导航:首页 > 装置知识 > 滤波传动装置动态

滤波传动装置动态

发布时间:2022-05-16 05:25:16

Ⅰ 一阶电路动态分析信号发生器输出的信号是周期信号,在选择信号频率时要符合怎样的条件才能得到理想的结果

一、振动测量技术
1.1振动测量技术概论
振动测量在近代工程领域中有着极其重要的意义和地位,受到普遍的重现,很多部门和单位都在进行实践、探索和研究,新的测量方法和手段也在不断地涌现,这是因为振动是自然界和工程界广泛存在的现象,要利用它来造福人类离不开振动的测量。
振动测量的主要用途为:各种利用振动工作的机械(如振动给料、振动打夯、振动压路、振动输送等),振动筛、振动时效设备、动平衡机以及各种激振设备因其高效率低能耗在国民经济中得到广泛的应用。为研究其工作机理以提高生产效率和质量,须进行大量的振动测量。在试验室内对正在设计或批量生产的产品进行各种振动试验以考核产品承受振动的能力已成为很多企业的常规任务。
实际系统往往零部件繁多,结合面形状复杂,理论计算时要进行大量的简化假设,只能作粗略的力学模型,某些重要参数至今仍无完善的计算方法。用振动测量可以求得系统的动态特性参数。进而适应或修正力学模型,这就是结构动力学中的系统识别或参数识别课题。
效益巨大但造价昂贵的现代化大型系统,经常在高传递、大负载、高温、高压或高真空等恶劣条件下工作,它们的破坏会造成十分严重的后果,据国外统计,在重要产品的故障中有60%以上来自环境因素(包括温度、振动、冲击、砂尘等),而在诸环境因素中振动引起的故障几乎占30%。
各种工程机械、建筑结构、车辆船舶、飞机导弹等系统或自身在运转过程中产生振动,成为强烈的振源,或受到周围环境的激励产生振动。振动量级过大或持续时间较长,造成设备功能失效,严重时会造成事故。
利用振动测量手段对运行设备进行在线的状态监视或故障诊断是保证机组安全,及时消除隐患的重要措施之一。研究人体各器官的振动传递特性,设计能减振、隔振的座椅、驾驶舱、手持工具也必须依赖于振动测量。
综上所述,振动测量是一门综合性学科,内容丰富,研究的任务也很艰巨。
振动测量可分为被动式和主动式的振动试验。所谓主动、被动是指振动是否人为施加并且振源是否可控可测,即是否采用激振设备。另外振动和冲击,有时没有明确的界限,如瞬时振动亦称复杂脉冲,两者使用的传感器和仪器很多可通用。
振动测量的内容有以下儿点。
1.振动量的测量
振动量也称振动参数,一般指被测系统在选定点上选定方向的运动量(位移、速度、加速度等),原始数据为时间历程,经分析后可得时域统计值(如幅值、峰值、均方根值等)、相位、频率、频谱等。振动量有时也包括力、压力和角运动量(角位移、角速度、角加速度)和力矩等,但角运动量传感器的小型化目前还是难题。
2.系统动态特性的测量
动态特性参数很多,包括:物理参数,即对应于空间几何坐标的质量、刚度和阻尼;模态参数,即固有频率、振型、模态质量、模态刚度和模态阻尼:时域的单位脉冲响应函数,即实频域的频率响应函数,机械导纳或机械阻抗、传递率;复频域的传递函数等,在理论上它们可以互相换算。
3.环境模拟试验
环境可分为由自然力产生的自然环境和由机器运转产生的感生环境。环境模拟试验也称动强度试验,是将试验样品放在振动台上用规定的参数模拟环境进行激励,又可分为:
(1)严格模拟实际的或预期的振动环境。有的用多次测量得到的频谱按最大值或包络线作为规范谱,也有的用磁带机记录现场环境振动信号重放在振动台上。
(2)不需要真实模拟振动环境,只要按一定量级的正弦波或扫描正弦波或随机波进行激励。这种模拟较为简单。
(3)除了设计验证试验、研制试验、疲劳试验、运输包装试验外,目前一些重要或尖端工业采用应力筛选试验和综合环境可靠性试验(CEPT).在激振同时改变温度、高度等其他环境参数。
4.振动测量的仪器设备
振动测量所用的仪器设备很小,有单一功能的和多功能的,还有整体式和组合式之分,可根据不同要求进行不同的选择和组合。
(1)传感器,它将振动量转变成可以测量的物理量。目前最常用的是加速度传感器(加速度计),
(2)前置放大器,它主要有三种:用于把电荷转变成电压的电荷放大器;用于放大电压的电压放大器;用于高阻抗转变为低阻抗的阻抗变换器。目前已有将前置放大器直接装在传感器内的集成电路式加速度计,又有集阻抗变换、放大、归一化、滤波、供电多种功能于一体的仪器,称之为信号适调仪。
(3)信号传输、调制解调、多路采集、滤波、微积分。
(4)信号记录、显示、读数、绘图和打印。
(5)信号分析设备(频域分析,时域或时差域分析,幅值域分析等)。
(6)激振设备包括信号发生器、功率放大器和激振器(振动台)。
二、传感器的选择和使用
2.1.传感器的分类
振动传感器的作用原理可分为两个部分,即机械接收和机电变换,如图3.5.2所示。机械接收部分的作用是将被测机械量Xt(振动的位移、速度或加速度以及力和应变等)接收为另一个适合于机电变换的中间机械量Xt。机电变换部分再将Xt变换为电量E(电动势、电流、电荷量或电阻、电容、电感等电参量)。
传感器的机械接收原理分为两类,即相对式和惯性式。
(1)相对式:以传感器的外壳作为参数坐标,借助顶杆或间隙的变化(非接触式)直接接收机械振动。因此被测机械量与中间机械量为与频率无关的正比关系。即所谓零阶系统。具有相对式接收的传感器,它所测得的是以外壳为参考坐标的相对振动。
(2)惯性式:通过传感器的内部质量、弹簧和阻尼器构成的单自由度系统接收被测振动。被测机械量与中间机械量是用二阶微分方程联系,故称之为二阶系统。惯性式传感器所测得的是相对于惯性坐标系统的绝对振动,因此也称为绝对式振动传感器。
相对式传感器适用于测量结构上两部件的相对振动,即直接反映结构本身的弹性变形。这种传感器只有作为参考的外壳为静止时,才能测得绝对振动,故而,当需要测量结构上某点的绝对振动,而周围又不能建立静止参数坐标时,则只能选择惯性式传感器。如行驶车辆的振动、楼房的振动及地震等,都必须选择惯性式传感器来测量。
振动用传感器有多种多样,分类方法也不相同,可以从不同角度分类如下:
(1)按被测物理量分,有位移、速度、加速度等传感器。
(2)按工作原理分,有压电效应、压磁效应、磁阻效应等传感器。
(3)按能量转换机理分,有能量转换、能量控制(又称发电型和参量型)等传感器。
(4)按工作机理分,有结构型(被测参数变化引起传感器和结构变化而使输出电量变化,这种变化是利用物理学中场的定律和运动定律而构成)和物性型(利用某些物质的物理、化学性质随被测参数而变化的原理而构成)传感器。
(5)按转换过程可逆与否分,有:单向(仅能将被测量转换为电量,而不能反之)和双向(能在传感器的输人、输出端作双向传输的,都具备可逆性的传感器)传感器。
(6)按输出信号的形式分,有:模拟式和数字式等传感器。
三、传感器工作特性的测试
(1)频率响应和安装谐振频率的测试。振动传感器频率响应的校准目的,其一是八个确定传感器所能使用的频率范围,对正常的压电加速度传感器在低于其谐振频率1/5的频段内,其灵敏度偏差一般在5%内,而在低于其谐振频率1/3的频段内,其灵敏度偏差一般在10%以内:其二是检查加速度计有无异常响应,因为压电元件碎裂后,加速度传感器的电容量、灵敏度的变化不十分显著,而谐振频率会产生明显变化,因此谐振频率的校准是检验加速度计是否损坏的最精确的方法。
传感器或测量系统频率响应偏差的计算一般有两种方法,一种方法是在响应平坦的频段上选一频率,以此频率的灵敏度为准,计算其余各点与该点灵敏度的相对偏差,作为频响偏差。例如可选取f=100 Hz的点;另一种方法是将响应平坦的频段上诸点灵敏度取平均值,以平均灵敏度为准,计算各点的灵敏度相对偏差作为频率响应偏差,这种方法多用于标准传感器。
频率响应校准一般用正弦激励法,至少在七个频率点上进行,对于多轴向传感器一般只进行每个轴向2000 Hz以下的校准,对于重量较大的单轴传感器也只进行2000 Hz以下的频率响应校准。除七个频率响应校准外,尚需进行频率扫描,这是为了检查传感器在工作频段内,有无局部谐振。在扫描频段内,要求所用的振动台轴向正弦加速度失真小于5%,横向运动小于25%。若频率响应在工作频段内偏差超过10%,可能是传感器选择不当,或者是传感器性能有所变化,此时应当重新进行校准。
对非正弦测量,要使信号波形不失真,就要求相移正比于频率或为零度,而压电加速度传感器,因其阻尼通常小于临界阻尼的0.1,一般无需进行相频校准。如果传感器是连同滤波器和射极输出一起使用,则相位随频率而改变,往往要进行相频校准。
目前最常用的频率校准方法是正弦单点测量、频率扫描和随机激励校准,前两种一般不涉及相频,后一种可以和标准传感器进行相位比较校准。此外,还有一种简易的冲击法用于确定安装谐振频率。
(2)逐点正弦振动频率响应校准。它比比较法振动装置简单,就是将被校和标准传感器及它们的测量系统,背靠背地安装在校准台上,逐个频率以标准传感器为准进行相对校准。面对于高频标准传感器则情况复杂些,因为传感器要进行绝对法高频校准,它的外壳已经不能被当做刚体,而已经呈现了模态特征。
最简单的情况是标准传感器空载时的频率响应和安装谐振频率的测定。空载频率响应是指传感器传递面的振动加速度不变的情况下其电输出和频率之间的关系,例如可采用激光干涉法来保持传递加速度恒定的情况。
逐点法求取频响曲线的偏差如前所述或者以某一频率点为准,或者以平坦段的平均值为准来考虑问题。在实践中也有采用折线法、最小二乘法或直线拟合法,但这些方法都不合二阶单自由度的数学模型,或者计算太繁杂,所以比较实用的是自动扫描法。
(3)自动扫描校准法。它实际上也是一种比较校准。它的校准激励源是一个微型振动台,在台面内装有参考加速度计(或参考标准加速度传感器),这个加速度传感器的固有频率远远高于被校加速度计的固有频率。利用此加速度计线性频率段的输出作为台面激振力的控制信号,就可维持台面在任意频率下的加速度值为常数,则被校传感器的输出反映了随频率变化的情况。被校加速度计的输出经放大器传至电平记录仪即可绘出曲线,这条曲线就是幅频响应曲线。振动台由功放推动,而功放由压控振荡器激励,振荡器的频率扫描由电平记录仪通过软轴驱动,以实现频率同步;振荡器的输出电平受来自参考加速度计输出的控制。利用参考加速度计的输出电平使台面加速度值恒定,即实现所谓定加速度振动。一般来说,在台上被校的传感器质量不能太大,它应比振动台活动质量部分小近10倍左右。
这种频率响应校准幅值精度在5%~6%间(约0.5dB)。为改进其幅值精度,可采用步进式扫描数字记录的方法,精度可提高到3%(约0.3dB)。其工作原理为跳点式扫描信号发生器在控制器的控制下进行步进频率扫描,相当于每个步进点都进行一次比较法测量,因而精度有所提高。但和连续式相比,它是不连续点,是频率值和两台传感器(被校与内装标准)电压比较的步进值。
(4)随机振动传递函数法频率响应校准。正弦校准受正弦振动不纯、谐波失真、噪声等因素影响:并且它不能给出相位方面的任何信息;再者,受所用电测仪器和分析方法的限制,费时较长。对加速度计及配套的信号适调仪进行动态校准时,用数字测量系统和分析方法处理数据较为优越。该方法的关键设备是傅里叶分析仪,它可进行二通道的傅里叶分析和二通道间的传递函数分析,同时它还能产生具有相当带宽的白噪声,由它激励振动台,就使频响的测量和校准成为可能。标准传感器是经过激光干涉仪的绝对法仔细校准的,因而其频率响应的幅频特性和相频特性认为是已知的。如前所述,对于比较法的几种情况,若使用灵敏度比较仪,在f=160 Hz时,其总不确定度<1.0%;对于普通的背靠背比较法,在f=160 Hz内,总不确定度约<2%;全频段(20Hz~2kHz)内,总不确定度约在3%~5%;用傅里叶在白噪声情况下运作,则不确定度约为5%。为此,又提出了“切换法”和“替换法”两种自校正方法,使这种随机激励、快速傅里叶的分析法精度有较大的提高。
(5)传感器固有频率和安装共振频率的测试。传感器安装到被测试件上后,其谐振频率将有所变化,为此需要了解传感器安装共振频率。用做频率响应的方法,可以掌握传感器的谐振频率,但并不直接。不论是逐点、扫描,还是用随机激励方法,都要在振动台等专用设备上进行,显然比较慢。为此,可以用简单的方法或电测的方法对安装谐振频率进行粗测,以便可立即获得传感器的谐振频率。
1)安装在钢块上的传感器谐振频率的测试方法,又称敲击法,非常简单,仅适用于小阻尼的二阶系统的压电加速度传感器。方法是将加速度计安装在质量为其10倍的高弹性模量材料做成的立方体或细长比接近于1的圆柱体的砧子上,然后给砧子施加一瞬时冲击,持续时间应短于加速度计自然周期的1/3,用波形记录仪记录加速度输出的激振波形,然后根据时标确定加速度计的共振频率。
2)电测法。加速计通过它的电缆被悬挂着,并通过一个1000 pF电容耦合电压源激励。监测通过电容和通过加速度计的两个电压,并找出两者相位差90°时的频率,即为无阻尼固有频率的近似值,具体实施时,调节正弦信号发生器的频率,仔细观察接在示波器X端Y端的信号,得到李沙尔图时,就得到了近似的传感器固有频率。同样、可以制作一个质量块,也可近似获得传感器在各种质量下的安装固有频率。
值得指出的是,逐点做频率响应、扫描频率响应和随机频率响应校准时,使用设备昂贵,更主要的是由于振动台的频率限制,不可能做得很高。电测法使用简单,仪器通用,而且频率可以做得较高。电测法谐振频率测试精度取决于使用的各种仪器的精度,有时在谐振峰处,频率偏差可达数十或上百周。
(6)横向灵敏度的测试。理想的振动传感器只对轴向(z轴)振动有响应,而对于与z轴垂直的x·y平面内的振动无响应。实际传感器则做不到这点,其原因是多方面的,如机械加工、装配精度、装配时剪应力的存在、加速度计的惯性质量不平衡、晶体片的不均匀、结构的不平衡、横向电缆效应、电荷灵敏轴和电压灵敏轴不相重合等都会造成传感器具有横向效应,因而存在横向灵敏度。
加速度计传感器的横向灵敏度是频率的函数,低频时一般在3%以下,高频时在10%或更大。大多数传感器的横向灵敏度共振频率常在轴向共振频率的1/3处或略高。因而横向灵敏度的存在对加速度计的测试是有误差影响的。一般测试要求TSR<(3%~5%)。精确些的某些测试和校准则要求TSR不大于1%~2%。横向灵敏度测试的难点在于振动源本身的横向要很小,而且又要转动角度寻找最大横向灵敏度方向,又要变动频率,寻找横向共振的频率。
横向灵敏度测试方法有横向夹具法、共振梁法、共振架法、簧片梁法、低频大振幅法、向量测量法、横向补偿加速度法等,这些测试法的具体方法这里不再详述。
来源:《力学环境试验技术》部分

Ⅱ FANUC 0系统怎么设定伺服参数

FANUC0系统伺服参数设定与调整:

通常情况下,数字伺服的调整应通过数控系统进行,数字伺服的调整可分为初始化与动态性能调整两部分。

1.FANUC0系统数字伺服的初始化

当数控系统的伺服驱动更换,或因为更换电池等原因,使伺服参数出现错误时,必须对伺服系统进行初始化处理与重新调整。数字伺服的初始化步骤如下。

(1)初始化的准备在初始化数字伺服前,应首先确认以下基本数据,以便进行初始化工作。

1)数控系统的型号。

2)伺服电动机的型号、规格、电动机代码。

3)电动机内装的脉冲编码器的型号、规格。

4)伺服系统是否使用外部位置检测器件,如使用,需要确认其规格型号。

5)电动机每转对应的工作台移动距离。

6)机床的检测单位。

7)数控系统的指令单位。

(2)初始化的步骤数字伺服的初始化按以下步骤进行:

1)使数控系统处在“紧停”状态。

2)设定系统的参数写入为“允许”状态。

3)操作系统,显示伺服参数画面。对于不同的系统,其操作方法有所区别,具体如下:

对于FANUC0TC,0MC,0TD,0MD系统,操作步骤为:

①将机床参数PRM389bit0设定为“1”,使伺服参数页面可以在CRT上显示。

②关机,使PRM389bit0的设定生效。

③通过按系统操作面板上的“PARAM”(参数显示)键(按键可能需要数次,或直接通过系统显示的“软功能键”进行选择),直到出现图5-18所示的页面显示。

对于FANUC15系列系统:按“SERVICE”键数次,直到出现图5-18所示的页面显示;

对于FANUC16/18/20/21系列系统,操作步骤为:

①将机床参数PRM3111bit0设定为“1”,使伺服参数页面可以在CRT上显示。

②关机,使PRM3111bit0的设定生效。

③按“SYSTEM”键,选择“系统”显示页面。

④按次序依次操作“软功能键”〖SYSTEM〗→〖>〗→〖SV-PRM〗,使图5-18所示的页面显示。图5-18数字伺服初始化页面(附图)。

4)根据系统的要求设定伺服系统的指令单位(INITIALSETBITS的bit0);设定初始化参数(INITIALSETBITS的bitl)为初始化方式(见表5-17)。

5)根据所使用的电动机,输入电动机代码参数“MotorIDNo”。

6)根据电动机的编码器输出脉冲数,设定编码器参数AMR,在通常情况下,使用串行口脉冲编码器时,AMR设定为00000000。

7)根据机床的机械传动系统设计,设定指令脉冲倍乘比CMR。

8)根据机床的机械传动系统设计与使用的编码器脉冲数,设定伺服系统的“电子齿轮比”参数“Feedgear”的N/M的值。

9)设定电动机转向参数“DIRECTIONSet”,正转时为111,反转时为-111。

10)设定伺服系统的速度反馈脉冲数“VelocityPulseNo”与位置反馈脉冲数“PositionPulseNo”。

在通常情况下,对于半闭环系统,可以按表5-17进行设定;当采用全闭环系统时,设定参数有所区别,可参见有关手册进行,在此从略。

表5-17速度/位置反馈脉冲数的设定表:

INITIALSETBITSbit0=0

INITIALSETBITSbit1=0

VelocityPulseNO8192

PositionPulseNO12500

11)根据编码器脉冲数、丝杠螺距、减速比等参数设定伺服系统的参考计数器容量“Refcounter”。

12)关机,再次开机。

2.FANUC数字伺服的参数调整与动态优化:

当数字伺服参数设定错误时,将发生数字伺服报警,这时必须调整参数。报警的内容与原因以及应调整的参数见表5-18。

表5-18数字伺服参数报警及调整上览表:

报警内容报警原因应调整的参数

FANUC0C,FANUC15,FANUC16/18/20/21

POAl(观察器)溢出POAI参数被设定为08*4718572047

N脉冲抑制电平溢出N脉冲抑制参数设定太大8*0318082003

前馈参数溢出前馈参数超过了327678*6819612068

位置增益溢出位置增益参数设定太大51718251825

位置反馈脉冲数溢出位置反馈脉冲数大于131008*0018042000

电动机代码不正确电动机代码设定错误8*2018742020

轴选择错误坐标轴设定错误269~2731023

其他报警位置反馈脉冲数≤08*2418912024

速度反馈脉冲数≤08*2318762023

旋转方向=08*2218792022

电子齿轮比设定(N/M)≤08*84/8*851977/19782084/2085

电子齿轮比(N/M)>18*84/8*851977/19782084/2085

(1)数字伺服的功能概述FANUC数字伺服采用了部分新型的控制功能,它用于调整伺服系统的动态特性,这些功能包括:

1)停止时的振荡抑制功能(N脉冲抑制功能)。N脉冲抑制功能的作用是消除停止时的振荡。由于伺服系统采用了闭环控制,当电动机不转时,当速度反馈出现很小的偏移时,经过速度环的放大,就可能引起电动机的振荡。使用N脉冲抑制功能,可能在电动机停止时,从速度环比例增益中消除速度反馈脉冲的偏移量,避免电动机停止时的振荡。

2)机械谐振抑制功能。在FANUC数字伺服中,用于机械谐振抑制的功能主要有:250µs加速反馈功能、机械速度反馈功能、观察器功能、转矩指令滤波功能、双位置反馈功能等。

250µs加速反馈功能是利用电动机的速度反馈信号乘以加速反馈增益,实现对转矩的补偿,从而对速度环的振荡进行抑制的功能,它对由于弹性联轴器联结或负载惯量的原因引起的50~150Hz的振荡具有抑制作用。

机械速度反馈功能可以在电动机与机床间连接刚性不足时,将机床本身的速度反馈加入速度环中,从而提高速度环的稳定性。

观察器功能用于消除机械系统的高频谐振干扰,提高速度环的稳定性。在数字伺服系统中,控制系统的状态变量为速度与扰动转矩,观察器的功能是将预测的速度状态变量用于反馈。由于观察器预测的速度量中无实际速度的高频分量,因此,利用本功能可以消除速度环的高频振荡。

转矩滤波器的作用是对转矩指令进行低通滤波,消除转矩指令中的高频分量,从而抑制机械系统的高频谐振。

双位置反馈功能用于全闭环系统,它可以使全闭环系统获得与半闭环系统同样的稳定性。

3)超调补偿功能。超调补偿功能是通过数字伺服系统的不完全积分器,使得系统的转矩指令满足起动转矩指令TCMDl>静摩擦转矩>动摩擦转矩>停止时的转矩指令TCMD2的关系式,从而消除了系统的超调。

4)形状误差抑制功能。在FANUC数字伺服中,用于抑制形状误差的功能主要有位置前馈、反向间隙加速两种功能。

位置前馈是通过前馈控制,提高了系统的动态响应速度,从而减小系统的位置跟随误差,抑制加工的形状误差的功能。

反向间隙加速是通过提高系统反向间隙补偿速度,减小了由于机械系统间隙引起的位置滞后,从而抑制加工的形状误差的功能。

通过合理充分利用上述功能,选择合理的伺服参数,可以使伺服系统获得最佳的静、动态性能。

(2)数字伺服的参数调整当数字伺服参数设定不合适时,伺服系统的动态性能将变差,严重时甚至会使系统产生振荡与超调,这时必须进行参数的调整与优化。对于不同的故障,伺服系统参数的调整与优化步骤如下。

1)停止时发生振荡。伺服系统停止时可能发生的振荡有高频振荡与低频振荡两种,对于停止时的振荡,参数调整的步骤与内容见表5-19。

表5-19数字伺服参数调整一览表1

现象处理应调整的参数

FANUC0C,FANUC15,FANUC16/18/20/21

高频振荡:

1.降低速度环比例增益(PK2V)8*4418562044

2.降低负载惯量比8*2118752021

3.使用250µs加速功能8*6618942066

4.使用N脉冲抑制功能8*0318082003

低频振荡:

5.提高负载惯量比8*2118752021

6.降低速度环积分增益(PKlV)8*4318552043

7.提高速度环比例增益(PK2V)8*4418562044

2)移动时发生振荡。伺服系统移动时可能发生的振荡,亦有高频振荡与低频振荡两种,对于移动时的振荡,参数调整的步骤与内容见表5-20。

表5-20数字伺服参数调整一览表2:

现象处理应调整的参数

FANUC0C,FANUC15,FANUC16/18/20/21

高频振荡:

1.降低速度环比例增益(PK2V)8*4418562044

2.降低负载惯量比8*2118752021

3.使用250µs加速功能8*6618942066

低频振荡:

4.提高负载惯量比8*2118752021

5.降低速度环积分增益(PKlV)8*4318552043

6.提高速度环比例增益(PK2V)8*4418562044

7.调整TCMD波形应使用调整板进行

3)超调。对于伺服系统移动时超调,参数调整的步骤与内容见表5-21。

表5-21数字伺服参数调整一览表3:

现象处理应调整的参数

FANUC0C,FANUC15,FANUC16/18/20/21

超调:

1.使PI控制生效(PIEN)8*0318082003

2.提高负载惯量比8*2118752021

3.使用超调抑制功能8*03/8*45/8*771808/1875/19702003/2045/2077

4.提高速度环不完全积分增益(PK3V)8*4518752045

5.调整TCMD波形应使用调整板进行

4)出现圆弧插补象限过渡过冲现象。对于伺服系统圆弧插补象限过渡过冲现象,参数调整的步骤与内容见表5-22。

表5-22数字伺服参数调整一览表4:

现象处理应调整的参数

FANUC0C,FANUC15,FANUC16/18/20/21

圆弧插补象限过渡过冲:

1.使PI控制生效(PIEN)8*0318082003

2.调整反向间隙值53518511851

3.使用反向间隙加速功能8*0318082003

4.使用两级反向间隙加速功能——19572015

5.调整VCMD波形应使用调整板进行

Ⅲ 中频炉中的电抗器的主要作用是什么呢请帮一下忙

电抗器的主要作用是有稳压。抗涌流。消除谐波。

Ⅳ 牵引变流器直流环节lc滤波器的原因和作用

在电力牵引交流传动系统中,由于牵引网单相供电和单相PWM整流器的工作特性,牵引变流器直流环节的电压会产生脉动。高速动车组为实现轻量化,其牵引变流器取消了LC谐振滤波电路,导致直流环节中脉动电压无法被有效的吸收,影响牵引变流器的稳定运行。鉴于此,本文以无LC谐振滤波电路的牵引变流器为对象,研究脉动电压对牵引变流器影响的抑制策略。首先,研究了脉动电压产生的机理,并定量分析了脉动电压对网侧电流和牵引电机的影响。其次,为抑制网侧低次谐波电流,电压外环采用直流侧电压动态补偿和后置数字滤波器的方法,研究了低通滤波器、陷波器和滤波器组合的参数设计及离散方法,滤除给定电流中的脉动分量。

Ⅳ 谐波的产生原因与治理方法

谐波的产生原因有很多,例如发电源质量不高产生谐波、输配电系统产生谐波、用电设备产生谐波等等。谐波的产生影响着企业的正常生产运行,加速了设备的老化,危害着生产安全与稳定、浪费着电能。。。所以谐波的治理是很重要的问题。
谐波治理的方法大体分为有源滤波和无源滤波两种,具体的治理方案和所需产品规格也是因项目而异的,遇到这方面的难题最好还是找个靠谱一点的厂商来咨询解决方案。

Ⅵ 逻辑无环流可逆直流调速系统设计

设计任务书
1.题目:逻辑选择无环流直流调试系统
2.直流电动机的额定参数:
型号Z2—41 它励
Pnom=3KW Unom=220V Inom=17.2A nnom=1500rpm Uφnom=220V Iφnom=0.573A
3.其它的已知参数:
① 折合到电动机轴上的总飞轮惯量GD2=5.6Nm2
② 变流器的内阻 Rrec=1.35Ω
③ 电枢电阻 Ra=1.4Ω
④ 平波电抗器电阻 Rpl=0.5Ω
⑤ 电枢回路总电感 L=40mH
⑥ Ce=(Unom–InomRa)/nnom Vmin/r
⑦ 过载倍数 λ=1.5
⑧ 各调节器限幅值及给定值 Unm*=±10V
Uim*=±10V
电流调节器的限幅值为±8V
速度反馈滤波Tom=10ms
电流反馈滤波Toi=2ms
4.系统的技术性能指标要求:
稳态指标:稳态无静差
动态指标:δi≤5% δn≤10%

前 言
随着电力传动装置在现代化工业生产中的广泛应用,以及对其生产工艺、产品质量的要求不断提高,需要越来越多的生产机械能够实现制动调速,因此我们就要对这样的自动调速系统作一些深入的了解和研究。
本设计的课题是逻辑选触无环流直流调速系统。该系统属于模拟系统,虽然不是很先进,但仍然在工矿企业中有着广泛的应用,本设计有较高的集成度,大量采用了LM和CMOS、HTL集成器件,使模拟数字集成电子电路的各种型号的运放. 逻辑单元,时序单元,触发器,光电器件纷呈在电路版上,同时也大量的使用分立元件等特点。
本文将先分析主回路及计算,论述其工作原理,接着讲解各个控制单元,本系统的控制线路采用速度、电流、双闭环调速系统。此外,为了控制给定信号的加速度,系统中又加入了一个给定积分器,两个环节的调节器均采用PI调节器
在本论文的最后,对系统进行动态校正和工作过程各阶段进行较详细的图文讨论。本系统采用的是串联校正。
本设计采用逻辑选触无环流调速系统,投资少,调整方便,较符合实际需要,并且使用起来也比较的安全和方便,出故障时能及时察觉和排除。
由于作者水平有限,时间仓促,望指导老师,专家同仁多加批评指正。

作者

目 录
第一章 系统主回路设计 5
§1-1系统主回路的论述、比较及选择 5
一.三相半波与三相桥式的比较 6
二.电枢反接可逆线路与励磁反接可逆线路的比较 6
§1-2 主回路的工作原理 7
一.关于三相桥式反并联 7
二.主回路的工作原理 7
§1-3 主回路各元件的参数的选择及计算 8
一、整流变压器额定参数的计算与选择 8
二、晶闸管和整流管的选择及计算 9
三、平波电抗器的电感量的选择及计算 10
四、闸管的保护装置及其计算 11
第二章 系统控制单元论述 17
§2-1可逆调速系统的方案 17
§2-2逻辑无环流可逆系统 17
§2-3 控制单元的论述 20
第三章 操作回路工作原理 35
第四章 系统的工作过程分析 37
§4-1 双闭环调速系统的组成 37
§4-2调速系统的工作原理及静态特性 38
一、系统的组成过程中应注意的两个问题 38
二、系统的静态特性 40
§4-3 调速系统的动态特性 40
一、双闭环调速系统突加给定时的动态响应 40
二.双闭环调速系统的抗扰性能 44
第五章 系统的动态校正 46
§5-1 二阶及三阶最佳校正 46
一、二阶最佳校正 46
二、三阶最佳校正 47
§5-2 电流环的设计 47
§5-3 转速环的设计 49
附件一 环流直流调速实验装置元器件材料明细表 51
主回路,励磁回路及操作电路部分 51
脉冲功放部分 53
调节大板部分 54
附件二 参考文献 59
附件三 图纸 60

只有这么多,自己找吧。

http://paper.studa.com/Search.asp
参考资料:http://paper.studa.com/Search.asp

Ⅶ 谐波保护器吸收谐波的原理是什么谢谢

从严格的意义来讲,是电流中所含有的频率为基波的整数倍的电量,一般是指对周期性的非正弦电量进行傅里叶级数分解,其余大于基波频率的电流产生的电量。

在配电系统里的设备,与存在的电容 和电感( 变压器,电抗线圈等) 形成共振电路。后者能够被系统谐波激励而成为谐振。配电系统谐波的一个原因是变压器铁芯非线性磁化的特性。在这种情况下主要的谐波是3 次的,在全部导体内与单相分量具有相同的长度。

(7)滤波传动装置动态扩展阅读

谐波的危害

1、对旋转的发电机、电动机而言,由于谐波电流或谐波电压在定子绕组、转子回路及铁心中产生附加损耗,从而降低发电、输电及用电设备的效率。更为严重的是,谐波振荡容易使汽轮发电机产生振荡力矩,可能引起机械共振,造成汽轮机叶片扭曲及产生疲劳破坏。

2、谐波电压在许多情况下能使正弦波变得更尖,不仅导致电机、变压器、电容器等电气设备的磁滞及涡流损耗增加,而且使绝缘材料承受的电应力增大。

3、由于电机、变压器、电力电容器、电缆等负载处于经常的变动之中,极易与电网中含有的大量谐波源构成串联或并联的谐振条件,形成谐波振荡,产生过电压或过电流,危及电机、变压器等负载及电力系统的安全运行,引发输配电事故的发生。

4、电网谐波将使测量仪表、计量装置产生误差,达不到正确指示及计量。断路器开断谐波含量较高的电流时,断路器的开断能力将大大降低,造成电弧重燃,发生短路,甚至断路器爆炸。

5、另外,由于谐波的存在,易使电网的各类保护及自动装置产生误动或拒动以及在通信系统内产生声频干扰,严重时将威胁通信设备及人身安全等。

Ⅷ PLC的断电保持功能是什么意思啊

对程序及动态数据进行电池后备,当停电时利用后备电池供电,保持有关信息和状态数据不丢失。

为了提高输入信号的信噪比,常采用软件数字滤波来提高有用信号真实性。对于有大幅度随机干扰的系统,采用程序限幅法,即连续采样5次,若某一次采样支援远大于其他几次采样的幅值,那么就舍取之。

对于流量、压力、液面、位移等参数,往往在一定范围内频繁波动,则采用算术平均法。即用n次采样的平均值来代替当前值。一般认为:流量n=12,压力n=4最合适。

(8)滤波传动装置动态扩展阅读

PLC控制器的电源在整个系统中起着十分重要得作用。如果没有一个良好的、可靠的电源系统是无法正常工作的,因此PLC的制造商对电源的设计和制造也十分重视。

PLC控制器系统的正常供电电源均由电网供电。由于电网覆盖范围广,它将受到所有空间电磁干扰而在线路上感应电压和电路。尤其是电网内部的变化,如开关操作浪涌、大型电力设备起停、交直流传动装置引起的谐波、电网短路暂态冲击等,都通过输电线路传到电源原边。

Ⅸ 变频器配备电抗器有必要吗,怎么选电抗器更耐用呢

你好
变频器在使用是有必要配备电抗器的,而电抗器的使用有以下两种功能方式:
1. 进线电抗器是用来抗干扰的,可以抑制变频器对电网的干扰,也可以防止变频器和其它设备之间互相干扰。主要目的是为了减小变频器的整流单元和整流/回馈单元的谐波电流,同时也减小了换向缺口。电抗器的作用同电网短路功率和传动装置功率之比有关。电网短路功率同传动装置功率之比推荐大于33:1。进线电抗器也能限制由于电源电位的突降(如由于补偿设备或接地故障)而产生的电流冲击。
选择进线电抗器需考虑的因素
1)进线电抗器的电流按照装置的进线电流选择即可,也就是按照变频器最大输入电流来选择进线电抗器的工作电流;
2)进线电抗器压降值:当变频器的整流单元为不可回馈的整流装置时,进线电抗器选择2%电压降;当变频器的整流单元为可回馈的整流装置时,应使用4%的网侧进线电抗器。

2. 出线电抗器是用来滤波用的,优化变频器输出的交流电波形,一般变频的载波频率在2~10kHz之间,滤波可以使得输出波形更平滑,减少损耗!另外还可以减小变频器出线侧的对地电容,延长变频器到电机侧的电缆长度。如果电动机距离变频器不是太远可以不加,如果超过100米就需要加!

Ⅹ 有关电力电子及电力传动研究动态。

随着电力电子技术及大规模集成电路、微处理器控制技术的发展,功率半导体电力变换技术也得到迅速发展。20世纪60年代后半段开始,功率半导体器件从SCR(普通晶闸管)、GTO(门极可关断晶闸管)、BJT(双极型晶体管)、MOSFET(金属氧化硅场效应管)、SIT(静电感应晶体管)、SITH(静电感应晶闸管)、MGT(MOS控制晶体管)、MCT(MOS控制晶闸管)发展到IGBT(绝缘栅双极型晶体管)、HVIGBT(耐高压IGBT)。器件的每一次更新都为电力变换技术的发展注入新的活力。作为联系弱电与强电的纽带,电力变换技术提供了控制电功率流动与改变电能形态的有力手段,输出适合其负载的最佳电压和电流,以达到满足工业技术要求和节约能源的目的。电气传动是电力变换技术最重要的应用领域之一。电气传动装置的应用范围小至机器人中精密的、高精度的位置控制,大至流量可调的大型水泵、风机的调速驱动,功率范围从数瓦至数兆瓦。电力电子变流器作为输入功率与电动机之间的接口设备,控制电动机的转速或转子位置,以满足被电动机驱动的机械设备的需要。随着交流电动机调速理论的突破和调速装置(主要是变频器)性能的完善,电动机的调速从直流发电机-电动机组调速、晶闸管可控整流器直流调压调速逐步发展到交流电动机变频调速,而且随着控制技术和控制手段的不断提高,变频调速又由VVVF(Variable Voltage Variable Frequency)控制的PWM(Pulse Width Molation)变频调速发展到矢量控制(Vector or Field-Oriented Control)、直接转矩控制(Direct Torque and Flux Control——DTC)变频调速,提高了变频器的动、静态特性,使得交流电动机变频调速性能大大提高。在高性能的变频调速控制系统里,转速(位置)闭环控制环节是必不可少的,通常采用与电动机同轴安装的机械式转子速度(位置)传感器,如光电编码器,旋转变压器等,但这些机械式转子速度(位置)传感器有机械安装、使用环境、电缆连接等诸多应用限制,其可靠性受到很大影响。为了克服机械式转子速度(位置)传感器安装带来的种种缺陷、简化硬件系统、减少设备故障率,在矢量控制、直接转矩控制变频调速的基础上又发展了无速度(位置)传感器的变频调速。近年来,这项研究已经成为交流传动领域的一个新的热点问题。

交流传动系统之所以发展得如此迅速,和一些关键性技术的突破性进展有关。它们是功率半导体器件(包括半控型和全控型)的制造技术、基于电力电子电路的电力变换技术、交流电动机控制技术以及微型计算机和大规模集成电路为基础的全数字化控制技术。为了进一步提高交流传动系统的性能,国内外有关研究工作正围绕以下几个方面展开:

1. 采用新型功率半导体器件和脉宽调制(PWM)技术
功率半导体器件的不断进步,尤其是新型可关断器件,如BJT(双极型晶体管)、MOSFET(金属氧化硅场效应管)、IGBT(绝缘栅双极型晶体管)的实用化,使得开关高频化的PWM技术成为可能。目前功率半导体器件正向高压、大功率、高频化、集成化和智能化方向发展。典型的电力电子变频装置有电压型交-直-交变频器、电流型交-直-交变频器和交-交变频器三种。电流型交-直-交变频器的中间直流环节采用大电感作储能元件,无功功率将由大电感来缓冲,它的一个突出优点是当电动机处于制动(发电)状态时,只需改变网侧可控整流器的输出电压极性即可使回馈到直流侧的再生电能方便地回馈到交流电网,构成的调速系统具有四象限运行能力,可用于频繁加减速等对动态性能有要求的单机应用场合,在大容量风机、泵类节能调速中也有应用。电压型交-直-交变频器的中间直流环节采用大电容作储能元件,无功功率将由大电容来缓冲。对于负载电动机而言,电压型变频器相当于一个交流电压源,在不超过容量限度的情况下,可以驱动多台电动机并联运行。电压型PWM变频器在中小功率电力传动系统中占有主导地位。但电压型变频器的缺点在于电动机处于制动(发电)状态时,回馈到直流侧的再生电能难以回馈给交流电网,要实现这部分能量的回馈,网侧不能采用不可控的二极管整流器或一般的可控整流器,必须采用可逆变流器,如采用两套可控整流器反并联、采用PWM控制方式的自换相变流器(“斩控式整流器”或“PWM整流器”)。网侧变流器采用PWM控制的变频器称为“双PWM控制变频器”,这种再生能量回馈式高性能变频器具有直流输出电压连续可调,输入电流(网侧电流)波形基本为正弦,功率因数保持为1并且能量可以双向流动的特点,代表一个新的技术发展动向,但成本问题限制了它的发展速度。通常的交-交变频器都有输入谐波电流大、输入功率因数低的缺点,只能用于低速(低频)大容量调速传动。为此,矩阵式交-交变频器应运而生。矩阵式交-交变频器功率密度大,而且没有中间直流环节,省去了笨重而昂贵的储能元件,它为实现输入功率因数为1、输入电流为正弦和四象限运行开辟了新的途径。
随着电压型PWM变频器在高性能的交流传动系统中应用日趋广泛,PWM技术的研究越来越深入。PWM利用功率半导体器件的高频开通和关断,把直流电压变成按一定宽度规律变化的电压脉冲序列,以实现变频、变压并有效地控制和消除谐波。PWM技术可分为三大类:正弦PWM、优化PWM及随机PWM。正弦PWM包括以电压、电流和磁通的正弦为目标的各种PWM方案。正弦PWM一般随着功率器件开关频率的提高会得到很好的性能,因此在中小功率交流传动系统中被广泛采用。但对于大容量的电力变换装置来说,太高的开关频率会导致大的开关损耗,而且大功率器件如GTO的开关频率目前还不能做得很高,在这种情况下,优化PWM技术正好符合装置的需要。特定谐波消除法(Selected Harmonic Elimination PWM——SHE PWM)、效率最优PWM和转矩脉动最小PWM都属于优化PWM技术的范畴。普通PWM变频器的输出电流中往往含有较大的和功率器件开关频率相关的谐波成分,谐波电流引起的脉动转矩作用在电动机上,会使电动机定子产生振动而发出电磁噪声,其强度和频率范围取决于脉动转矩的大小和交变频率。如果电磁噪声处于人耳的敏感频率范围,将会使人的听觉受到损害。一些幅度较大的中频谐波电流还容易引起电动机的机械共振,导致系统的稳定性降低。为了解决以上问题,一种方法是提高功率器件的开关频率,但这种方法会使得开关损耗增加;另一种方法就是随机地改变功率器件的导通位置和开关频率,使变频器输出电压的谐波成分均匀地分布在较宽的频带范围内,从而抑制某些幅值较大的谐波成分,以达到抑制电磁噪声和机械共振的目的,这就是随机PWM技术。

2. 应用矢量控制技术、直接转矩控制技术及现代控制理论
交流传动系统中的交流电动机是一个多变量、非线性、强耦合、时变的被控对象,VVVF控制是从电动机稳态方程出发研究其控制特性,动态控制效果很不理想。20世纪70年代初提出用矢量变换的方法来研究交流电动机的动态控制过程,不但要控制各变量的幅值,同时还要控制其相位,以实现交流电动机磁通和转矩的解耦,促使了高性能交流传动系统逐步走向实用化。目前高动态性能的矢量控制变频器已经成功地应用在轧机主传动、电力机车牵引系统和数控机床中。此外,为了解决系统复杂性和控制精度之间的矛盾,又提出了一些新的控制方法,如直接转矩控制、电压定向控制等。尤其随着微处理器控制技术的发展,现代控制理论中的各种控制方法也得到应用,如二次型性能指标的最优控制和双位模拟调节器控制可提高系统的动态性能,滑模(Sliding mode)变结构控制可增强系统的鲁棒性,状态观测器和卡尔曼滤波器可以获得无法实测的状态信息,自适应控制则能全面地提高系统的性能。另外,智能控制技术如模糊控制、神经元网络控制等也开始应用于交流调速传动系统中,以提高控制的精度和鲁棒性。

3. 广泛应用微电子技术
随着微电子技术的发展,数字式控制处理芯片的运算能力和可靠性得到很大提高,这使得全数字化控制系统取代以前的模拟器件控制系统成为可能。目前适于交流传动系统的微处理器有单片机、数字信号处理器(Digital Signal Processor——DSP)、专用集成电路(Application Specific Integrated Circuit——ASIC)等。其中,高性能的计算机结构形式采用超高速缓冲储存器、多总线结构、流水线结构和多处理器结构等。核心控制算法的实时完成、功率器件驱动信号的产生以及系统的监控、保护功能都可以通过微处理器实现,为交流传动系统的控制提供很大的灵活性,且控制器的硬件电路标准化程度高,成本低,使得微处理器组成的全数字化控制系统达到了较高的性能价格比。

4. 开发新型电动机和无机械传感器技术
交流传动系统的发展对电动机本体也提出了更高的要求。电动机设计和建模有了新的研究内容,如三维涡流场的计算、考虑转子运动及外部变频供电系统方程的联解、电动机阻尼绕组的合理设计及笼条的故障检测等。为了更详细地分析电动机内部过程,如绕组短路或转子断条等问题,多回路理论应运而生。随着20世纪80年代永磁材料特别是钕铁硼永磁的发展,永磁同步电动机(Permanent-Magnet Synchronous Motor——PMSM)的研究逐渐热门和深入,由于这类电动机无需励磁电流,运行效率、功率因数和功率密度都很高,因而在交流传动系统中获得了日益广泛的应用。此外,开关变磁阻理论使开关磁阻电动机(Switched Reluctance Motor——SRM)迅速发展,开关磁阻电动机与反应式步进电动机相类似,在加了转子位置闭环检测后可以有效地解决失步问题,可方便地起动、调速或点控,其优良的转矩特性特别适合于要求高静态转矩的应用场合。
在高性能的交流调速传动系统中,转子速度(位置)闭环控制往往是必需的。为了实现转速(位置)反馈控制,须用光电编码器或旋转变压器等与电动机同轴安装的机械速度(位置)传感器来实现转子速度和位置的检测。但机械式的传感器有安装、电缆连接和维护等问题,降低了系统的可靠性。对此,许多学者开展了无速度(位置)传感器控制技术的研究,即利用检测到的电动机出线端电量(如电机电压、电流),估测出转子的速度、位置,还可以观测到电动机内部的磁通、转矩等,进而构成无速度(位置)传感器高性能交流传动系统。该技术无需在电动机转子和机座上安装机械式的传感器,具有降低成本和维护费用、不受使用环境限制等优点,将成为今后交流电气传动技术发展的必然趋势。

阅读全文

与滤波传动装置动态相关的资料

热点内容
奥维地图如何解除绑定设备 浏览:648
小米路由3c可以连接多少设备 浏览:354
拉瓦锡实验装置原理是什么 浏览:600
新乡创丰机械有限公司招聘电话是多少 浏览:977
北京南区有哪些建材五金市场 浏览:894
常熟通润工具箱招聘 浏览:888
四川五金机电气配城 浏览:232
数控机床纺织机械带传动是什么 浏览:910
液化气储气罐自动喷淋装置 浏览:454
内径8外径31厚7的是什么轴承 浏览:757
新福克斯仪表怎么设置 浏览:512
收设备款销项是多少 浏览:177
机械二尖瓣故障怎么办 浏览:223
轮胎胎面自动抬取装置 浏览:324
过氧化氢分解反应实验装置 浏览:546
冷库制冷机一天多少度电 浏览:48
obu设备是什么怎么供电 浏览:222
电脑里没有便携设备怎么办 浏览:874
常见能量装置控制的实验 浏览:562
无机结合料室仪器有哪些 浏览:174