① 设计带式输送机传动系统。要求传动系统中含有带传动及单级圆柱齿轮减速器。
本次毕业设计是关于矿用固定式带式输送机的设计。首选胶带输专送机作了简单的概述:接属着分析了带式输送机的选型原则及计算方法;然后根据这些设计准则与计算选型方法按照给定参数要求进行选型设计;接着对所选择的输送机各主要零部件进行了校核。普通带式输送机由六个主要部件组成:传动装置,机尾和导回装置,中部机架,拉紧装置以及胶带。最后简单的说明了输送机的安装与维护。目前,胶带输送机正朝着长距离,高速度,低摩擦的方向发展,近年来出现的气垫式胶带输送机就是其中的一中。在胶带输送机的设计、制造以及应用方面,目前我国与国外先进水平相比仍有较大差距,国内在设计制造带式输送机过程中存在着很多不足。
关键词:带式输送机,选型设计,主要部件
以上资料来自“三人行设计网” 我只是复制了一部分给你看 但愿能对你有所帮助 他的还算比较全 你可以去看看 呵呵
② 带式输送机有哪些机械保护装置各自的工作原理是什么
带式输送机的的保护装置有防跑偏保护装置、防滑保护装置、堆煤保护装置、防撕裂保护装置 、烟温报警灭火系统装置 、逆止保护装置、沿线保护装置、飞带保护装置和综合保护与集中控制装置。
1,防跑偏保护装置的作用原理
带式输送机在运行中输送带跑偏是常见的一种故障,如不加以保护将会因跑偏而撕裂输送带。目前,带式输送机大多采用行程开关防跑偏保护装置。它由防跑偏传感器和控制箱组成。当输送带跑偏时,输送带立即碰触传感器传动杆,使传感器的动触头和固定触头接触,通过控制箱控制带式输送机断点停机。一般利用带柄的滚式行程开关对输送带的跑偏进行检测。
2、防滑保护装置的作用原理
防滑保护装置,又叫打滑保护装置。它是通过检测输送带的速度变化,查知驱动滚筒与输送带是否发生打滑的装置。因为驱动滚筒上的输送带打滑,会导致带速降低,如果长时间打滑,可能发生输送带着火事故。保护装置在输送机正常运行中,当带速降低到一定值时发生打滑低速报警信号,持续一定时间驱动滚筒转速低于正常转速的70%后发出自动停机指令,使输送带停止运行,这样即可保护输送带,又可避免不必要的频繁制动。
3、堆煤保护装置的工作原理
它是一种用来检测煤仓是否装满或转载点是否堆积堵赛的装置。当发生堆煤时,堆煤保护装置控制带式输送机停机。堆煤保护装置主要有碳极式和偏摆式两种。
(1)碳极式堆煤保护装置,由堆煤传感器和控制箱构成。堆煤传感器(一条电缆或特制的煤位探头)置于煤仓或转载点某一高度处,作为固定触头,以煤作为动触头,当煤堆到一定高度与堆煤传感器相接处时,控制箱便控制带式输送机断电停机。
(2)偏摆式堆煤保护装置,由偏摆传感器和控制箱构成。偏摆传感器安装在煤包上或两部带式输送机的搭接处。偏摆传感器内有一钢球和延时开关,悬挂的传感器处于垂直状态时,钢球压在延时开关上。当煤位上升使传感器倾斜超过动作角度时,钢球滚开,开关延时动作发出信号,控制箱便控制带式输送机断电停机; 当煤下降后,传感器恢复垂直状态,钢球又压住延时开关,使其瞬时复位。
4、防撕裂保护装置的工作原理
防撕裂保护装置由防撕裂传感器和控制箱构成。防撕裂传感器通常安装在给煤机前方或装载点几米处的上层输送带下方。煤矿中常用DJS—BA—1型输送带纵向撕裂保护装置,防撕裂保护装置的作用就是当带式输送机发生胶带纵向撕裂事故时,及时控制带式输送机停机,防止撕裂事故扩大。
当发生纵向撕裂的输送带经过纵向撕裂传感器上方时,输送带上面的煤延纵向撕裂的缝隙撒落在传感器上,导电橡胶板被压变形,贴靠在电极印制板上,将常开的触点闭合,通过控制箱,控制输送机停机。这种防撕裂保护装置的缺点是,当输送带发生纵向撕裂而输送机上无煤时,就不能起到防止输送带撕裂事故扩大的作用。
另一种防撕裂保护装置由一个绕性吊挂托辊和限位开关组成,安装在装载点的托架内,当输送带被利器刺透撕开时,输送带托辊通过插入输送带的利器而改变位置,从而带动限位开关使输送机停机。
5、烟温报警灭火系统装置的工作原理
烟温报警灭火系统装置能够连续监测矿井带式输送机系统温度和烟雾的变化情况。当带式输送机周围温度和烟尘浓度达到设定值时,装置中的报警器发出声光报警,同时断电停机,洒水灭火。
烟温报警灭火系统装置主要由控制箱、传感器、声光报警器和喷水装置组成。一般烟雾保护的传感器为光敏和气敏元件,它的安装位置一般在机头卸载滚筒下风口的5m范围内的巷道内。
温度保护通常采用热电偶元件或热敏电阻作为监视温度的传感器,对于运动部件(如传动滚筒)是利用铁磁材料的磁导率与温度的变化关系,用磁感应脉冲发送器作为传感器,一旦温度过高,保护装置动作,输送机便停止运行。
6、逆止保护装置的工作原理
逆止保护装置的作用就是防止倾斜上运的带式输送机发生逆转而飞车。
7、沿线保护装置 的工作原理
沿线保护装置的作用就是在带式输送机的任何部位都可以人为地停止输送机的运转,及时控制带式输送机事故的发生和扩展。
(1)按钮式沿线保护装置,即每隔40—50m安装1个紧急停机按钮,并接入带式输送机控制系统。通常安装在带式输送机巷道碹帮上。
(2)拉线式沿线保护装置,又称沿线急停开关。它用铁丝或细钢丝控制一个小的行程开关,行程开关接入带式输送机控制系统。这种保护装置通常安装在带式输送机机架靠人行道一侧。
8、飞带保护装置 的工作原理
飞带保护装置用在倾斜下运的带式输送机上。它的作用就是在下运带式输送机失控的情况下或制动后输送带与滚筒打滑的情况下,及时捕捉输送带,防止产生飞带事故。液压式飞带捕捉器由液压系统、滚筒和橡胶轮构成。这种飞带捉捕器是用油压来控制的,当带速超过额定值时,控制系统打开油路阀,橡胶轮带动液压泵将油通过管路排到液压缸内,推动液压缸内活塞使缸体向下运动,缸体与滚筒相连,从而推动滚筒向下运动。橡胶轮固定不动,输送带被压在滚筒与橡胶带式输送机的保护及常见故障轮中间。因此,增大了输送带的运行阻力,降低了输送带的运行速度,起到了防止输送机运行超速和飞带事故发生的作用。当输送带速度降低至额定速度时,控制系统关闭油路阀,在弹簧的作用下,滚筒抬起来,输送带由受压变形状态恢复成自由直线状态。
9、综合保护与集中控制装置 的工作原理
随着煤炭生产的需要和科学技术的发展,我国先后研制出多种带式输送机综合保护与集中控制装置。它由各种传感器和集中控制台构成,可实现低速、超速、断带、纵向撕裂、堆煤、跑偏、急停、烟雾、温度等保护,并可执行洒水降温。它具有电动机功率、胶带运行速度、紧急停车开关动作位置、跑偏开关动作位置、主电动机温度等数字显示功能以及各种设备工作状态及故障状态的显示,可配合CST等软启动系统工作,同时对主电机、给煤机和闸电动机等设备实施控制和保护。
综合保护装置具有集中控制和单台控制两种操作方式。集中控制时具有连锁保护功能,即某一台停机时,向其供煤的带式输送机连锁停机,具有逆煤流延时顺序起动开车功能。装置在手动控制方式下,配接开停传感器可实现顺煤流延时顺序起动开车。无论在集中方式或手动方式下,该装置均有起动开车功能、语音预警功能、故障停车保护功能、故障保护功能、及解锁功能、全线系统状态对位显示功能、全线联系及对讲功能。
③ 机械设计 带传动的传动装置课程设计 说明书和图
QRS你好,整理的1000份机械课设毕设,你说的里面有的,直接用就行T
④ 机械设计课程设计带式运输机传动装置的设计
给你做个参考
一、前言
(一)
设计目的:
通过本课程设计将学过的基础理论知识进行综合应用,培养结构设计,计算能力,熟悉一般的机械装置设计过程。
(二)
传动方案的分析
机器一般是由原动机、传动装置和工作装置组成。传动装置是用来传递原动机的运动和动力、变换其运动形式以满足工作装置的需要,是机器的重要组成部分。传动装置是否合理将直接影响机器的工作性能、重量和成本。合理的传动方案除满足工作装置的功能外,还要求结构简单、制造方便、成本低廉、传动效率高和使用维护方便。
本设计中原动机为电动机,工作机为皮带输送机。传动方案采用了两级传动,第一级传动为带传动,第二级传动为单级直齿圆柱齿轮减速器。
带传动承载能力较低,在传递相同转矩时,结构尺寸较其他形式大,但有过载保护的优点,还可缓和冲击和振动,故布置在传动的高速级,以降低传递的转矩,减小带传动的结构尺寸。
齿轮传动的传动效率高,适用的功率和速度范围广,使用寿命较长,是现代机器中应用最为广泛的机构之一。本设计采用的是单级直齿轮传动。
减速器的箱体采用水平剖分式结构,用HT200灰铸铁铸造而成。
二、传动系统的参数设计
原始数据:运输带的工作拉力F=0.2 KN;带速V=2.0m/s;滚筒直径D=400mm(滚筒效率为0.96)。
工作条件:预定使用寿命8年,工作为二班工作制,载荷轻。
工作环境:室内灰尘较大,环境最高温度35°。
动力来源:电力,三相交流380/220伏。
1
、电动机选择
(1)、电动机类型的选择: Y系列三相异步电动机
(2)、电动机功率选择:
①传动装置的总效率:
=0.98×0.99 ×0.96×0.99×0.96
②工作机所需的输入功率:
因为 F=0.2 KN=0.2 KN= 1908N
=FV/1000η
=1908×2/1000×0.96
=3.975KW
③电动机的输出功率:
=3.975/0.87=4.488KW
使电动机的额定功率P =(1~1.3)P ,由查表得电动机的额定功率P = 5.5KW 。
⑶、确定电动机转速:
计算滚筒工作转速:
=(60×v)/(2π×D/2)
=(60×2)/(2π×0.2)
=96r/min
由推荐的传动比合理范围,取圆柱齿轮传动一级减速器传动比范围I’ =3~6。取V带传动比I’ =2~4,则总传动比理时范围为I’ =6~24。故电动机转速的可选范围为n’ =(6~24)×96=576~2304r/min
⑷、确定电动机型号
根据以上计算在这个范围内电动机的同步转速有1000r/min和1500r/min,综合考虑电动机和传动装置的情况,同时也要降低电动机的重量和成本,最终可确定同步转速为1500r/min ,根据所需的额定功率及同步转速确定电动机的型号为Y132S-4 ,满载转速 1440r/min 。
其主要性能:额定功率:5.5KW,满载转速1440r/min,额定转矩2.2,质量68kg。
2 、计算总传动比及分配各级的传动比
(1)、总传动比:i =1440/96=15
(2)、分配各级传动比:
根据指导书,取齿轮i =5(单级减速器i=3~6合理)
=15/5=3
3 、运动参数及动力参数计算
⑴、计算各轴转速(r/min)
=960r/min
=1440/3=480(r/min)
=480/5=96(r/min)
⑵计算各轴的功率(KW)
电动机的额定功率Pm=5.5KW
所以
P =5.5×0.98×0.99=4.354KW
=4.354×0.99×0.96 =4.138KW
=4.138×0.99×0.99=4.056KW
⑶计算各轴扭矩(N•mm)
TI=9550×PI/nI=9550×4.354/480=86.63N•m
=9550×4.138/96 =411.645N•m
=9550×4.056/96 =403.486N•m
三、传动零件的设计计算
(一)齿轮传动的设计计算
(1)选择齿轮材料及精度等级
考虑减速器传递功率不大,所以齿轮采用软齿面。小齿轮选用40Cr调质,齿面硬度为240~260HBS。大齿轮选用45#钢,调质,齿面硬度220HBS;根据指导书选7级精度。齿面精糙度R ≤1.6~3.2μm
(2)确定有关参数和系数如下:
传动比i
取小齿轮齿数Z =20。则大齿轮齿数:
=5×20=100 ,所以取Z
实际传动比
i =101/20=5.05
传动比误差:(i -i)/I=(5.05-5)/5=1%<2.5% 可用
齿数比: u=i
取模数:m=3 ;齿顶高系数h =1;径向间隙系数c =0.25;压力角 =20°;
则 h *m=3,h )m=3.75
h=(2 h )m=6.75,c= c
分度圆直径:d =×20mm=60mm
d =3×101mm=303mm
由指导书取 φ
齿宽: b=φ =0.9×60mm=54mm
=60mm ,
b
齿顶圆直径:d )=66,
d
齿根圆直径:d )=52.5,
d )=295.5
基圆直径:
d cos =56.38,
d cos =284.73
(3)计算齿轮传动的中心矩a:
a=m/2(Z )=3/2(20+101)=181.5mm 液压绞车≈182mm
(二)轴的设计计算
1 、输入轴的设计计算
⑴、按扭矩初算轴径
选用45#调质,硬度217~255HBS
根据指导书并查表,取c=110
所以 d≥110 (4.354/480) 1/3mm=22.941mm
d=22.941×(1+5%)mm=24.08mm
∴选d=25mm
⑵、轴的结构设计
①轴上零件的定位,固定和装配
单级减速器中可将齿轮安排在箱体中央,相对两轴承对称分布,齿轮左面由轴肩定位,右面用套筒轴向固定,联接以平键作过渡配合固定,两轴承分别以轴肩和大筒定位,则采用过渡配合固定
②确定轴各段直径和长度
Ⅰ段:d =25mm
, L =(1.5~3)d ,所以长度取L
∵h=2c
c=1.5mm
+2h=25+2×2×1.5=31mm
考虑齿轮端面和箱体内壁,轴承端面和箱体内壁应有一定距离。取套筒长为20mm,通过密封盖轴段长应根据密封盖的宽度,并考虑联轴器和箱体外壁应有一定矩离而定,为此,取该段长为55mm,安装齿轮段长度应比轮毂宽度小2mm,故II段长:
L =(2+20+55)=77mm
III段直径:
初选用30207型角接触球轴承,其内径d为35mm,外径D为72mm,宽度T为18.25mm.
=d=35mm,L =T=18.25mm,取L
Ⅳ段直径:
由手册得:c=1.5
h=2c=2×1.5=3mm
此段左面的滚动轴承的定位轴肩考虑,应便于轴承的拆卸,应按标准查取由手册得安装尺寸h=3.该段直径应取:d =(35+3×2)=41mm
因此将Ⅳ段设计成阶梯形,左段直径为41mm
+2h=35+2×3=41mm
长度与右面的套筒相同,即L
Ⅴ段直径:d =50mm. ,长度L =60mm
取L
由上述轴各段长度可算得轴支承跨距L=80mm
Ⅵ段直径:d =41mm, L
Ⅶ段直径:d =35mm, L <L3,取L
2 、输出轴的设计计算
⑴、按扭矩初算轴径
选用45#调质钢,硬度(217~255HBS)
根据课本P235页式(10-2),表(10-2)取c=110
=110× (2.168/76.4) =38.57mm
考虑有键槽,将直径增大5%,则
d=38.57×(1+5%)mm=40.4985mm
∴取d=42mm
⑵、轴的结构设计
①轴的零件定位,固定和装配
单级减速器中,可以将齿轮安排在箱体中央,相对两轴承对称分布,齿轮左面用轴肩定位,右面用套筒轴向定位,周向定位采用键和过渡配合,两轴承分别以轴承肩和套筒定位,周向定位则用过渡配合或过盈配合,轴呈阶状,左轴承从左面装入,齿轮套筒,右轴承和皮带轮依次从右面装入。
②确定轴的各段直径和长度
初选30211型角接球轴承,其内径d为55mm,外径D=100mm,宽度T为22.755mm。考虑齿轮端面和箱体内壁,轴承端面与箱体内壁应有一定矩离,则取套筒长为20mm,则该段长42.755mm,安装齿轮段长度为轮毂宽度为2mm。
则 d =42mm L = 50mm
L = 55mm
L = 60mm
L = 68mm
L =55mm
L
四、滚动轴承的选择
1 、计算输入轴承
选用30207型角接触球轴承,其内径d为35mm,外径D为72mm,宽度T为18.25mm.
2 、计算输出轴承
选30211型角接球轴承,其内径d为55mm,外径D=100mm,宽度T为22.755mm
五、键联接的选择
1 、输出轴与带轮联接采用平键联接
键的类型及其尺寸选择:
带轮传动要求带轮与轴的对中性好,故选择C型平键联接。
根据轴径d =42mm ,L =65mm
查手册得,选用C型平键,得: 卷扬机
装配图中22号零件选用GB1096-79系列的键12×56
则查得:键宽b=12,键高h=8,因轴长L =65,故取键长L=56
2 、输出轴与齿轮联接用平键联接
=60mm,L
查手册得,选用C型平键,得:
装配图中 赫格隆36号零件选用GB1096-79系列的键18×45
则查得:键宽b=18,键高h=11,因轴长L =53,故取键长L=45
3 、输入轴与带轮联接采用平键联接 =25mm L
查手册
选A型平键,得:
装配图中29号零件选用GB1096-79系列的键8×50
则查得:键宽b=8,键高h=7,因轴长L =62,故取键长L=50
4 、输出轴与齿轮联接用平键联接
=50mm
L
查手册
选A型平键,得:
装配图中26号零件选用GB1096-79系列的键14×49
则查得:键宽b=14,键高h=9,因轴长L =60,故取键长L=49
六、箱体、箱盖主要尺寸计算
箱体采用水平剖分式结构,采用HT200灰铸铁铸造而成。箱体主要尺寸计算如下:
七、轴承端盖
主要尺寸计算
轴承端盖:HT150 d3=8
n=6 b=10
八、减速器的
减速器的附件的设计
1
、挡圈 :GB886-86
查得:内径d=55,外径D=65,挡圈厚H=5,右肩轴直径D1≥58
2
、油标 :M12:d =6,h=28,a=10,b=6,c=4,D=20,D
3
、角螺塞
M18
×
1.5 :JB/ZQ4450-86
九、
设计参考资料目录
1、吴宗泽、罗圣国主编.机械设计课程设计手册.北京:高等教育出版社,1999.6
2、解兰昌等编著.紧密仪器仪表机构设计.杭州:浙江大学出版社,1997.11
⑤ 带式输送机传动装置的设计
一)选择电动机1。选择电动机容量 P=FV/η P=4000*2/η η是带式输送机的效率,你没写出来。回2。选答取电动机额定功率 查表3。确定电动机转速 n=60V/πD n=60*2*1000/π*450 毫米转化米/1000 然后查表。二)计算传动装置的总传动比并分配各级传动比。总传动比等于电动机转速除以n。 分配有:动机道减速箱,动力轴道中间轴,间轴道输出轴 。 开始的就这么多了。我打字好慢的,累的不行了 呵呵
⑥ 带式输送机的驱动装置各部件是如何连接的各部件的作用是
以传动滚筒为中心,一侧可分别布置低速联轴器(连接传动滚筒和减速机低速轴)、减速机、高速联轴器(也可以是限矩型偶合器)、电机;另一侧可布置逆止器或制动器(根据实际需要确定
)
⑦ 带式输送机上运下运必须装什么装置
【上海鑫务机械】为您解答。带式输送机上运下运必须装制动装置。
相对于上运来说,下运带式输送机运行阻力小,当向下运输倾角较大,靠物料和胶带自重的分力推动运行时,电动机处于发电运行状态,电动机产生的力矩为制动力矩,阻碍胶带的运行,当制动力矩与负载的下滑力矩平衡时,电动机随输送带以高于同步转速的某一速度运行。系统的机械能被转化为电能反馈到电网。
下运带式输送机在满载运行中停机,若用机械闸制动,当切断电源后或者突然掉电时,物料和胶带的自重分力以及整个系统的惯性力等都加在机械闸制动副上,制动副将产生高温,若来不及散热,就会降低制动效果甚至造成"飞车"。磨擦产生的火花,在瓦斯和煤尘浓度高的环境下,还有导致爆炸的危险。因此,解决可靠制动问题则是下运带式输送机极为关键的问题。
1、驱动装置布置形式
对于连续运输机械来说,驱动装置的位置,应该使牵引机构张力最小。其目的是使牵引机构的尺寸、重量和价格减小,胶带强度降低,运行阻力和能量消耗降低,牵引机构和改向装置磨损降低。如果从这个角度考虑,当FC(承载段阻力〉<0,且FC>Fh(回程段阻力),即(FC+Fh)<0时,驱动装置布置在机头和机尾,牵引机构的最大张力是相同的。但从可靠制动的角度考虑,驱动装置最好布置在机尾(受料端〉。
如果采用机头驱动,如图l所示,S4=Smin,S3=Smax=Smin+FC(其中S4、S3为4点、3点张力)。由于最小张力点相遇在传动滚筒的4点处,在满载停车,对传动滚筒制动时,最小张力S4甚至为零或负值,即胶带可能脱离开滚筒,回程胶带来不及收缩,引起胶带在此处堆积,这种现象就是我们所说的"叠被"。另外→种可能就是由于松边张力S4过小,胶带将在传动滚筒上打滑。
无论何时传动滚筒处都保持较大的张力,胶带永远贴紧传动滚筒,只要能可靠制动传动滚筒,靠胶带与传动滚筒的磨擦力就能在较短的时间内停下来。因此,下运带式输送机驱动装置最好布置在机尾。
2、制动装置
2.1盘式制动器
盘式制动器是安装在电动机和减速机之间的-套制动装置,由制动缸和液压系统组成。制动缸成对安装在制动盘两侧,闸瓦靠制动缸内的碟形弹簧加压。盘式制动器的制动力矩可调,而且制动副的散热条件较好,所以能够实现平稳可靠停车。但因配置复杂,体积较大,所以常用于功率不大的下运带式输送机。
2.2液力制动器降速配机械闸停车
液力制动装置的主体是液力制动器,液力制动器属于液力传动装置,结构与液力偶合器相近。其区别在于液力制动器的涡轮制成固定不动的定子与机体相连,安装在固定基础上。
当用在下运带式输送机上,液力制动器的转子(泵轮)与喊速器的高速轴联结,需要制动时,向循环圆内连续充液,泵轮与涡轮对工作液的相互作用,使泵轮的反扭矩形成对输送机的制动力矩。由液力制动器的特性公式可知,力矩M与转速n2成正比,所以随着转速的下降,制动力矩也急剧下降,靠液力制动器将不能实现最终停车。当带速降至1/3左右额定带速时,就用机械闸制动停车。由于此时速度己低,能量大减,不会造成"飞车"事故。该制动装置性能可靠,占用空间也不太大,可用于较大功率的输送机上。
结论
正常运转处于发电状态下的下运带式输送机无论从胶带张力还是可靠制动考虑,都应采取机尾驱动方式,在此基础上,根据现场实际情况,选择合适的制动装置,以实现软制动的目的。更多关于输送机安装维护知识请参看http://www.xinwujixie.com
⑧ 机械设计课程设计 带式输送机传动设计。全部家当,20分。好心人帮忙。急啊
我有,但是初始数据不一样的,需要你改改,要是你需要的话回我,我明晚10.30之后上线。
⑨ 带式输送机传送装置(二级展开式圆柱齿轮减速器)设计
那个,这种东西是没有人免费给你做的。很多人都靠代做课程设计挣钱的。