㈠ 消弧线圈在系统运行中一般采用哪种补偿方式为什么
消弧线圈在系统运行中一般采用过补偿运行方式。因为在系统发生单相接地时,过补偿可以使故障点流过感性电流,在线路断开或因故障跳闸时,不会引起串联谐振。
消弧线圈用于灭弧的 ,一种带铁芯的电感线圈。它接于变压器(或发电机)的中性点与大地之间,构成消弧线圈接地系统。
电力系统输电线路经消弧线圈接地,为小电流接地系统的一种。正常运行时,消弧线圈中无电流通过。而当电网受到雷击或发生单相电弧性接地时,中性点电位将上升到相电压;
这时流经消弧线圈的电感性电流与单相接地的电容性故障电流相互抵消,使故障电流得到补偿,补偿后的残余电流变得很小,不足以维持电弧,从而自行熄灭。这样,就可使接地故障迅速消除而不致引起过电压。
(1)消弧线圈自动补偿补偿装置扩展阅读
消弧线圈的作用当电网发生单相接地故障后,故障点流过电容电流,消弧线圈提供电感电流进行补偿,使故障点电流降至10A以下,有利于防止弧光过零后重燃,达到灭弧的目的。
降低高幅值过电压出现的几率,防止事故进一步扩大。当消弧线圈正确调谐时,不仅可以有效的减少产生弧光接地过电压的机率,还可以有效的抑制过电压的辐值。
同时也最大限度的减小了故障点热破坏作用及接地网的电压等。所谓正确调谐,即电感电流接地或等于电容电流,工程上用脱谐度V来描述调谐程度,V=(IC-IL)/IC。
当V=0时,称为全补偿,当V>0时为欠补偿,V<0时为过补偿。从发挥消弧线圈的作用上来看,脱谐度的绝对值越小越好,最好是处于全补偿状态,即调至谐振点上。但是在电网正常运行时,小脱谐度的消弧线圈将产生各种谐振过电压。
㈡ 消弧线圈对接地电容电流补偿有哪几种补偿方式一般采用哪一种为什么
(一)消弧线圈的工作原理
1,消弧线圈的结构
消弧线圈是一个具有铁心的电感线圈,线圈的电阻很小,电抗很大。线圈具有抽头,电抗值可用改变线圈的匝数来调节,铁心具有较大的空气歇,它使电抗值稳定,从而使电压与电流成正比。
2,消弧线圈的工作原理
正常运行时,中性点对地电压为零,消弧线圈中没有电流流过。
单相(如w相)接地故障时,接地点对地电压为零,中性点对地电压上升为相电压,非故障相对地电压上升为线电压,网络的线电压不变。这与中性点不接地系统相似,此时,消弧线圈处于中性点电压的作用下,有电感电流IL通过,此电流通过接地点形成回路(加上单相接地时的接地电容电流IC,两电流方向相反。在接地处IL 和Ic相互抵消,称电感电流对接地电流的补偿,如果适当选取消弧线圈的匝数,可使接地处的电流变得很小或等于零。从而消除了接地处的电弧,消弧线圈因此而得名。
(二)消弧线圈的补偿方式
1,全补偿
完全补偿是使电感电流等于电容电流,即IL=IC,接地处电流为零。从消弧的角度看,完全补偿十分理想,从产生过电压的角度看,却存在严重的问题。因为,正常运行时,在某些条件下,中性点与地之间会出现一定的电压,此电压作用在消弧线圈通过大地与三相对地电容构成的串联电路中,因此时XL=XC。 满足谐振条件。产生过电压,危及绝缘。
2,欠补偿
补偿是使电感电流小于电容电流,即ILC,单相接地处有容性电流流过。在这种补偿方式下,若因停电检修部分线路,或因系统频率降低等原因使接地电流减少,有可能出现完全补偿。因此,一般变压器中性点不用欠补偿,大容量发电机有时采用欠补偿。
3,过补偿
过补偿是使感电流大于电容电流,即IL>IC,单相接地处有感性电流流过。过补偿既能消除接地处的电弧,又不会产生谐振过电压,这是因为若因停电检修部分线路或系统频率降低,使接地电流IC=3ω*C*UX减少,IL>>IC,远离产生谐振的条件。即使将来电网发展使电容电流增加,由于消弧线圈有一定的裕度,也有IL>IC,不会产生谐振,可以继续使用一段时间,故过补偿在电网中广泛使用。过补偿既能消除接地处的电弧,又不会产生谐振过电压,这是因为若因停电检修部分线路或系统频率降低,使接地电流IC=3ω*C*UX减少,IL>>IC,远离产生谐振的条件。即使将来电网发展使电容电流增加,由于消弧线圈有一定的裕度,也有IL>IC,不会产生谐振,可以继续使用一段时间,故过补偿在电网中广泛使用。
应当注意:过补偿电流不能超过10A,否则接地处电弧不能自动熄灭。
(三)中性点经消弧线圈接地系统的适用范围
适用范围:
用在不适合采用中性点不接地的60KV系统中。
特 点:
1,供电可靠性高(与中性点不接地系统相同)。
2,绝缘方面的投资较大(与中性点不接地系统相同)。
3,接地处的接地电流较小,能迅速熄灭电弧(与中性点不接地系统不相同)。
㈢ 消弧线圈的工作原理是什么补偿方式有哪些电力系统一般采用哪种补偿方式为什么
消弧线圈的作用是当电网发生单相接地故障后,提供一电感电流,补偿接地电容电流,使接地电流减小,也使得故障相接地电弧两端的恢复电压速度降低,达到熄灭电弧的目的。
补偿方式:过补偿,欠补偿,全补偿
电力系统一般采用过补偿:
一、欠补偿电网发生故障时,容易出现数值很大的过电压。例如,当电网中因故障或其它原因而切除部分线路后,在欠补偿电网中就可能形成全补偿的运行方式而造成串联谐振,从而引起很高的中性点位移电压与过电压,在欠补偿电网中也会出现很大的中性点位移而危及绝缘。只要采用欠补偿的运行方式,这一缺点是无法避免的。
二、欠补偿电网在正常运行时,如果三相不对称度较大,还有可能出现数值很大的铁磁谐振过电压。这种过电压是因欠补偿的消弧线圈和线路电容发生铁磁谐振而引起。
如采用过补偿的运行方式,就不会出现这种铁磁谐募现象。
三、电力系统往往是不断发展和扩大的,电网的对地电容亦将随之增大。如果采用过补偿,元装的消弧华圈仍可以继续使用一段时期,至多是由过补偿转变为欠补偿运行;但如果原来就采用欠补偿的运行,则系统一有发展就必须立即增加补偿容量。
四、由于过补偿时流过接地点的是电感电流,熄弧后故障相电压恢复速度较慢,因而接地电弧不易重燃。
五、采用过补偿时,系统频率的降低只是使过补偿度暂时增大,这在正常运行时是毫无问题的,反之,如果采用欠补偿,系统频率的降低将使之接近于全补偿,从而引起中心点位移电压的增大。
㈣ 消弧线圈的原理是什么
消弧线圈电力系统输电线路经消弧线圈接地,为小电流接地系统的一种,当单相出现断路故障时,流经消弧线圈的电感电流与流过的电容电流相加为流过断路接地点的电流,电感电容上电流相位相差90度,相互补偿。当两电流的量值小于发生电弧的最小电流时,电弧就不会发生,也不会出现谐振过电压现象。10-63KV电压等级下的电力线路多属于这种情况。
消弧线圈作用原理及国内外现状
消弧线圈的作用是当电网发生单相接地故障后,提供一电感电流,补偿接地电容电流,使接地电流减小,也使得故障相接地电弧两端的恢复电压速度降低,达到熄灭电弧的目的。当消弧线圈正确调谐时,不仅可以有效的减少产生弧光接地过电压的机率,还可以有效的抑制过电压的辐值,同时也最大限度的减小了故障点热破坏作用及接地网的电压等。所谓正确调谐,即电感电流接地或等于电容电流,工程上用脱谐度V来描述调谐程度
V=(IC-IL)/IC
当V=0时,称为全补偿,当V>0时为欠补偿,V<0时为过补偿。从发挥消弧线圈的作用上来看,脱谐度的绝对值越小越好,最好是处于全补偿状态,即调至谐振点上。但是在电网正常运行时,小脱谐度的消弧线圈将产生各种谐振过电压。如煤矿6KV电网,当消弧线圈处于全补偿状态时,电网正常稳态运行情况下其中性点位移电压是未补偿电网的10~25倍,这就是通常所说的串联谐振过电压。除此之外,电网的各种操作(如大电机的投入,断路器的非同期合闸等)都可能产生危险的过电压,所以电网正常运行时,或发生单相接地故障以外的其它故障时,小脱谐度的消弧线圈给电网带来的不是安全因素而是危害。综上所述,当电网未发生单相接地故障时,希望消弧线圈的脱谐度越大越好,最好是退出运行。
3.1补偿系统的分类
早期采用人工调匝式固定补偿的消弧线圈,称为固定补偿系统。固定补偿系统的工作方式是:将消弧线圈整定在过补偿状态,其过补程度的大小取决于电网正常稳态运行时不使中性点位移电压超过相电压的15%,之所以采用过补偿是为了避免电网切除部分线路时发生危险的串联谐振过电压。因为如整定在欠补偿状态,切除线路将造成电容电流减少,可能出现全补偿或接近全补偿的情况。但是这种装置运行在过补偿状态当电网中发生了事故跳闸或重合等参数变化时脱谐度无法控制,以致往往运行在不允许的脱谐度下,造成中性点过电压,三相电压对称遭到破坏。可见固定补偿方式很难适应变动比较频繁的电网,这种系统已逐渐不再使用。取代它的是跟踪电网电容电流自动调谐的装置,这类装置又分为两种,一种称之为随动式补偿系统。随动式补偿系统的工作方式是:自动跟踪电网电容电流的变化,随时调整消弧线圈,使其保持在谐振点上,在消弧线圈中串一电阻,增加电网阻尼率,将谐振过电压限制在允许的范围内。当电网发生单相接地故障后,控制系统将电阻短接掉,达到最佳补偿效果,该系统的消弧线圈不能带高压调整。另一种称之为动态补偿系统。动态补偿系统的工作方式是:在电网正常运行时,调整消弧线圈远离谐振点,彻底避免串联谐振过电压和各种谐振过电压产生的可能性,当电网发生单相接地后,瞬间调整消弧线圈到最佳状态,使接地电弧自动熄灭。这种系统要求消弧线圈能带高电压快速调整,从根本上避免了串联谐振产生的可能性,通过适当的控制,该系统是唯一可能使电网中原有功率方向型单相接地选线装置继续使用的系统。
3.2国内主要产品比较
目前,自动补偿的消弧线圈国内主要有三种产品,分别是调气隙式,调匝式及偏磁式。
调气隙式
调气隙式属于随动式补偿系统。其消弧线圈属于动芯式结构,通过移动铁芯改变磁路磁阻达到连续调节电感的目的。然而其调整只能在低电压或无电压情况下进行,其电感调整范围上下限之比为2.5倍。控制系统的电网正常运行情况下将消弧线圈调整至全补偿附近,将约100欧电阻串联在消弧线圈上。用来限制串联谐振过电压,使稳态过电压数值在允许范围内(中性点电位升高小于15%的相电压)。当发生单相接地后,必须在0.2S内将电阻短接实现最佳补偿,否则电阻有爆炸的危险。该产品的主要缺点主要有四条:
工作噪音大,可靠性差
动芯式消弧线圈由于其结构有上下运动部件,当高电压实施其上后,振动噪音很大,而且随着使用时间的增长,内部越来越松动,噪音越来越大。串联电阻约3KW,100MΩ。当补偿电流为50A时,需要250KW容量的电阻才能长期工作,所以在接地后,必须迅速切除电阻,否则有爆炸的危险。这就影响到整个装置的可靠性。
调节精度差
由于气隙微小的变化都能造成电感较大的变化,电机通过机械部件调气隙的精度远远不够。用液压调节成本太高
过电压水平高
在电网正常运行时,消弧线圈处于全补偿状态或接近全补偿状态,虽有串联谐振电阻将稳态谐振过电压限制在允许范围内,但是电网中的各种扰动(大电机投切,非同期合闸,非全相合闸等),使得其瞬态过电压危害较为严重。
功率方向型单相接地选线装置不能继续使用
安装该产品后,电网中原有的功率方向型单相接地选线装置不能继续使用
调匝式
该装置属于随动式补偿系统,它同调气隙式的唯一区别是动芯式消弧线圈用有载调匝式消弧线圈取代,这种消弧线圈是用原先的人工调匝消弧线圈改造而成,即采用有载调节开关改变工作绕组的匝数,达到调节电感的目的。其工作方式同调气隙式完全相同,也是采用串联电阻限制谐振过电压。该装置同调气隙式相比,消除了消弧线圈的高噪音,但是却牺牲了补偿效果,消弧线圈不能连续调节,只能离散的分档调节,补偿效果差,并且同样具有过电压水平高,电网中原有方向型接地选线装置不能使用及串联的电阻存在爆炸的危险等缺点,另外该装置比较零乱,它由四部分设备组成(接地变压器,消弧线圈、电阻箱、控制柜),安装施工比较复杂。
偏磁式
消弧线圈结构的特点
电控无级连续可调消弧线圈,全静态结构,内部无任何运动部件,无触点,调节范围大,可靠性高,调节速度快。这种线圈的基本工作原理是利用施加直流励磁电流,改变铁芯的磁阻,从而改变消弧线圈电抗值的目的,它可以带高压以毫秒级的速度调节电感值。
控制方式的特点
采用动态补偿方式,从根本上解决了补偿系统串联谐振过电压与最佳补偿之间相互矛盾的问题。众所周知,消弧线圈在高压电网正常运行时无任何好处,如果这时调谐到全补偿或接近全补偿状态,会出现串联谐振过电压使中性点电压升高,电网中各种正常操作及单相接地以外的各种故障的发生都可能产生危险的过电压。所以电网正常运行时,调节消弧线圈使其跟踪电网电容电流的变化有害无利,这也就是电力部门规定“固定式消弧线圈不能工作在全补偿或接近全补偿状态”的原因。国内同类自动补偿装置均是随动系统,都是在电网尚未发生接地故障前即将消弧线圈调节到全补偿状态等待接地故障的发生,这了避免出现过高的串联谐振过电压而在消弧线圈上串联一阻尼电阻,将稳态谐振过电压限制到容许的范围内,并不能解决暂态谐振过电压的问题,另外由于电阻的功率限制,在出现接地故障后必须迅速的切除,这无疑给电网增加了一个不安全因素。偏磁式消弧线圈不是采用限制串联谐振过电压的方法,而是采用避开谐振点的动态补偿方法,根本不让串联谐振出现,即在电网正常运行时,不施加励磁电流,将消弧线圈调谐到远离谐振点的状态,但实时检测电网电容电流的大小,当电网发生单相接地后,瞬时(约20ms)调节消弧线圈实施最佳补偿。
㈤ 为什么消弧线圈不是无功补偿装置。短路故障的时候不是能发出容性无功么
嘿嘿
为你的问题点赞!你的问题表明你是一个极爱思考,而且视角独特的人。请坚持并发扬这个特点,以后会前程无量!不过在我们公司从事无功补偿设备研发生产销售的29年里,这是第一次见到这样的问题。这样:
我们平常说的无功补偿装置,是针对连续工作状态下的设备而言,也就是说,这类装置是长期工作的,利用其无功特性,为其它用电设备提供反向的无功功率。比如常见的电容柜,就是利用电容器的容性无功,去补偿电动机的感性无功,从而提高负荷的功率因数,提高电网效率,保障电网安全。电容柜,是长期在线工作,而且功率容量一般都很大,至少是80Kvar以上,与用电设备(电动机)同时在线。
而你说的消弧线圈,它确实有感性负荷特征,但是他只是偶尔工作(合闸,或事故时),而且感性功率容量很小,所以不能称之为“无功补偿装置”。短路故障也是偶尔发生,当发生这类故障时,我们考虑的是如何尽快消除,而不会考虑短路时的容性无功了。
更多关于无功补偿、功率因数等等问题的资料可到这里来查找和讨论:https://..com/uteam/view?teamId=36954
㈥ 消弧线圈自动跟踪补偿的原理是什么一般用于什么场合
消弧线圈自动跟踪补偿是近些年才出现的,它一般可用于预调式消弧线圈。它满足了无人值班变电站的要求,可明显抑制瞬态过电压和断线过电压,总之,是消弧线圈发展的一个趋势,它必将代替现在的人工调节式。自动跟踪消弧线圈自动跟踪补偿的原理根据其结构的不同而不同,其基本原理就是通过系统已经知道的总对地电容电流,计算消弧线圈需要输出补偿的电感电流大小,然后根据各自结构特点(利用单片机或DSP计算)自动调节某一参数使其输出电感电流自动跟踪上电感电流,实现全补偿。如调容式消弧线圈,就是计算投入电容的组数,高阻抗式和双向晶闸管式就是计算触发角大小,调匝式就是计算消弧线圈投入的匝数等……
希望对你有所帮助………………,呵呵
㈦ 中性点经消弧线圈接地电力系统的补偿方式
中性点经消弧线圈接地电力系统的补偿方式如下:
中性点经消弧线圈接地方式,是在中性点和大地之间接入一个电感消弧线圈,在系统发生单相接地故障时,利用消弧线圈的电感电流对接地电容电流进行补偿,使流过接地点的电流减小到能自行熄弧范围,其特点是线路发生单相接地时,按规程规定电网可带单相接地故障运行2h。
对于中压电网,因接地电流得到补偿,单相接地故障并不发展为相间故障,因此中性点经消弧线圈接地方式的供电可靠性高于中性点经小电阻接地方式。
中性点经消弧线圈接地电力系统介绍:
1、调匝式自动跟踪补偿消弧线圈。
调匝式消弧线圈是将绕组按不同的匝数抽出分接头,用有载分接开关进行切换,改变接入的匝数,从而改变电感量。调匝式因调节速度慢,只能工作在预调谐方式,为保证较小的残流,必须在谐振点附近运行。
2、调气隙式自动跟踪补偿消弧线圈。
调气隙式电感是将铁心分成上下两部分,下部分铁心同线圈固定在框架上,上部分铁心用电动机,通过调节气隙的大小达到改变电抗值的目的。它能够自动跟踪无级连续可调,安全可靠。
其缺点是振动和噪声比较大,在结构设计中应采取措施控制噪声。这类装置也可以将接地变压器和可调电感共箱,使结构更为紧凑。
3、调容式消弧补偿装置。
通过调节消弧线圈二次侧电容量大小来调节消弧线圈的电感电流,二次绕组连接电容调节柜,当二次电容全部断开时,主绕组感抗最小,电感电流最大。
二次绕组有电容接入后,根据阻抗折算原理,相当于主绕组两端并接了相同功率、阻抗为K倍的电容,使主绕组感抗增大,电感电流减小,因此通过调节二次电容的容量即可控制主绕组的感抗及电感电流的大小。电容器的内部或外部装有限流线圈,以限制合闸涌流。
电容器内部还装有放电电阻。
㈧ 消弧线圈的补偿方式有
(1)全补偿,当电流谐振回路恰好在谐振点工作时,此时,电容电流与电感电流大小相等,方向相反,彼此完全抵消,残流中仅含有有功分量,不仅其值最小,且其相位与零序性质的中性点位移电压同相。
(2)欠补偿,当电流谐振回路在欠补偿状态下工作时,IC>IL,此时残流中不仅含有有功分量,同时含有容性无功电流分量,其值较前明显增大,同时残流相位 先于零序性质的中性点位移电压。
(3)过补偿。当电流谐振回路在过补偿状态下工作时,IC<IL,此时残流中主要为感性无功电流分量,其值同样明显增大,其相位滞后于零序性质的中性点位移电压。
(8)消弧线圈自动补偿补偿装置扩展阅读:
消弧线圈的作用是:当电网发生单相接地故障后,故障点流过电容电流,消弧线圈提供电感电流进行补偿,使故障点电流降至10A以下,有利于防止弧光过零后重燃,达到灭弧的目的,降低高幅值过电压出现的几率,防止事故进一步扩大。
当消弧线圈正确调谐时,不仅可以有效的减少产生弧光接地过电压的机率,还可以有效的抑制过电压的辐值,同时也最大限度的减小了故障点热破坏作用及接地网的电压等。
㈨ 简述消弧线圈的工作原理。要通俗点呀
消弧线圈抄的作用是当电网发生单相接地故障后,故障点流过电容电流,消弧线圈提供电感电流进行补偿,使故障点电流降至10A以下,有利于防止弧光过零后重燃,达到灭弧的目的,降低高幅值过电压出现的几率,防止事故进一步扩大。
当消弧线圈正确调谐时,不仅可以有效的减少产生弧光接地过电压的机率,还可以有效的抑制过电压的辐值,同时也最大限度的减小了故障点热破坏作用及接地网的电压等。
(9)消弧线圈自动补偿补偿装置扩展阅读:
当系统采用过补偿方式时,流过故障线路的零序电流等于本线路对地电容电流和接地点残余电流之和,其方向和非故障线路的零序电流一样,仍然是由母线指向线路,且相位一致,因此也无法利用方向的不同来判别故障线路和非故障线路。
其次由于过补偿度不大,因此也很难像中性点不接地系统那样,利用零序电流大小的不同来找出故障线路。
同中性点不接地电网一样,故障相对地电压为零,非故障相对地电压升高至线电压,出现零序电压,其大于等于电网正常运行时的相电压,同时也有零序电流。
消弧线圈两端的电压为零序电压,消弧线圈的电流通过接地故障点和故障线路的故障相,但不通过非故障线路。
㈩ 简述中性点经消弧线圈接地的补偿方法
若中性点经消弧线圈接地系统采用全补偿,则无论不对称电压的大小如何,都将因发生串联共振而使消弧线圈接地系统感受到很高的电压。因此要避免全补偿方式,而采用过补偿或欠补偿方式。但实际上一般都采用过补偿运行方式,其主要原因如下:
(1)欠补偿电网发生故障时,容易出现数值很大的过电压。例如,当电网中因故障或其他原因而切除部分线路后,在欠补偿电网中就可能形成全补偿的运行方式而造成串联谐振,从而引起很高的中性点位移电压与过电压,在欠补偿电网中也会出现很大的中性点位移而危及绝缘。只要采用欠补偿的运行方式,这一缺点是无法避免的。
(2)欠补偿电网在正常运行时,如果三相不对称度较大,还有可能出现数值很大的铁磁谐振过电压。这种过电压是因欠补偿的消弧线圈接地系统(它的.L > 1/.Co)和线路电容3C。发生铁磁谐振而引起。如采用过补偿的运行方式,就不会出现这种铁磁谐振现象。
(3)电力系统往往是不断发展和扩大的,电网的对地电容亦将随之增大。如果采用过补偿,原装的消弧线圈接地系统仍可以使用一段时期,至多由过补偿转变为欠补偿运行;但如果原来就采用欠补偿的运行方式,则系统一有发展就必须立即增加补偿容量。
(4)由于过补偿时流过接地点的是电感电流,熄弧后故障相电压恢复速度较慢,因而接地电弧不易重燃。
(5)采用过补偿时,系统频率的降低只是使过补偿度暂时增大,这在正常运行时是毫无问题的;如果采用欠补偿,系统频率的降低将使之接近于全补偿,从而引起中性点位移电压的增大。