1. 可燃气体报警器原理
可燃气体报警器工作原理:可燃气体报警是对单一或多种可燃气体浓度响应的探测器。可燃气体探测器有催化型、红外光学型两种类型。催化型可燃气体探测器是利用难熔金属铂丝加热后的电阻变化来测定可燃气体浓度 。当可燃气体进入探测器时,在铂丝表面引起氧化反应(无焰燃烧),其产生的热量使铂丝的温度升高,而铂丝的电阻率便发生变化。红外光学型是利用红外传感器通过红外线光源的吸收原理来检测现场环境的碳氢类可燃气体!
北京恒泰利达科技有限公司是专业从事工业气体检测仪器及消防安全、环保设备的研发、生产、销售和售后服务工作。公司SP-3200可燃气体报警控制器是一款智能型、采用壁挂式安装方式的可燃气体报警控制器,适用于各种标准 4~20mA 信号的测量与控制,可广泛应用于各个领域。
2. 可燃气体检测器中,电化学的传感器、催化燃烧原理传感器、半导体式传感器和红外传感器,各自的优、缺点
红外线可燃气体传感器属于无干扰智能型产品,具有良好的安全性能,操作灵活简便。这种探测器的一个主要的特点是它的自动校准功能,可以通过带背光的液晶显示屏上的提示一步步地引导操作者进行校准。红外线气体探测器提供三种不同的输出方式:模拟信号4~20mA直流电;RS-485通讯接口及3个继电器(两个报警,一个故障自检)。可对警铃进行现场调试和编程。
半导体传感器是一种新型半导体器件,它能够能实现电、光、温度、声、位移、压力等物理量之间的相互转换,并且易于实现集成化、多功能化,更适合于计算机的要求,所以被广泛应用于自动化检测系统中。由于实际的被测量大多数是非电量,因而传感器的主要工作就是将非电信号转换成电信号。
催化燃烧型气体探测器
用以监测周围空气中可燃气体从0~100%LEL范围内的变化。该传感器采用催化燃烧技术,传感器可在现场更换。催化燃烧型传感器对于种类繁多的可燃性气体有敏锐的反应。该技术对于可燃性气体具有普遍适用性。传感器经特殊设计有防中毒功能,能在多数工业环境中可靠工作五到十年。
3. 求气体检测仪检测原理
以常见的红外线气体检测仪为例,说明气体检测仪的原理:
测量这种吸收光谱可判别出气体的种类;测量吸收强度可确定被测气体的浓度。红外线检测仪的使用范围宽,不仅可分析气体成分,也可分析溶液成分,且灵敏度较高,反应迅速,能在线连续指示,也可组成调节系统。工业上常用的红外线气体检测仪的检测部分由两个并列的结构相同的光学系统组成。
一个是测量室,一个是参比室。两室通过切光板以一定周期同时或交替开闭光路。在测量室中导入被测气体后,具有被测气体特有波长的光被吸收,从而使透过测量室这一光路而进入红外线接收气室的光通量减少。气体浓度越高,进入到红外线接收气室的光通量就越少;而透过参比室的光通量是一定的,进入到红外线接收气室的光通量也一定。因此,被测气体浓度越高,透过测量室和参比室的光通量差值就越大。这个光通量差值是以一定周期振动的振幅投射到红外线接收气室的。接收气室用几微米厚的金属薄膜分隔为两半部,室内封有浓度较大的被测组分气体,在吸收波长范围内能将射入的红外线全部吸收,从而使脉动的光通量变为温度的周期变化,再可根据气态方程使温度的变化转换为压力的变化,然后用电容式传感器来检测,经过放大处理后指示出被测气体浓度。除用电容式传感器外,也可用直接检测红外线的量子式红外线传感器,并采用红外干涉滤光片进行波长选择和配以可调激光器作光源,形成一种崭新的全固体式红外气体检测仪。这种检测仪只用一个光源、一个测量室、一个红外线传感器就能完成气体浓度的测量。此外,若采用装有多个不同波长的滤光盘,则能同时分别测定多组分气体中的各种气体的浓度。
4. 可燃气体探测器催化燃烧和红外的怎么区别
直接上图:
催化燃烧气体传感器是一种用于检测进入爆炸范围内的可燃气体或易燃蒸汽以警告气体浓度水平上升的设备。该传感器是一圈铂金丝,内部装有催化剂,形成一个小的活性珠,可降低气体在其周围点燃的温度。当存在可燃气体时,珠子的温度和电阻相对于惰性参考珠子的电阻会增加。测量电阻差,从而可以测量存在的气体浓度。 由于存在催化剂和珠子,所以将催化燃烧传感器也称为催化或催化珠子传感器。
红外传感器技术基于以下原理:特定波长的红外(IR)光将被目标气体吸收。 通常传感器内有两个发射器,它们产生红外光束:具有将被目标气体吸收的波长的测量光束和不会被吸收的参考光束。每个光束具有相同的强度,并通过传感器内部的反射镜偏转到光接收器上。在存在目标气体的情况下,参考光束和测量光束之间的强度差将用于测量存在的气体浓度。
在许多情况下,红外(IR)传感器技术比催化燃烧技术具有许多优势,或者在可能损害催化燃烧传感器性能的区域(包括低氧气和惰性环境)中更加可靠。 只是红外光束与周围的气体分子相互作用,使传感器具有不面临中毒或抑制威胁的优点。
5. 红外探测器有几种类型各自的类型有什么特点
红外探测器按工作原理主要可分为红外红外探测器、微波红外探测器、被动式红外/微波红外探测器、玻璃破碎红外探测器、振动红外探测器、超声波红外探测器、激光红外探测器、磁控开关红外探测器、开关红外探测器、视频运动检测报警器、声音探测器等许多种类。红外探测器按工作方式可分为主动式红外探测器和被动式红外探测器。红外探测器按探测范围的不同又可分为点控红外探测器、线控红外探测器、面控红外探测器和空间防范红外探测器。
红外探测器作为传感探测装置,用来探测入侵者的入侵行为及各种异常情况。在各种各样的智能建筑和普通建筑物中需要安全防范的场所很多。这些场所根据实际情况也有各种各样的安全防范目的和要求。因此,就需要各种各样的红外探测器,以满足不同的安全防范要求。 根据实际现场环境和用户的安全防范要求,合理的选择和安装各种红外探测器,才能较好的达到安全防范的目的。当选择和安装红外探测器不合适时,有可能出现安全防范的漏洞,达不到安全防范的严密性,给入侵者造成可乘之机,从而给安全防范工作带来不应有的损失。 红外探测器要求具有防拆动、防破坏功能。当红外探测器受到破坏、人为将其传输线短路或断路,以及非法试图打开其防护罩时,均应能产生报警信号输出;另外红外探测器还应具有一定的抗干扰措施,以防止各种误报现象的发生,例如:防宠物和小动物骚扰、抗因环境条件变化而产生的误报干扰等。 红外探测器的灵敏度和可靠性是相互影响的。合理选择红外探测器的探测灵敏度和采用不同的抗外界干扰的措施,可以提高红外探测器性能。采用不同的抗干扰措施,决定了红外探测器在不同环境下的使用性能。了解各种红外探测器的性能和特点,根据不同使用环境,合理配置不同的红外探测器是防盗报警系统的关键环节
6. 红外探测器有哪些类型说明它们的工作原理
红外探测器原理和类型:
不同种类的物体发射出的红外光波段是有其特定波段的,该波段的红外光处在可见光波段之外。
因此人们可以利用这种特定波段的红外光来实现对物体目标的探测与跟踪。将不可见的红外辐射光探测出并将其转换为可测量的信号的技术就是红外探测技术。
从目前应用的情况来看,红外探测有如下几个优点:
环境适应性优于可见光,尤其是在夜间和恶劣天候下的工作能力;
隐蔽性好,一般都是被动接收目标的信号,比雷达和激光探测安全且保密性强,不易被干扰;
由于是*目标和背景之间的温差和发射率差形成的红外辐射特性进行探测,因而识别伪装目标的能力优于可见光;与雷达系统相比,红外系统的体积小,重量轻,功耗低;
探测器的光谱响应从短波扩展到长波;
探测器从单元发展到多元、从多元发展到焦平面;发展了种类繁多的探测器和系统;
从单波段探测向多波段探测发展;从制冷型探测器发展到室温探测器;
由于红外探测技术有其独特的优点从而使其在军事国防和民用领域得到了广泛的研究和应用,尤其是在军事需求的牵引和相关技术发展的推动下,作为高新技术的红外探测技术在未来的应用将更加广泛,地位更加重要。
红外探测器是将不可见的红外辐射能转变成其它易于测量的能量形式的能量转化器,作为红外整机系统的核心关键部件,红外探测器的研究始终是红外物理与技术发展的中心。自1800年Herschel发现太阳光谱中的红外线时所用的涂黑水银温度计为最早的红外探测器以来,随着红外实验和理论的发展,新器件不断涌现。红外探测器制备涉及物理、材料、化学、机械、微电子、计算机等多学科,是一门综合科学。
一. 热探测器热探测器吸收红外辐射后,温度升高,可以使探测材料产生温差电动势、电阻率变化,自发极化强度变化,或者气体体积与压强变化等,测量这些物理性能的变化就可以测定被吸收的红外辐射能量或功率。分别利用上述不同性能可制成多种热探测器:
(1) 液态的水银温度计及气动的高莱池(Golay cell):利用了材料的热胀冷缩效应。
(2) 热电偶和热电堆:利用了温度梯度可使不同材料间产生温差电动势的温差电效应。
(3) 石英共振器非制冷红外成像列阵:利用共振频率对温度敏感的原理来实现红外探测。 (4)测辐射热计:利用材料的电阻或介电常数的热敏效应—辐射引起温升改变材料电阻—用以探测热辐射。因半导体电阻有高的温度系数而应用最多,测温辐射热计常称“热敏电阻”。另外,由于高温超导材料出现,利用转变温度附近电阻陡变的超导探测器引起重视。如果室温超导成为现实,将是21世纪最引人注目的一类探测器;
(5) 热释电探测器:有些晶体,如硫酸三甘酞、铌酸锶钡等,当受到红外辐射照射温度升高时,引起自发极化强度变化,结果在垂直于自发极化方向的晶体两个外表面之间产生微小电压,由此能测量红外辐射的功率。
二. 光子探测器光子探测器吸收光子后,本身发生电子状态的改变,从而引起内光电效应和外光电效应等光子效应,从光子效应的大小可以测定被吸收的光子数。
(1)光电导探测器:又称光敏电阻。半导体吸收能量足够大的光子后,体内一些载流子从束缚态转变为自由态,从而使半导体电导率增大,这种现象称为光电导效应。利用光电导效应制成的光电导探测器分为多晶薄膜型和单晶型两种。
(2)光伏探测器:主要利用p-n结的光生伏特效应。能量大于禁带宽度的红外光子在结区及其附近激发电子空穴对。存在的结电场使空穴进入p区,电子进入n区,两部分出现电位差,外电路就有电压或电流信号。与光电导探测器比较,光伏探测器背景限探测率大40%,不需要外加偏置电场和负载电阻,不消耗功率,有高的阻抗。
(3)光发射-Schottky势垒探测器:金属和半导体接触,形成Schottky势垒,红外光子透过Si层被PtSi吸收,使电子获得能量跃迁至费米能级,留下空穴越过势垒进入Si衬底,PtSi层的电子被收集,完成红外探测。
(4)量子阱探测器(QWIP):将两种半导体材料用人工方法薄层交替生长形成超晶格,在其界面有能带突变,使得电子和空穴被限制在低势能阱内,从而能量量子化形成量子阱。利用量子阱中能级电子跃迁原理可以做红外探测器。因入射辐射中只有垂直于超晶格生长面的电极化矢量起作用,光子利用率低;量子阱中基态电子浓度受掺杂限制,量子效率不高;响应光谱区窄;低温要求苛刻。
7. 可燃性气体检测仪的红外线可燃气体探测器技术特性
红外线气体传感器有两种信号输出:模拟的4~20mA输出和RS-485数据总线输出。而只有一种4~20mA的输出。输出信号是与探测范围相关的4~20mA线性模拟信号。这种信号与10系列及12系列多模块控制器,可编程逻辑控制器以及其它标准的数据获取设备兼容。模拟输出还有两个其它功能。第一,当进入校准菜单时,4~20mA信号会降至2mA。该低电流会保持到传感器回复到正常运作状态。第二,一旦出错,4~20mA信号会降至0mA,这一状况将保持到出错状态恢复正常。这些输出信号的变化可被外部设备用来识别及记录传感器的工作状态。
RS-485数据通讯中使用Modbus RTU协议,这一协议与几乎所有的可编程逻辑控制器、人机界面软件及其它控制系统兼容。因为Modbus RTU协议是一种标准。从RS-485通讯接口可获得以下信息:探测器读数、探测器警报点、校准模式、探测器错误、两个警报器状态及校准程序错误。RS-485的地址可由双列直插式封装开关改变。通讯是二线制、半双工,有一个600型探测器作为其伺服设备。从理论上说,主控制器在4000英尺远可同时控制256个不同的探测器。 当探测器测量的气体浓度超过测量范围的100%LEL时,显示屏会闪烁并显示最高的数值。当气体浓度恢复到测量范围内时,显示屏会回复到正常工作状态。
8. 红外感应器工作原理是什么
原理
这种是通过红外线反射原理,当人体的手或身体的某一部分在红外线区域内,红外线发射管发出的红外线由于人体手或身体摭挡反射到红外线接收管,通过集成线路内的微电脑处理后的信号发送给脉冲电磁阀,电磁阀接受信号后按指定的指令打开阀芯来控制头出水;当人体的手或身体离开红外线感应范围,电磁阀没有接受信号,电磁阀阀芯则通过内部的弹簧进行复位来控制的关水。
红外线
在光谱中波长自0.76至400微米的一段称为红外线,红外线是不可见光线。所有高于绝对零度(-273.15℃)的物质都可以产生红外线。现代物理学称之为热射线。医用红外线可分为两类:近红外线与远红外线。
9. 红外探测器,可燃气体探测器怎么样
红外可燃气体探测器采用新型红外气体传感器。该传感器采用电调制红外光源,省内去了传统方法容中的机械调制部件;同时采用了高精度干涉滤光片一体化红外传感器以及单光束双波长技术,传感器内部集成有温度补偿单元,此外在设计中增加了防尘防潮设计,提高了测试的准确性,更换不同的传感器可以实现对SO2、NO、CO2、CO、CH4、N2O等气体的实时测量。
10. 可燃气体探测器的烷烃类探测器
结实耐用,操作简便的智能型可燃气体探测器,被设计用以检测可燃性烷烃类气体浓度在爆炸下限0~100%的变化。这种探测器使用一种获得专利的“小型即插型可更换”红外线光学传感器。红外线传感器的特点是长时间的工作稳定性及最少的阶段性维护。红外线气体传感器在某些测量环境下是对于传统的催化燃烧式传感器的一种极佳的替代产品。
红外线可燃气体探测器在以下应用环境下是理想的选择:
● 频繁的催化毒气曝露
● 频繁的高可燃性气体排放
● 缺氧环境
● 探测不易实现的环境
典型应用
● 远洋作业平台及钻井平台 ●炼油厂
● 石化厂 ●压缩天然气及液化气处理
● 废水处理 ●化工厂
● 泵站 ●热电厂
特点
● 独特的小型即插型现场可更换传感器
● 无干扰、智能型探测器界面
● 输出:4-20mA, RS-485数据总线及3个报警继电器
● 极少的维护要求
● 加热的光学设计避免了冷凝现象
● 故障自诊断功能
● 长期使用成本低廉
● 五年的额定费用质量保证
● 低能耗
可燃气体探测器是以甲烷作为标准气体进行实地校准和软件调试的。公司也可以其它气体进行样准,但客户必须在订货时事先声明。下面是公司可提供的校准气体:
甲烷、 乙烷、 丙烷 、丁烷、 戊烷、 己烷 、庚烷、 辛烷 、乙烯 、丙烯、丁烯、 戊烯 、己烯 、辛烯、 环丙烷、 环己烷 、环己烯 、蒎烯、 苯、 甲苯 、二甲苯、 甲醇、 乙醇、 丙醇 、异丁醇、 二甲胺、 三甲胺 、吡啶、二甲醚、 乙醚、 乙烯醚、 环氧乙烷 、四氢呋喃、 二氧六环丙酮 、丁酮、戊酮 、庚酮、 甲基异丁基酮