指托住乒乓球,把漏斗倒置。
(3)打开水龙头,让一股细水流从漏斗的喇叭口流出,并将手指移开。学生凭想象,乒乓球应从漏斗中被水流冲出。然而我们却观察到:乒乓球被牢牢地“吸”在漏斗的颈部。
六、实验现象分析:
水流为什么冲不走乒乓球呢?由于水流经漏斗颈部流入喇叭口时,截面积迅速增大,流速立即变小,根据“流体压强与流速的关系”,在同一管道中流速大的地方其压强比流速小的地方要小。可见,乒乓球下方水流压强要远远大于其上方水流的压强,这就给乒乓球施加了一个向上的压力,再加外部大气压的作用,就足以支持乒乓球停留在漏斗喇叭口的底部而不被水流冲走。
七、实验所用器材:
玻璃漏斗一个,一米长左右的橡胶管一根,乒乓球一只。
八、实验装置图
九、实验效果以及其他需要说明的问题:
实验效果:2010年秋季开学后在我们学校八年级十个班级中演示效果很好,解决了原来所用人用嘴吹气不稳定、持续时间短、实验现象不明显且不卫生的缺点,而且实验器材方便、操作简单、学生感兴趣。
说明:本实验最好教室里要有自来水,如果没有自来水,可以在实验室进行。做这个实验时要注意,开始时不要把乒乓球和漏斗贴得太紧,先让水流流出后再放手,否则不易成功。
(亲,我很不容易哦。采纳把!)

Ⅲ 雷诺实验稳流板作用

雷诺实验稳流板作用:那三个挡板都是起着平缓水流的作用,从而减少进水阀水流流速对实验观察结果的影响。

在雷诺实验装置中,通过有色液体的质点运动,可以将两种流态的根本区别清晰地反映出来。在层流中,有色液体与水互不混掺,呈直线运动状态,在紊流中,有大小不等的涡体振荡于各流层之间,有色液体与水混掺。

雷诺

揭示了重要的流体流动机理,即根据流速的大小,流体有两种不同的形态。当流体流速较小时,流体质点只沿流动方向作一维的运动,与其周围的流体间无宏观的混合即分层流动这种流动形态称为层流或滞流。流体流速增大到某个值后,流体质点除流动方向上的流动外,还向其它方向作随机的运动,即存在流体质点的不规则脉动,这种流体形态称为湍流。

Ⅳ  流体阻力计算

前面已提到,由于流体有粘性,因此在流动时层与层之间会产生内摩擦力,流体与管壁之间还存在外摩擦力。为了克服这种内外摩擦力就会消耗流体的能量,即称为流体的压头损失(E或Σhf)。在应用柏努利方程解决有关流体流动的问题时,必须事先标出这项压头损失,即阻力。所以阻力计算就成了流体力学中的一项重要任务之一。

流体阻力的大小,除与流体的粘性大小有关外,还与流体流动型态(即流动较缓和的还是较剧烈的)、流体所通过管道或设备的壁面情况(粗糙的还是光滑的)、通过的路程及截面的大小等因素有关。

下面先研究流动型态与阻力的关系,然后再研究阻力的具体计算。

一、流体的流动型态

(一)雷诺实验和雷诺数

为了弄清什么叫流体的流动型态,首先用雷诺实验装置进行观察。如图1-10所示。

图1-10雷诺实验装置

1-墨水瓶;2-墨水开关;3-温度计;4-水箱;5-阀门;6-水槽

在实验过程中,水箱4上面由进水管不断进水,并用溢流装置保持水面稳定。大玻璃管内的水流速度的大小由阀门5来调节,在大玻璃管进口中心处插入一根与墨水瓶1相连的细小玻璃管,以便将墨水通过墨水开关2注入水流中,以观察大玻璃管内水的流动情况。水温可通过温度计3测量。

在实验开始前,首先将水箱注满水,并保持溢流。实验开始时,略微开启阀门5,使水在大玻璃管内以很慢的速度向下流动,然后开启墨水开关2,随后逐渐打开阀门5以增大管内流速。在实验过程中可以看到,当管内的水流速度不大时,墨水在管内沿着轴线方向成一条直线而流动,像似一条拉紧的弦线,如图1-11a所示。这表示,此时由于大玻璃管内水的质点之间互不混杂,水流沿着管轴线作平行而有规则的流动,这种流动型态称为层流。

当管内流速增大时,墨水线不再保持成直线流动,线条开始波动而成波浪式流动,如图1-11b所示。若此时继续增大管内流速而达到某一定值时,这条墨线很快便与水流主体混合在一起,整个管内水流均染上了颜色,如图1-11c所示。这表明,水的质点不仅沿着玻璃管轴线方向流动,而且在截面上作径向无规则的脉动,引起质点之间互相剧烈地交换位置,互相碰撞,这种流动型态称湍流(又称紊流)。

图1-11流体流动型态示意图

a-层流;b-过渡流;c-湍流

根据不同的流体和不同的管径所获得的实验结果表明,影响流体流动型态的因素,除了流体的流速外,还和管子的内径d、流体密度ρ和流体的粘度η有关。通过进一步分析研究,这些因素对流动情况的影响,雷诺得出结论:上述四个因素所组成的复合数群

,是判别流体流动型态的准则,这个数群就称为雷诺数,用符号Re表示。

若将组成Re数的四个物理量的因次代入数群,则Re数的因次为

非金属矿产加工机械设备

即:Re数是一个无因次数群。组成此数群的各物理量,必须用一致的单位表示。因此,只要所用的单位一致,对任何单位制都可得到同一个数值。根据大量的实验得知,Re≤2000时,流动型态为层流;当Re≥4000时,流动型态为湍流;而在2000<Re<4000范围内时,流动型态不稳定,可能是层流,也可能是湍流,或是两者交替出现,与外界干扰情况有关。例如周围振动及管道入口处等都易出现湍流。这一范围称为过渡流。

例1-4有一根内径为300mm的输水管道,水的流速为2m/s,已知水温为18℃,试判别管内水的流动型态。

解:计算Re值进行判断

非金属矿产加工机械设备

已知:d=300mm=0.3m

v=2m/s

水在18℃的密度ρ≈1000kg/m3,水的粘度η=1.0559cP=1.0559×10-3Pa·s将以上各值代入Re的算式得

非金属矿产加工机械设备

此时Re>4000,故水在管内的流动型态为湍流。

(二)流体在圆管中的速度分布

流体速度的分布是表示流体通过管道截面时,在截面上各点流体速度大小的状况,它可以更具体地反映层流和湍流两种不同流动型态的本质。

层流时,流体的质点是沿着与管道中心线平行的方向流动的。在管道截面上,从中心至管壁,流动是作层与层的相对流动,在管道壁面上流体的速度等于零;愈向管道中心,流体层的速度愈大,直到管道中心线上速度达到最大。如果测得管道截面直径上各点的流体速度,并将其进行标绘,可得一条抛物线的包络曲线,如图1-12所示。此时管道截面上流体的平均速度v为管道中心线上流体最大速度vmax的一半,即

非金属矿产加工机械设备

湍流时,流体中充满着各种大小的旋涡,流体质点除了沿管道轴线方向流动外,在管道截面上,流体质点的运动方向和速度大小随时在变化,但是,管内流体是在稳定情况下流动,对整个管道截面来说,流体的平均速度是不变的。

图1-12层流时流体在圆管中的速度分布

图1-13湍流时流体在圆管中的速度分布

若将截面上各点速度进行绘制,可得湍流时的速度分布包络曲线,如图1-13所示。此曲线近似于梯形平面的轮廓线,与图1-12所示的层流时速度分布曲线比较,在管道中心线四周区域内,湍流时速度的分布比较均匀。这是因为流体质点在截面上作横向脉动之故。如果流体湍流程度愈剧烈,即雷诺数Re愈大,则速度分布曲线顶部的区域愈广阔而平坦。

湍流时,管道截面上的流体的平均速度v为管道中心线上流体最大速度vmax的0.8倍左右,即:

非金属矿产加工机械设备

由图1-13所示的湍流时的速度分布曲线中可以看出,在靠近管壁的区域,流体的速度骤然下降,直到管壁上的速度等于零为止。在这个区域内,流体的速度梯度最大,速度分布曲线的形状与层流时很相似。虽然对整个管道截面来讲,流体流动型态属于湍流,但是,因受到管壁上速度等于零的流体层阻碍的影响,使得在管壁附近的流体流动受到约束,不像管中心附近部分的流体质点那样活跃。如果用墨水注入紧靠管壁附近的流体层中时,可以发现有直线流动的墨水细流。由此证明,即使在湍流时,在靠近管壁区域的流体仍作层流流动。这一作层流流动的流体薄层,称为层流底层或层流内层。在湍流主体与层流内层之间的过渡区域,称为过渡层,如图1-14所示。

层流内层的厚度与雷诺数Re大小有关,Re数愈大,则层流内层的厚度愈薄,但不会等于零。

层流内层的厚度虽然极薄,但由于在层流内层中,流体质点是作直线流动,质点间互不混合。所以要在流体中进行热量和质量的传递时,通过层流内层的阻力,将比在流体的湍流主体部分要大得多。因此,要提高传热或传质的速率,必须设法减少层流内层的厚度。

上面介绍的流体速度分布曲线是在管道的平直部分测得的,而且流体的流动情况必须在稳定和等温(即整个管道横截面上流体的温度是相同的)的条件下,因为流体的流动方向、温度和截面的变化,都会影响速度分布曲线的形状和比例。

图1-14湍流时管道中流体层的分布情况

CB-层流内层;BA-过渡层;AO-湍流主体

二、流体阻力的计算

流体在管路中流动时的阻力可分成直管阻力与局部阻力两类。直管阻力是由于流体的粘性和流体质点之间的互相碰撞以及流体与管壁之间所产生的摩擦阻力所致。局部阻力是指流体通过管路中的管件(如三通、弯头、接头、变径接头等)、阀件、管子的出入口等局部障碍而引起流速的大小或方向突然改变而产生的阻力。

管路中的流体阻力就为上述两类阻力之和。即:

非金属矿产加工机械设备

式中∑hf——管路的总阻力,或者说流体克服管路阻力而损失的压头;

hp——管路中的直管阻力,或者说流体克服直管阻力而损失的压头;

he——管路中的局部阻力,或者说流体克服局部阻力而损失的压头。

(一)直管阻力的计算

根据实验,直管阻力可用下式计算

非金属矿产加工机械设备

式中l——直管的长度(m);

d——直管的内径(m);

v——流体在管内的流速(m/s);

g——重力加速度(m/s2)(g=9.81m/s2);

μ—摩擦系数。

摩擦系数μ的单位为1,它是雷诺数Re和管壁粗糙度的函数,其值由μ-Re的曲线图查出(见图1-15所示)。

图1-15是根据一系列实验数据整理绘制而成的曲线。应该注意的是,此图的坐标不是采用等分刻度的普通坐标,而是采用双对数坐标(即纵坐标和横坐标都是对数坐标)。

由图1-15可见,在湍流区域内,管壁的粗糙度对摩擦系数有显著影响,管壁粗糙度愈大,其影响亦愈大。图中的每一条曲线(除层流外)都注出其管壁相对粗糙度

不同的数值。各种管子的绝对粗糙度ε(即管壁凸出或凹入部分的平均高度或深度,其值可从表1-2查出)和管径d之比值

,称为相对粗糙度。

从图1-15可以看出:

(1)当Re<2000时,属层流流动区域。此时不论光滑管或粗糙管,图中只有一条直线。这就说明摩擦系数μ与管壁粗糙度无关,仅与雷诺数Re有关。即:

图1-15摩擦系数与雷诺数及相对粗糙度的关系

表1-2工业管道的绝对粗糙度

μ=f(Re)

经验方程为(对圆管而言)

非金属矿产加工机械设备

(2)当Re≥4000时,属湍流流动区域。当湍流程度不大时,即图中虚线以左下方的湍流区,μ不仅与Re有关,而且与管壁相对粗糙度

有关,即:

非金属矿产加工机械设备

这就是说,μ值要根据管子的粗糙度

和流体在管内的Re数才能在图中查出。

当湍流程度达到极度湍流时,即图中虚线的右上方湍流区,各条曲线都与横坐座标平行,这说明μ仅与

值有关,而与Re数大小无关。即:

非金属矿产加工机械设备

对于相对粗糙度

的管子来说,当Re>105(即达到极度湍流区)时,μ就为一定值,即

μ=0.034

(3)当2000<Re<4000时,属过渡流区域。在此区域内,层流和湍流的μ-Re曲线都可以用,但做于阻力计算时,为安全起见,通常都是将湍流时的曲线延伸出去,用来查取这个区域的摩擦系数μ值。

从图1-15求出的摩擦系数μ,是等温下的数值。如果流动过程中液体温度有变化,实验结果指出,若液体在管中流动而被加热时,其摩擦系数减少;被冷却时,则增大。因此,当层流时,应按下法计算:

先用液体平均温度下的物理量η、ρ求出Re数,后把从图中查得的μ值除以1.1

以作校正。此处的η为液体在其平均温度下的粘度,ηw为液体在平均管壁温度下的粘度。

当湍流时,温度对摩擦系数μ的影响不大,通常可忽略不计。对温度变化情况下流动的气体,在湍流时,其摩擦系数几乎不受变温的影响;在层流时,则受到一定程度的影响。

(二)局部阻力的计算

局部阻力的计算,通常采用两种方法:一种是当量长度法;另一种是阻力系数法。

1.当量长度法

流体通过某一管件或阀门等时,因局部阻力而造成的压头损失,相当于流体通过与其具有相同管径的若干米长度的直管的压头损失,这个直管长度称为当量长度,用符号l。表示。这样,可用直管阻力公式来计算局部阻力的压头损失,并且在管路阻力的计算时,可将管路中的直管段长度和管件及阀门等的当量长度合并在一起计算。即:

非金属矿产加工机械设备

式中,Σle为管路中各种局部阻力的当量长度之和。

其他符号的意义和单位同前。

各种管件、阀门及其他局部障碍的当量长度l。的数值由实验测定,通常以管径的倍数n(又称当量系数)来表示,如表1-3所示。例如闸阀在全开时的n值,查表1-3得7,若这闸阀是装在管径为100mm的管路中,则它的当量长度为:

表1-3局部阻力当量长度

le=7d=7×100mm=700mm=0.7m

2.阻力系数法

流体通过某一管件或阀门等的压头损失用流体在管路中的速度的倍数来表示,这种计算局部阻力的方法,称为阻力系数法。即:

非金属矿产加工机械设备

式中,ρ为比例系数,称为阻力系数,其值由实验测出(对一些常见的管件、阀门等的局部阻力系数可查表1-4得到)。

其他的符号意义和单位同前。

表1-4湍流时流体通过各种管件和阀门等的阻力系数

注:计算突然缩小或突然扩大时的损失压头时,其流体的速度取较小管内的流速来计算。

上面列出的当量长度和阻力系数的数值在各专业书中有时略有差异,这是由于这些管件、阀门加工情况和测量压力损失的装置等不同所致。

三、管路总阻力的计算

管路的总阻力为各段沿程阻力与各个局部阻力的总和,即流体流过该管路的损失压头,即h=∑h+Σh,如整个管路的直径d不变,则用当量长度法时

非金属矿产加工机械设备

用阻力系数法时

非金属矿产加工机械设备

当量长度法考虑了μ值的变化,而阻力系数法取μ为常数,因此,前一种方法比较符合实际情况,且便于把沿程阻力与局部阻力合并计算,所以常用于实际设计中。下面举例说明。

例1-5密度为1.1g/cm3的水溶液由一个贮槽流入另一个贮槽,管路由长20mφ114mm×4mm直钢管和一个全开的闸阀,以及2个90°标准弯头所组成。溶液在管内的流速为1m/s,粘度为0.001N·s/m2。求总损失压头h

解:已知ρ=1.1×1000=1100(kg/m3

v=1m/s

d=114mm-2×4mm=106mm=0.106m

η=0.001N·s/m2=10-3N·s/m2

l=20m

查μ-Re曲线得μ=0.021

1.用阻力系数法计算局部阻力先计算∑ζ

由贮槽流入管口ζ=0.5

2个90。标准弯头2ζ=2×0.75=1.5

一个(全开)闸阀ζ=0.17

由管口流入贮槽ζ=1

∑ζ=0.5+1.5+0.17+1=3.17

所以损失压头

非金属矿产加工机械设备

2.用当量长度法计算局部阻力

计算∑le,由当量长度表查出le/d

贮槽流入管口le/d=20le=20d

2个90°标准弯头le/d=402le=80d

一个闸阀(全开)le/d=7le=7d

管口流入贮槽le/d=40le=40d

Σle=20d+80d+7d+40d=147d

所以损失压头

非金属矿产加工机械设备

由管路阻力计算式可知,管路对流体阻力的影响是很大的。因为

,即v2

将v2值代入管路阻力计算式,得

非金属矿产加工机械设备

上式表明,在qv,s和管路总长度已定时,若忽略μ随d增大而减少的影响,管路阻力近似地与管径d的五次方成反比。例如管径d增一倍,则损失压头可减为原损失压头的1/32。所以适当增大管径,是减少损失压头的有效措施。

Ⅳ 流体流型演示实验中,红墨水的密度为什么要与水的密度相同

在流动系统中,若截面上流体的流速、压强、密度等仅随位置而变,不随时间而变,称为稳定流动。若以上各量既随时间而变,又随位置而变,称为不稳定流动.
稳定流:流体在管道内或在窑炉系统中流动时,如果任一截面上的流动状况(流速、压强、重度、成分等)都不随时间而改变,这种流动就称为稳定流动;反之,流动各量随着时间而改变,就称为不稳定流动。实际上流体(如气体,重油等)在管道内或窑炉系统中流动时,只要波动不太大,都可以视为稳定流动。

Ⅵ 能否用伯努利方程实验的装置判断流体的形态

不可以,伯努利方程只是在保守场中能量守恒定律的一种表达方式,流体形态需要用雷诺准数表示!

Ⅶ 为了探究“气体压强与流速的关系”,小明设计了如图所示的实验装置.其中两端开口的U形管中有适量的水,U

(1)小明用电吹风机从左侧管口吹风,左侧的液面将升高,出现这种现象的专原因是:流体中流速属越大的地方,压强越小;如果要使U形管两侧液面高度差变大,小明应增大电吹风机的风速,以进一步减小左侧的压强;
(2)A、龙卷风可以用流体压强与流速的关系来解释;风告诉刮过,周围空气压强减小,外面压强大,就会把物体卷入其中;
B、地铁、火车站的站台设置安全线,就是为了防止火车车速过快,周围空气压强减小,把人压入车底;
C、当房间前后两面窗户都打开时,屋内空气流速加快,压强减小,而衣柜内的压强较大,内外压强差就会把衣柜打开;
D、直升飞机悬停在空中,利用的是作用力与反作用力.
故选D.
故答案为:(1)左;小;增大;(2)D.

Ⅷ 化工原理 谭天恩 第一章 流体流动。

问题很多,有不少公式我都快忘光了,一个个慢慢回答吧,先答不用翻书的

雷诺实验装置,中的透明管道内无论是层流还是湍流都要充满流体吗——如果不是充满液体的,那么流动状况就会相对复杂,有气体的存在对流动状况产生很大影响,那是另一个状态,两相流,关于两相流的论述,翻《化工工艺设计手册》

进口段长度和当量长度有什么联系 ——流动充分发展所需的管道长度和管道的当量长度是两个概念。

Ⅸ 单管升膜蒸发实验中哪种流型最适合蒸发

单管升膜蒸发实验中搅拌流最适合蒸发。
单管升膜蒸发实验装置观察流体水在升膜蒸发器内的流动状态(泡状流、弹型流、搅拌流和环状流),测量在不同流型下的对流传热系数及蒸汽的干度。
蒸发是指液体温度低于沸点时,发生在液体表面的汽化过程,在任何温度下都能发生。影响蒸发快慢的因素有温度、湿度、液体的表面积、液体表面的空气流动等。蒸发量通常用蒸发掉的水层厚度的毫米数表示。

Ⅹ 物理模拟实验仪器选用

根据煤粉产出物理模拟实验的原理及目的,需要设计可以满足该实验要求的仪器装置。这些要求包括:

(1)满足模拟地层流体在煤储层裂隙之间的流动要求;

(2)满足模拟煤储层经储层改造后的裂隙展布效果要求;

(3)满足模拟煤储层在含煤地层中的赋存状态要求;

(4)满足模拟煤层气井排水→降压→采气的生产模式要求。

通过一系列的摸索与尝试,确定了该物理模拟实验仪器装置的主体系统结构,其中包括计算机监控系统、样品制备系统、泵送驱替系统、物理模拟系统、煤粉储集系统、煤粉分析系统、电力动力系统等。

(1)计算机监控系统:主要由计算机操控平台和驱替导流监测平台等组成。计算机操控平台提供半自动半人工化功能服务,通过计算机实现对驱替导流监测平台的操控,可以满足不同条件下物理模拟实验的要求。同时,驱替导流监测平台实现流体相态驱替模式、自动调控驱替流速及压力、实时监测导流状况及实时记录排出产物状况等。

表5-3 煤体结构差异对煤粉产出的影响研究实验方案

(2)样品制备系统:主要由制样模具、升降施压油缸、平台支架等组成。制备样品的前期准备工作需要碎样机、标准样品筛、电子天平等辅助设备。首先使用碎样机将煤岩样品破碎,经过标准样品筛的筛选,选用一定粒度的煤粉颗粒,依据制样模具的尺寸形状,在升降施压油缸的挤压作用下,制作煤砖样,用于煤粉产出物理模拟实验。该系统需要通过计算机监控系统控制升降施压油缸,为制样提供稳定的压力。

(3)泵送驱替系统:主要由平流泵、储液容器、驱替液、导流室、无缝钢导管、法兰等组成。该系统的工作原理是通过调整平流泵的泵送功率,使其提供一定流速的稳定流体,该流体将储液容器内的驱替液以同等速率注入导流室内,对导流室中的煤砖进行驱替作用,同时,需要导流室的左右两侧分别安装进出液孔道,并在进出口端部安装测压孔道及相应法兰。在此过程中,通过驱替导流监测平台调控平流泵的泵送功率、设置驱替作用的周期及数据记录频率等参数。

(4)物理模拟系统:主要由煤砖样、石英砂、导流室、金属垫片、塑料密封圈、差压传感器、升降施压油缸、平台支架等组成。该系统的工作原理是通过在两块煤砖中夹持石英砂颗粒进行人工造缝,模拟煤储层经过储层改造后的裂隙延展状态;由泵送驱替系统向导流室内提供一定流速的驱替液,模拟地层流体在煤储层裂隙之间的流动过程;由计算机监控系统调控升降施压油缸,使其对导流室内的煤砖产生稳定围压,模拟煤储层在含煤地层中的赋存状态。该系统是在计算机监控系统、泵送驱替系统及物理模拟系统的相互配合下进行的,由平流泵提供驱替流体,由升降施压油缸提供挤压力,由驱替导流监测平台调控记录驱替液流速、油缸压力等参数,由金属垫片和塑料密封圈来保证导流室中煤砖处于密封状态。

(5)煤粉储集系统:主要由电子天平、无缝钢导管、烧杯等组成。该系统的工作原理是收集由物理模拟系统排出的液体及其中煤粉,同时通过驱替导流监测平台对排出液进行实时称重并储存数据结果。

(6)煤粉分析系统:主要由激光粒度仪、滤纸、过滤器、恒温烘干机、电子天平、显微镜、扫描电镜、X射线衍射仪等组成。该系统的工作原理是采用激光粒度仪对不同实验条件中产出的煤粉进行粒度分布测试;采用过滤器及恒温烘干机将排出液中的煤粉进行过滤烘干;采用电子天平对干燥的煤粉颗粒进行精密称重;采用显微镜、扫描电镜、X射线衍射仪分析煤粉的显微形态及物质成分。从煤粉的粒度、质量、显微状态和物质成分等角度研究煤粉的产出物性特征。

(7)电力动力系统:主要由配电箱和电动机等组成。该系统为物理模拟实验设备装置的其他系统提供电力及动力保障。

图5-1 煤粉产出物理模拟实验仪器设计示意图

根据上述物理模拟实验仪器装置功能要求,实验仪器设计如图5-1所示。通过调研,在综合考虑物理模拟实验的可行性情况下,采用HXDL-Ⅱ型酸蚀裂隙导流仪作为测试仪器。该仪器可以在标准实验条件下模拟地层压力及温度状态,可以实现气、液两相驱替过程,并能评价裂缝的导流能力。其装置流程如图5-2所示。根据上述物理模拟实验装置的说明,选用的酸蚀裂隙导流仪的主体系统均达到开展实验的要求,各个装置部件可以满足实验的需求。该仪器的各项参数是参照《SY-T 6302—1997 压裂支撑剂充填层短期导流能力评价推荐方法》标准而设定的。

图5-2 酸蚀裂缝导流仪流程示意图

阅读全文

与流体流型实验装置相关的资料

热点内容
化学实验蒸馏装置如何安装 浏览:873
机械加工要求符号有哪些 浏览:381
泰安市江山重工机械有限公司怎么样 浏览:327
钢筋机械连接头个数怎么计算 浏览:730
自动供水装置设计图 浏览:785
机械手的论文提纲怎么写 浏览:970
水管阀门漏水是什么原因 浏览:96
轴承蜕皮怎么 浏览:326
x5排气阀门 浏览:491
铁桶改成工具箱 浏览:855
轴承运输多少钱 浏览:731
超声波玻璃管用什么颜色 浏览:530
进水阀门怎么包 浏览:512
混凝土试块抗压强度试验自动化装置 浏览:539
塑料筐生产设备哪里买 浏览:85
自动扣紧装置 浏览:33
捷达运动仪表怎么刷431 浏览:279
台州光谷机械有限公司怎么样 浏览:821
加装可变排气阀门有影响吗 浏览:288
注塑机机械手吸盘吸不住怎么办 浏览:11