导航:首页 > 装置知识 > 迈克尔逊实验装置仪器

迈克尔逊实验装置仪器

发布时间:2022-05-14 03:38:07

A. 用迈克尔逊干涉仪测量光波的波长

迈克尔逊分光干涉仪,把一束光利用双棱镜分成两束,其中一束经过一次反射回到主光路,两束光产生相位差,从而产生了干涉。

测量前调粗动和微动可以使后边的干涉条纹形状不一样,光程差是0的时候,条纹是直线,不等于0的时候,条纹有可能是双曲或是椭圆的,对结果到没什么影响。

后面是用逐差法做的,SM-100型迈克尔逊干涉仪做这个实验的时候,条纹每变化50个的时候记录一次数据,开始没把那俩轮调0,貌似后边会不够用。

因为一般是要记10个数据,也就是条纹变化有450个,如果轮子在中间,调着调着可能齿轮就到底了,数据却还没记满。

(1)迈克尔逊实验装置仪器扩展阅读:

迈克尔逊干涉仪的最著名应用即是它在迈克尔逊-莫雷实验中对以太风观测中所得到的零结果,这朵十九世纪末经典物理学天空中的乌云为狭义相对论的基本假设提供了实验依据。除此之外,由于激光干涉仪能够非常精确地测量干涉中的光程差,在当今的引力波探测中迈克尔逊干涉仪以及其他种类的干涉仪都得到了相当广泛的应用。

如果要观察白光的干涉条纹,臂基本上完全对称,也就是两相干光的光程差要非常小,这时候可以看到彩色条纹;假若M1或M2有略微的倾斜,就可以得到等厚的交线处(d=0)的干涉条纹为中心对称的彩色直条纹,中央条纹由于半波损失为暗条纹。

B. 迈克尔逊干涉仪的历史

迈克尔逊干涉仪的历史以太漂移实验迈克尔逊的名字是和迈克尔逊干涉仪及迈克尔逊-莫雷实验联系在一起的,实际上这也是迈克尔逊一生中最重要的贡献。在迈克尔逊的时代,人们认为光和一切电磁波必须借助绝对静止的“以太”进行传播,而“以太”是否存在以及是否具有静止的特性,在当时还是一个谜。有人试图测量地球对静止“以太”的运动所引起的“以太风”,来证明以太的存在和具有静止的特性,但由于仪器精度所限,遇到了困难。麦克斯韦曾于1879年写信给美国航海年历局的D.P.托德,建议用罗默的天文学方法研究这一问题。迈克尔逊知道这一情况后,决心设计出一种灵敏度提高到亿分之一的方法,测出与有关的效应。
1881年他在柏林大学亥姆霍兹实验室工作,为此他发明了高精度的迈克尔逊干涉仪,进行了著名的以太漂移实验。他认为若地球绕太阳公转相对于以太运动时,其平行于地球运动方向和垂直地球运动方向上,光通过相等距离所需时间不同,因此在仪器转动90°时,前后两次所产生的干涉必有0.04条条纹移动。迈克尔逊用最初建造的干涉仪进行实验,这台仪器的光学部分用蜡封在平台上,调节很不方便,测量一个数据往往要好几小时。实验得出了否定结果。

C. 迈克尔逊干涉仪

很努力的在找。。。
给个满意吧。。 迈克尔逊干涉仪,是1883年美国物理学家迈克尔逊和莫雷合作,为研究“以太”漂移而设计制造出来的精密光学仪器。它是利用分振幅法产生双光束以实现干涉。通过调整该干涉仪,可以产生等厚干涉条纹,也可以产生等倾干涉条纹。主要用于长度和折射率的测量,若观察到干涉条纹移动一条,便是M2的动臂移动量为λ/2,等效于M1与M2之间的空气膜厚度改变λ/2。在近代物理和近代计量技术中,如在光谱线精细结构的研究和用光波标定标准米尺等实验中都有着重要的应用。利用该仪器的原理,研制出多种专用干涉仪。
。。。。。。。。。。。。。。。。。我就是传说中的分界线。。。。。。。。。。。。。。。。。在一台标准的迈克耳孙干涉仪中从光源到光检测器之间存在有两条光路:一束光被光学分束器(例如一面半透半反镜)反射后入射到上方的平面镜后反射回分束器,之后透射过分束器被光检测器接收;另一束光透射过分束器后入射到右侧的平面镜,之后反射回分束器后再次被反射到光检测器上。注意到两束光在干涉过程中穿过分束器的次数是不同的,从右侧平面镜反射的那束光只穿过一次分束器,而从上方平面镜反射的那束光要经过三次,这会导致两者光程差的变化。对于单色光的干涉而言这无所谓,因为这种差异可以通过调节干涉臂长度来补偿;但对于复色光而言由于在介质中不同色光存在色散,这往往需要在右侧平面镜的路径上加一块和分束器同样材料和厚度的补偿板,从而能够消除由这个因素导致的光程差。
在干涉过程中,如果两束光的光程差是光波长的整数倍(0,1,2……),在光检测器上得到的是相长的干涉信号;如果光程差是半波长的奇数倍(0.5,1.5,2.5……),在光检测器上得到的是相消的干涉信号。当两面平面镜严格垂直时为等倾干涉,其干涉光可以在屏幕上接收为圆环形的等倾条纹;而当两面平面镜不严格垂直时是等厚干涉,可以得到以等厚交线为中心对称的直等厚条纹。在光波的干涉中能量被重新分布,相消干涉位置的光能量被转移到相长干涉的位置,而总能量总保持守恒。
。。。。。。。。。。。。。。。。。。我依旧是分界线。。。。。。。。。。。。。。。。。。。 这个主要是测量钠双线的波长差。
【实验目的】
1.了解迈克尔逊干涉仪的干涉原理和迈克尔逊干涉仪的结构,学习其调节方法。
2.调节观察干涉条纹,测量激光的波长。
3.测量钠双线的波长差。
4.练习用逐差法处理实验数据。
【实验仪器】
迈克尔逊干涉仪,钠灯,针孔屏,毛玻璃屏,多束光纤激光源(HNL
55700)。
【实验原理】
1.迈克尔逊干涉仪
图1是迈克尔逊干涉仪实物图。图2是迈克尔逊干涉仪的光路示意图,图中M1和M2是在相互垂直的两臂上放置的两个平面反射镜,其中M1是固定的;M2由精密丝杆控制,可沿臂轴前、后移动,移动的距离由刻度转盘(由粗读和细读2组刻度盘组合而成)读出。在两臂轴线相交处,有一与两轴成45°角的平行平面玻璃板G1,它的第二个平面上镀有半透(半反射)的银膜,以便将入射光分成振幅接近相等的反射光⑴和透射光⑵,故G1又称为分光板。G2也是平行平面玻璃板,与G1平行放置,厚度和折射率均与G1相同。由于它补偿了光线⑴和⑵因穿越G1次数不同而产生的光程差,故称为补偿板。
从扩展光源S射来的光在G1处分成两部分,反射光⑴经G1反射后向着M2前进,透射光⑵透过G1向着M1前进,这两束光分别在M2、M1上反射后逆着各自的入射方向返回,最后都达到E处。因为这两束光是相干光,因而在E处的观察者就能够看到干涉条纹。
由M1反射回来的光波在分光板G1的第二面上反射时,如同平面镜反射一样,使M1在M2附近形成M1的虚像M1′,因而光在迈克尔逊干涉仪中自M2和M1的反射相当于自M2和M1′的反射。由此可见,在迈克尔逊干涉仪中所产生的干涉与空气薄膜所产生的干涉是等效的。
当M2和M1′平行时(此时M1和M2严格互相垂直),将观察到环形的等倾干涉条纹。一般情况下,M1和M2形成一空气劈尖,因此将观察到近似平行的干涉条纹(等厚干涉条纹)。
2.单色光波长的测定
用波长为λ的单色光照明时,迈克尔逊干涉仪所产生的环形等倾干涉圆条纹的位置取决于相干光束间的光程差,而由M2和M1反射的两列相干光波的光程差为
Δ=2dcos
i
(1)
其中i为反射光⑴在平面镜M2上的入射角。对于第k条纹,则有
2dcos
ik=kλ
(2)
当M2和M1′的间距d逐渐增大时,对任一级干涉条纹,例如k级,必定是以减少cosik的值来满足式(2)的,故该干涉条纹间距向ik变大(cos
ik值变小)的方向移动,即向外扩展。这时,观察者将看到条纹好像从中心向外“涌出”,且每当间距d增加λ/2时,就有一个条纹涌出。反之,当间距由大逐渐变小时,最靠近中心的条纹将一个一个地“陷入”中心,且每陷入一个条纹,间距的改变亦为λ/2。
因此,当M2镜移动时,若有N个条纹陷入中心,则表明M2相对于M1移近了
Δd=N
(3)
反之,若有N个条纹从中心涌出来时,则表明M2相对于M1移远了同样的距离。
如果精确地测出M2移动的距离Δd,则可由式(3)计算出入射光波的波长。
3.测量钠光的双线波长差Δλ
钠光2条强谱线的波长分别为λ1=589.0
nm和λ2=589.6
nm,移动M2,当光程差满足两列光波⑴和⑵的光程差恰为λ1的整数倍,而同时又为λ2的半整数倍,即
Δk1λ1=(k2+)λ2
这时λ1光波生成亮环的地方,恰好是λ2光波生成暗环的地方。如果两列光波的强度相等,则在此处干涉条纹的视见度应为零(即条纹消失)。那么干涉场中相邻的2次视见度为零时,光程差的变化应为
ΔL=kλ1=(k+1)λ2
(k为一较大整数)
由此得
λ1-λ2==
于是
Δλ=λ1-λ2==
式中λ为λ1、λ2的平均波长。
对于视场中心来说,设M2镜在相继2次视见度为零时移动距离为Δd,则光程差的变化ΔL应等于2Δd,所以
Δλ=
(4)
对钠光=589.3
nm,如果测出在相继2次视见度最小时,M2镜移动的距离Δd
,就可以由式(4)求得钠光D双线的波长差。
4.点光源的非定域干涉现象
激光器发出的光,经凸透镜L后会聚S点。S点可看做一点光源,经G1(G1未画)、M1、M2′的反射,也等效于沿轴向分布的2个虚光源S1′、S2′所产生的干涉。因S1′、S2′发出的球面波在相遇空间处处相干,所以观察屏E放在不同位置上,则可看到不同形状的干涉条纹,故称为非定域干涉。当E垂直于轴线时(见图3),调整M1和M2的方位也可观察到等倾、等厚干涉条纹,其干涉条纹的形成和特点与用钠光照明情况相同,此处不再赘述。
【实验内容与步骤】
1.观察扩展光源的等倾干涉条纹并测波长
①点燃钠光灯,使之与分光板G1等高并且位于沿分光板和M1镜的中心线上,转动粗调手轮,使M1镜距分光板G1的中心与M1镜距分光板G1的中心大致相等(拖板上的标志线在主尺32
cm
位置)。
②在光源与分光板G1之间插入针孔板,用眼睛透过G1直视M2镜,可看到2组针孔像。细心调节M1镜后面的
3
个调节螺钉,使
2
组针孔像重合,如果难以重合,可略微调节一下M2镜后的3个螺钉。当2组针孔像完全重合时,就可去掉针孔板,换上毛玻璃,将看到有明暗相间的干涉圆环,若干涉环模糊,可轻轻转动粗调手轮,使M2镜移动一下位置,干涉环就会出现。
③再仔细调节M1镜的2个拉簧螺丝,直到把干涉环中心调到视场中央,并且使干涉环中心随观察者的眼睛左右、上下移动而移动,但干涉环不发生“涌出”或“陷入”现象,这时观察到的干涉条纹才是严格的等倾干涉。
④测钠光D双线的平均波长。先调仪器零点,方法是:将微调手轮沿某一方向(如顺时针方向)旋至零,同时注意观察读数窗刻度轮旋转方向;保持刻度轮旋向不变,转动粗调手轮,让读数窗口基准线对准某一刻度,使读数窗中的刻度轮与微调手轮的刻度轮相互配合。
⑤始终沿原调零方向,细心转动微调手轮,观察并记录每“涌出”或“陷入”50个干涉环时,M1镜位置,连续记录6次。
⑥根据式(5-8),用逐差法求出钠光D双线的平均波长,并与标准值进行比较。
2.观察等厚干涉和白光干涉条纹
①在等倾干涉基础上,移动M2镜,使干涉环由细密变粗疏,直到整个视场条纹变成等轴双曲线形状时,说明M2与M1′接近重合。细心调节水平式垂直拉簧螺丝,使M2与M1′有一很小夹角,视场中便出现等厚干涉条纹,观察和记录条纹的形状、特点。
②用白炽灯照明毛玻璃(钠光灯不熄灭),细心缓慢地旋转微动手轮,M2与M1′达到“零程”时,在M2与M1′的交线附近就会出现彩色条纹。此时可挡住钠光,再极小心地旋转微调手轮找到中央条纹,记录观察到的条纹形状和颜色分布。
3.测定钠光D双线的波长差
①以钠光为光源调出等倾干涉条纹。
②移动M2镜,使视场中心的视见度最小,记录M2镜的位置;沿原方向继续移动M2镜,使视场中心的视见度由最小到最大直至又为最小,再记录M2镜位置,连续测出6个视见度最小时M2镜位置。
③用逐差法求Δd的平均值,计算D双线的波长差。
4.点光源非定域干涉现象观察
方法步骤自拟。
迈克尔逊干涉仪系精密光学仪器,使用时应注意防尘、防震;不能触摸光学元件光学表面;不要对着仪器说话、咳嗽等;测量时动作要轻、要缓,尽量使身体部位离开实验台面,以防震动。

D. 迈克尔逊最早用迈克尔逊干涉仪做什么

迈克尔逊干涉仪,是1883年美国物理学家迈克尔逊和莫雷合作,为研究“以太”漂移而设计制造出来的精密光学仪器
迈克尔逊的名字是和迈克尔逊干涉仪及迈克尔逊-莫雷实验联系在一起的,实际上这也是迈克尔逊一生中最重要的贡献。在迈克尔逊的时代,人们认为光和一切电磁波必须借助绝对静止的“以太”进行传播,而“以太”是否存在以及是否具有静止的特性,在当时还是一个谜。有人试图测量地球对静止“以太”的运动所引起的“以太风”,来证明以太的存在和具有静止的特性,但由于仪器精度所限,遇到了困难。麦克斯韦曾于1879年写信给美国航海年历局的D.P.托德,建议用罗默的天文学方法研究这一问题。迈克尔逊知道这一情况后,决心设计出一种灵敏度提高到亿分之一的方法,测出与有关的效应。
1881年他在柏林大学亥姆霍兹实验室工作,为此他发明了高精度的迈克尔逊干涉仪,进行了著名的以太漂移实验。他认为若地球绕太阳公转相对于以太运动时,其平行于地球运动方向和垂直地球运动方向上,光通过相等距离所需时间不同,因此在仪器转动90°时,前后两次所产生的干涉必有0.04条条纹移动。迈克尔逊用最初建造的干涉仪进行实验,这台仪器的光学部分用蜡封在平台上,调节很不方便,测量一个数据往往要好几小时。实验得出了否定结果。
1884年在访美的瑞利、开尔文等的鼓励下,他和化学家莫雷(Morley,Edward Williams,1838~1923)合作,提高干涉仪的灵敏度,得到的结果仍然是否定的。1887年他们继续改进仪器,光路增加到11米,花了整整5天时间,仔细地观察地球沿轨道与静止以太之间的相对运动,结果仍然是否定的。这一实验引起科学家的震惊和关注,与热辐射中的“紫外灾难”并称为“科学史上的两朵乌云”。随后有10多人前后重复这一实验,历时50年之久。对它的进一步研究,导致了物理学的新发展。迈克尔逊的另一项重要贡献是对光速的测定。早在海军学院工作时,由于航海的实际需要,他对光速的测定开始感兴趣。
1879年开始光速的测定工作。他是继菲佐、傅科、科纽之后,第四个在地面测定光速的。他得到了岳父的赠款和政府的资助,使他能够有条件改进实验装置。他用正八角钢质棱镜代替傅科实验中的旋转镜,由此使光路延长600米。返回光的位移达133毫米,提高了精度,改进了傅科的方法。他多次并持续进行光速的测定工作,其中最精确的测定值是在1924~1926年,在南加利福尼亚山间22英里长的光路上进行的,其值为(299796±4)km/s。迈克尔逊从不满足已达到的精度,总是不断改进,反复实验,孜孜不倦,精益求精,整整花了半个世纪的时间,最后在一次精心设计的光速测定过程中,不幸因中风而去世,后来由他的同事发表了这次测量结果。

E. 迈克尔逊干涉仪有哪些部分组成它们各有什么作用

迈克尔逊干涉仪组成及作用:

1、平面镜两个用来产生等厚或者等倾干涉所需要的光程差。

2、分光镜一个用来将入射激光分成两束,达到分振幅的目的。

3、扩束镜,用来将激光束扩散开,使得干涉条纹便于观察。

4、聚焦透镜,用在等倾干涉时将干涉条纹聚焦。

5、光屏,用于承接干涉条纹。

如果想要在迈克尔逊干涉仪上调出等倾干涉条纹,要求M1和M2两个反射镜相互平行,调解时可以在光源上做一个标记,再调节这两个镜子后面的倾度粗调旋钮和细调旋钮,使得标记物在两个镜子里的反射像在视野里重合。这样就可以看到环状的等倾干涉条纹。

(5)迈克尔逊实验装置仪器扩展阅读:

迈克尔逊干涉仪的原理是一束入射光被分光镜分成两束后,每束光被相应的平面镜反射回来。由于这两束光的频率、振动方向相同,相位差恒定(即满足干涉条件),就会发生干涉。

通过调节干涉臂的长度和改变介质的折射率,可以实现两束干涉的不同路径,从而形成不同的干涉图样。

通过调节干涉臂的长度和改变介质的折射率,可以实现两束干涉的不同路径,从而形成不同的干涉图样。干涉条纹是等光程差的路径。因此,要分析某些干涉产生的图样,必须得到相干光程差的位置分布函数。

F. 迈克尔逊干涉仪是用来测量什么的仪器

顾名思义,该仪器可以用来观察干涉条纹,
利用干涉条纹,可以测量光波波长,
可以观察某光波的波长变化情况,
可以用来测量微小位移,测微小厚度(这一点很常用,很实用),
可以用来测光速.
可以用来检测物质表面平整度 ,以及别的缺陷

G. 麦克尔逊的实验是怎么做的

迈克尔逊干涉仪是美国物理学家迈克尔逊和莫雷为进行“以太漂移实验”于 1883年创制的。在光的电磁理论与爱因斯坦相对论形成之前,大多数物理学家相信光波在一种称为“以太”的物质中传播,这种物质充满整个宇宙空间。迈克尔逊和莫雷试图用迈克尔逊干涉仪测量出地球相对于以太的运动。他们预计这种相对运动会导致将仪器旋转90 0 后能观察到4/10个条纹的移动,实际观察到的结果是少于1/100。这个结果令迈克尔逊感到十分失望,但他们因此却创制了一个精密度达四亿份之一米的测长仪器并运用这套仪器转向长度的测量工作。1907年,迈克尔逊由于在“精密光学仪器和用这些仪器进行光谱学的基本量度”的研究工作而荣获诺贝尔物理学奖金。 直到爱因斯坦于 1905年提出了相对论,指出光速不变,即真空中光波相对于所有惯性参考系的速度都是相同的值 C 。假想的以太概念被彻底的抛弃。迈克尔逊-莫雷所得的否定结果给相对论以很大的实验支持。它因此被称作历史上最有意义的“否定结果”实验( “ negative-result ” experiment )。 【实验目的】 1.了解迈克尔逊干涉仪的构造原理,初步掌握调节方法。 2.观察等倾干涉现象,测 He — Ne 激光的波长。 3. 学习法布里—珀罗干涉装置的调节和使用。 【实验仪器】 迈克尔逊干涉仪, He — Ne 多束光纤激光器 (图 1 迈克尔逊干涉仪) (图 2 光纤激光) (图 3 镜片 ) 【注意事项】 1. 迈克尔逊干涉是精密仪器,实验者应细心操作。仪器上各镜面严禁用手或它物触摸;调整、测量中勿碰工作台; 2. 应单向旋转粗、微调鼓轮,不得中途倒转出现空程而造成误差。 【思考题】 1. 什么是定域条纹?什么是非定域条纹?两者用的光源与观察仪器有何不同? 2. 请设计一个实验用迈克尔逊干涉仪测量固体透明薄膜的折射率或厚度。 【应用提示】 1.本实验中测量了氦氖激光器的波长,下面仅就激光器再做一简单介绍。 也称为 “光激射器”。利用受激辐射原理使光在某些受激发的工作物质中放大或发射的器件。用电学、光学及其他方法对工作物质进行激励,使其中一部分粒子激发到能量较高的状态中去,当这种状态的粒子数大于能量较低状态的粒子数时,由于受激辐射作用,该工作物质就能对某一定波长的光辐射产生放大作用,也就是当这种波长的光辐射通过工作物质时,就会射出强度被放大而又与入射光波位相一致、频率一致、方向一致的光辐射,这种情况便称为光放大。 激光器一般由三个部分组成: (1)能实现粒子数反转的工作物质。例如氦氖激光器中,通过氦原子的协助,使氖原子的两个能级实现粒子数反转;(2)光泵:通过强光照射工作物质而实现粒子数反转的方法称为光泵法。例如红宝石激光器,是利用大功率的闪光灯照射红宝石(工作物质)而实现粒子数反转。造成了产生激光的条件;(3)光学共振腔:最简单的光学共振腔是由放置在氦氖激光器两端的两个相互平行的反射镜组成。当一些氖原子在实现了粒子数反转的两能级间发生跃迁,辐射出平行于激光器方向的光子时,这些光子将在两反射镜之间来回反射,于是就不断地引起受激辐射,很快地就产生出相当强的激光。这两个互相平行的反射镜,一个反射率接近100%,即完全反射。另一个反射率约为98%,激光就是从后一个反射镜射出的。 激光器的种类很多,如氦氖激光器、二氧化碳激光器,红宝石激光器、钇铝石榴石激光器,砷化镓激光器,染料激光器,氟化氢激光器和氩离子激光器、半导体激光器等, 发射的激光波长有 325nm、405nm、457nm、635nm、650nm、680nm、808nm、850nm、980nm、1310nm及1550nm等。常用的激光器如图10和图11所示。 2.实验中利用迈克尔逊干涉测量了 氦氖激光器的波长。其中的基本干涉光路也在许多测量中得到广泛应用。在这里两个反射镜完全垂直,得到的是等倾干涉;若两个反射镜没有完全垂直,则可得到等厚干涉,可以用来测量介质的折射率、厚度等。

希望采纳

H. 迈克尔逊干涉仪原理

迈克尔逊干涉仪,是1881年美国物理学家迈克尔逊和莫雷合作,为研究“以太”漂移而设计制造出来的精密光学仪器。它是利用分振幅法产生双光束以实现干涉。通过调整该干涉仪,可以产生等厚干涉条纹,也可以产生等倾干涉条纹。主要用于长度和折射率的测量,若观察到干涉条纹移动一条,便是M2的动臂移动量为λ/2,等效于M1与M2之间的空气膜厚度改变λ/2。在近代物理和近代计量技术中,如在光谱线精细结构的研究和用光波标定标准米尺等实验中都有着重要的应用。利用该仪器的原理,研制出多种专用干涉仪迈克尔逊干涉仪(英文:Michelson interferometer)是光学干涉仪中最常见的一种,其发明者是美国物理学家阿尔伯特·亚伯拉罕·迈克尔逊。迈克耳逊干涉仪的原理是一束入射光经过分光镜分为两束后各自被对应的平面镜反射回来,因为这两束光频率相同、振动方向相同且相位差恒定(即满足干涉条件),所以能够发生干涉。干涉中两束光的不同光程可以通过调节干涉臂长度以及改变介质的折射率来实现,从而能够形成不同的干涉图样。干涉条纹是等光程差的轨迹,因此,要分析某种干涉产生的图样,必需求出相干光的光程差位置分布的函数。

若干涉条纹发生移动,一定是场点对应的光程差发生了变化,引起光程差变化的原因,可能是光线长度L发生变化,或是光路中某段介质的折射率n发生了变化,或是薄膜的厚度e发生了变化。

S为点光源,M1(上边)、M2(右边)为平面全反射镜,其中M1是定镜;M2为动镜,它和精密螺丝丝相连,转动鼓轮可以使其向前后方向移动,最小读数为10mm,可估计到10mm,。M1和M2后各有3个小螺丝可调节其方位。G1(左)为分光镜,其右表面镀有半透半反膜,使入射光分成强度相等的两束(反射光和透射光)。反射光和透射光分别垂直入射到全反射镜M1和M2,它们经反射后回到G1(左)的半透半反射膜处,再分别经过透射和反射后,来到观察区域E。G2(右)为补偿板,它与G1为相同材料,有相同的厚度,且平行安装,目的是要使参加干涉的两光束经过玻璃板的次数相等,两束光在到达观察区域E时没有因玻璃介质而引入额外的光程差。当M2和M1'严格平行时,表现为等倾干涉的圆环形条纹,移动M2时,会不断从干涉的圆环中心“吐出”或向中心“吞进”圆环。两平面镜之间的“空气间隙”距离增大时,中心就会“吐出”一个个条纹;反之则“吞进”。M2和M1'不严格平行时,则表现为等厚干涉条纹,移动M2时,条纹不断移过视场中某一标记位置,M2平移距离 d 与条纹移动数 N 的关系满足:d=Nλ/2,λ为入射光波长。

I. 迈克尔逊——莫雷实验的成功之处在哪里

以太理论

“以太”的提出,是为了解释光在真空中以及在高速的空间中都能传播这一事实。当时,认为光必须有一个载体才能传播,而这种载体当光在真空中传播时更显得必要。

为了解释真空不空,笛卡儿于17世纪第一个提出了“以太”的假说,并把“以太”描述为:以太是充满整个空间的一种物质。真空中没有空气,但却有这种无所不入的“以太”。

至19世纪上半叶,当光具有波动性被大多数物理学家承认时,以太假说又获得了新的支持,于是,19世纪末的物理学界,牢固地确立了一种思想,认为有一种到处存在的、能穿透一切的介质,并充满所有物质的内部和它们之间的空间,它的作用是作为光传播的基础。

惠更斯把它叫做以太(光以太),后来又被叫做法拉第管(电磁以太),被认为是引起带电体和磁化物之间相互作用的原因。麦克斯韦的工作使这两种假想的介质统一起来了。他指出光是传播的电磁波,并建立了一个优美的数学理论,把所有涉及光、电和磁的现象结合在一起,光以太也就是电磁以太。这时,“以太”的存在似乎无可置疑了。

迈克尔逊-莫雷实验

1881年(爱因斯坦当时才8岁),迈克尔逊(1852~1931)设计了一个精密的仪器,即后来的迈克尔逊干涉仪。仪器装置如图所示,A是半镀银镜,B和C是两个反射镜,且AC=AB=L,光从S出发,经A分为两束,再经B和C反射后到达T处。当两个光速有一定光程差时,即在T处出现干涉条纹。为了保持仪器的水平,迈克尔逊把仪器放在水银槽上。


更多信息可以参考迈克尔逊莫雷

J. 迈克尔逊是怎么测定地球相对于以太运动实验的以及结果是什么

1879年3月,在美国航海历书局进行合作研究的美国年轻物理学家迈克尔逊偶然看到了麦克斯韦写来的一封信。信中提到的测量地球相对以太运动的想法给了他很大启示。迈克尔逊想出一个巧妙的办法来测定地球相对于以太的运动:既然地球绕着太阳以每秒约30公里的速度运转,那么朝地球运动的方向和与它垂直方向同时各射出一束光,从离光源相同距离的反射体反射回来,前者走过的路程将比后者短一些,两束光相遇应当形成干涉条纹。迈克尔逊用他发明的干涉仪做了多次实验,始终没有看到他预期的干涉条纹。

1887年,迈克尔逊在化学家莫雷的帮助下,进一步改进了实验装置,他们把干涉仪安装在一个很重的石板上,石板悬浮在水银液面上,仪器可以十分平滑地随意转动。这个仪器是那样灵敏,甚至可以测出植物每一分钟的生长量,一根条纹百分之一的移动变化。

实验开始了,为了免除种种可能因素造成的误差,他们使光束射出的方向与地球运动的方向成各种角度,在一年中的各个季节、白天和黑夜的不同时间进行了许多观测,结果每一次都没有出现干涉条纹,也就是说,地球相对于以太的运动是零。

阅读全文

与迈克尔逊实验装置仪器相关的资料

热点内容
拉瓦锡实验装置原理是什么 浏览:600
新乡创丰机械有限公司招聘电话是多少 浏览:977
北京南区有哪些建材五金市场 浏览:894
常熟通润工具箱招聘 浏览:888
四川五金机电气配城 浏览:232
数控机床纺织机械带传动是什么 浏览:910
液化气储气罐自动喷淋装置 浏览:454
内径8外径31厚7的是什么轴承 浏览:757
新福克斯仪表怎么设置 浏览:512
收设备款销项是多少 浏览:177
机械二尖瓣故障怎么办 浏览:223
轮胎胎面自动抬取装置 浏览:324
过氧化氢分解反应实验装置 浏览:546
冷库制冷机一天多少度电 浏览:48
obu设备是什么怎么供电 浏览:222
电脑里没有便携设备怎么办 浏览:874
常见能量装置控制的实验 浏览:562
无机结合料室仪器有哪些 浏览:174
暖气阀门的关闭 浏览:452
铸铁管道阀门井 浏览:667