㈠ 平方环法的原理
在软件无线电(SDR)技术实现的收发系统中,数字锁相环在载波同步、位同步、相干解调、信号跟踪、频率选择等方面发挥着重要作用,已成为数字调制/解调,数字上变频/下变频中不可缺少的核心器件。接收机为了提取载波,普遍采用平方环法和科斯塔斯环法,其中平方环以其电路结构简单而得到了广泛应用。但在平方环电路的设计中,由于NCO(或VCO)工作在2ωc频率上,当环路锁定后,其NCO(或VCO)的输出需经过二分频才能得到所需载波。而二分频电路在实现过程中,特别是在对NCO进行数字分频时,用FPGA实现太耗资源。
以下提出一种新的数字平方环电路,实现了从BPSK信号中提取相干载波的功能,简单易行,便于实现,并对其进行了数学推导和建模仿真,具有良好的实用价值。
1锁相环的结构
锁相环(PLL)由鉴相器(PD)、环路滤波器(LF)以及数控振荡器(NCO)组成,如图1所示。
鉴相器通常由乘法器来实现,鉴相器输出的相位误差信号经过环路滤波器滤波后,作为数控振荡器的控制信号,而数控振荡器的输出又反馈到鉴相器,在鉴相器中与输入信号进行相位比较。PLL是一个相位负反馈系统,当PLL锁定后,数控振荡器的输出信号相位将跟踪输入信号的相位变化,这时数控振荡器的输出信号频率与输入信号频率相等,但相位保持一个微小误差。
2平方环法的工作原理
在平方环载波恢复电路中,BPSK信号经平方后得到两倍载频的频谱分量,用锁相环提取这一分量,然后进过二分频可得到载频分量,如图2所示。
因鉴相器采用乘法器实现,则鉴相器输出相位误差信号为:
其中,Kd=KpA/4。环路滤波器的输出仅与数控振荡器输出和输入信号之间相位差有关,控制电压,以准确地对数控振荡器进行调整。显然,当本地恢复的同相载波与调制载波达到同频同相时,△φ=0。因此,解调的关键在于调整NCO输出信号的频率和相位,使其最终满足△φ=0或在一个很小的范围内,即相干解调的本地载波同步问题。锁相环在工作时可能锁定在任何一个稳定平衡点上。这意味着恢复出的相干载波可能与所需要的理想本地载波同相,也可能反相。由于本地参考载波有0,π模糊度,因而解调得到的数字信号可能极性完全相反,从而1和0倒置。这对于数字传输来说当然是不能允许的。克服相位模糊度最常用且最有效的方法是在调制器输入的数字基带信号中采用差分编码。
3改进平方环的工作原理
改进的平方环载波恢复电路,如图3所示。利用DDS产生的NCO数控振荡器能够输出完全正交的正余弦信号,并考虑到三角函数之间的关系sin(2ωct+2△φ)=2sin(ωct+△φ)cos(ωct+△φ),因此这里将NCO的频率锁定在载波频率ωc上,然后将NCO两路正余弦输出通过一个乘法器再增益2倍,并且在FPGA实现时,只需要进行简单的移位就能完成乘除法的运算,输出就为传统平方环的NCO输出,由于数控振荡器将频率锁定在ωc上,所以它的正弦输出即为提取的载波,省去了二分频电路。由于传统的二分频电路均采用数字分频电路,不能保持原有的正弦波形,因此还需要附加滤波器等电路。相比改进的电路要复杂得多,并且在实现上也不如改进之后的容易。
4环路部件
4.1 鉴相器
在锁相环中,鉴相器(又称为相位检测器)是一个相位比较装置。它是将输入信号与数控振荡器的输出信号的瞬时相位进行比较,产生一个输出电压。这个电压的大小,直接反映两个信号相位差的大小;这个电压的极性,反映输入信号超前或滞后于数控振荡器输出信号的相对相位关系。由此可见,鉴相器在环路中是用来完成相位差与电压变换的,其输出误差电压是瞬时相位误差的函数。
4.2环路滤波器
环路滤波器用于衰减由于输入信号噪声引起的快速变化的相位误差和平滑相位检测器泄露的高频分量即滤波,以便在其输出端对原始信号进行精确的估计,环路滤波的阶数和噪声带宽决定了环路滤波器对信号的动态响应。文献[5]对几种常用的环路滤波器性能进行了详细的分析。由于一阶环路滤波器会产生稳态相差,从而降低系统误码性能;三阶环路滤波器实际实现难度较大;二阶环路滤波器在直流增益为无穷大,而频偏为常数的情况下,仍然能够实现稳态,实现难度适宜,即采用二阶环路滤波器,其结构框图如图4所示。
式中:ξ为环路阻尼系数,通常取0.707;ωn为阻尼振荡频率;Ts为频率控制字更新周期;Kd为环路增益。详细的推导见参考文献[6]。因此环路滤波器参数的设计关键在于ωn,Kd。通常设计时用滤波器的噪声带宽Bn来取代ωn,即:。锁相环路的各种性能对叫ωn,ξ的要求存在着矛盾和统一,增大叫ωn,ξ,可以增大捕获带,减小捕获时间,加强对NCO噪声的滤除,减小稳态相关,增大同步带,增大同步扫描频率;减小ωn,ξ,可以加强对输入噪声的滤除,延长平均跳周时间。增强一方性能,则会降低另一方性能,因此合理设计环路滤波器的参数能够优化系统的性能。
4.3数控振荡器
NCO在环路中的作用就是产生理想的频率可变的正弦和余弦,确切地说是产生一个频率实时可变的正弦样本。正弦样本可以用实时计算的方法产生,但在高速采样频率中,NCO产生正弦和余弦的最有效办法就是查找表法,即事先根据NCO正余弦相位计算好相应的正余弦值,并以相应的相位角度作为波形存储器(ROM)的取样地址来存储对应相位的正余弦值。NCO的相位,可通过固定的频率控制字(载波频率)与环路滤波器的输出累加和相加得到,即可把存储在波形存储期内的波形抽样值(二进制编码)经查找表查出,完成相位到幅值转换。NCO内部ROM正余弦表的大小影响输出波形的精度,越大的ROM正余弦表,得到的波形输出越理想,但同时增加了硬件资源。考虑到正弦信号的对称性,只存储1/4的周期,即0~π/2的波形,通过对输入到波形ROM的地址及其输出数据的关系,可按照一定算法予以实现。
5仿真与分析
利用Simulink对改进的平方锁相环进行了仿真。由于用FPGA实现时,可直接定义DDS为两路正交的输出,而在Simulink模型中,数控振荡器的输出仅为一端输出。在此为了简单起见,搭建锁相环模型时用到了两个数控振荡器,为得到正交的输出只需要将两个数控振荡器的相位差定为π/2即可。这样做不仅大大地简化了搭建模型的时间,而且对仿真本身没有任何影响,仿真核心部分如图5所示。仿真条件:初始相差为π/3;初始频偏为5 kHz;调制方式为BPSK;码元速率为2 Mb/s;载波频率为4 MHz。
仿真模型如图6所示。其中,Bernoulli BinaryGenerator和sine Wave模块分别产生伯努利分布的随机二进制数序列和载波信号,将随机二进制数序列通过简单的变换模块,生成双极性不归零码,再一起送人Proct模块完成BPSK调制。因为该仿真主要是验证算法的可行性,所以假设是在理想的信道下传输的。在接收解调端,使用乘法器Proct1完成平方功能,也可将该乘法器用绝对值模块等非线性器件模块代替。Proct2作为锁相环的鉴相器,并且该锁相环路为二阶环。为了验证该算法的可行性,设置NCO的中心频率与发送载波频率之间有一定误差,控制灵敏度也可通过仿真实验确定。为了更好地比较仿真结果,SineWavel模块的频率与NCO设置的中心频率一致,并将输出一起送进示波器进行观察分析。
示波器Scope2对比显示了双极性不归零码与相干载波乘积的输出和未经过锁相环路乘积的输出。图7给出了乘以载波之后的信号波形(示波器的横坐标表示时间轴,物理符号是t,单位为s,物理量为2μs;纵坐标表示信号的强度)。为了更加清晰地观察图形,图7波形是低通和抽样判决器之前的波形。从图中对比不难看出,改进的锁相环路能够很好地将信号解调出来,从而达到了预想的效果,并通过仿真得知其仍然能够应用于相关的领域(如调制解调),然而对于有相位差和频偏的载波已经不能解调出原始的信号了。仿真中,如果减小NCO的灵敏度,可观察到锁相环失锁。示波器Scope对比显示了原始双极性不归零码和解调判决的输出,如图8所示(示波器的横坐标表示时间轴,物理符号是t,单位为s,物理量为5μs;纵坐标表示信号的强度)。解调输出的序列比原始序列稍有延迟,但是不难发现,改进的平方环载波恢复电路能够准确地解调调制后的信号,延迟是由于解调模块中的低通滤波和抽样判决引起的。
6 结 语
讲述了平方锁相环的工作原理,并着重讨论了设计思想和过程。在通信飞速发展的今天,进一步简化了锁相环路,该想法为以后的发展提供了很大的参考价值与创新理念,使得平方环不仅仅局限于应用到输入信号载波频率较低的环境中,在较高的条件下也能够用它来实现,而且平方锁相环的结构较科斯塔斯环要简单。
【看参考网站 有图解】
㈡ 激光主动相控阵雷达原理
原理
雷达是一种发射电磁波,藉由解算回波之种种数据来达到探测目的的一种装置。随著年代的演进而增加新的功能,但都不脱离两个基本步骤:发射雷达波以及解算回波。
电磁波的发射,是利用正负电荷之往返震汤而发出的,在雷达上是在天线上产生正负电荷并使之震汤。发出电磁波之强度分布,为一"横躺"在x轴上的"8"字绕y轴转动後所产生的立体形状,类似红血球一般,天线指向y轴而以横躺的8字中心为中心。设由原点向任一方向画直线与此"红血球形"交於p点,则原点到p点的长度代表该方向电磁波强度。也就是说在垂直於y轴之平面上电磁波最强,随著与此平面之夹角增加电磁波随之减弱,在天线方向上则没有电磁波。以上所提对相控阵雷达原理之理解并不是那么重要,不过将有助於我们观察雷达天线的阵列情形。
当然,单一天线发射的雷达波依然是以球面扩散的,强度与距离平方成反比,所以当然不可能只用一个天线就能做成雷达啦,一定要有其他方法的,除了增强功率外,就是让雷达波尽量平行发射啦。为了达到此目的,目前主要有抛物面雷达以及平面阵列雷达,两者都是机械扫描雷达,但後者之原理与相控阵雷达有些相近。
抛物面雷达在抛物面焦点处安装发射天线,经抛物面反射成近乎平行波束,目前直升机雷达以及陆基防空雷达、机场雷达等多使用这种雷达。这种雷达现在渐渐被取代,因为抛物面相当难做,一般都是用球面或椭球面来近似,不论如何进似,终究不是真正抛物面,因此就容易出现误差。此外,这种雷达只由一个天线作收发工作,因而对单一天线性能要求就相当高,而天线故障整个雷达也就挂了。
这种雷达不是没有好处的,他能接收单一天线感测不到的强度的回波:天线有其能感测的最低电磁波强度(单位面积的功率),若强度小於这个值,就无法感测或被当杂波滤除。抛物面天线可将回波反射回位於焦点的天线,故此时天线接收到的强度就是抛物面接收到之雷达波强度之加成。
平面阵列雷达则是在一个平面上布上许多天线,藉由波的干涉原理来制造近平行波束,基本发射原理与相控阵雷达相近故留待稍後解释之。西方标准的第三代战机以及俄国第四代战机(除了MiG-31)多用这种雷达,中国自行研发的歼雷十也是平面阵列雷达。
此类雷达还仰赖"合成孔径"技术,雷达的性能除了探测距离、资料更新率等等外,还有个很重要的,解析度。解析度不高的雷达无法精确知道敌人的位置,只能知道敌人来袭却无法反制,因此要提高解析度,雷达的解析度与波束发散角(最外侧行进方向与中央线的夹角)有关,发散角越小解析度越高,而要降低发散角,就要加大天线。再某些时候这是不好做的,因而有人想到能否利用相间的小天线(天线阵列)来达成相同效果,实验证明是可行的,藉由对阵列上每个天线接收到的数据的合成处理,可以达到涵盖这些阵列的抛物面雷达的解析度。也就是说,当两天线相距d距离时,其解析度同等於以d为直径的抛物面雷达,不过接收功率仅为2个天线之接收功率和。也因为没有抛物面将回波"加成",因此对於强度小於单一天线能感测强度之最小值之回波,此种雷达是无法感应的。
不论是抛物面或平面阵列式雷达,皆属於机械扫描雷达,靠机械转动天线面来改变波束方向,因此其资料更新率与机械转动周期有关,这受到机械结构等问题影响而不会太快,一般更新周期以秒计。
抛物面雷达於平面阵列雷达之比较
口径相同时,两者的解析度相同,不过抛物面雷达接收到的功率是整个面接收到的能量的加成,故能接收强度较小的回波。而平面阵列雷达接收到的功率是每个天线的加成,其平面不可能全部都是天线,因此总功率低於抛物面雷达,且无法接收强度低於天线感测下限的回波。因为制造工艺的因素,加上相同的解析度,因此战机上抛物面雷达渐渐被取代。就好像如果可能的话,所有的天文学家都会希望有一个直径跟地球一样大的望远镜,但那是不可能的,因此只能藉由整合分开的小望远镜来达到要求的解析度。
关於雷达天线的指向
从观察雷达天线的方向(就是电偶极/electric dipole的方向),可以大概知道雷达的功能。仔细观察时,会发现目前飞机上的平面阵列雷达,其天线都是水平放置的,而像俄罗斯X-35/Kh-35"天王星"反舰导弹上的平面阵列雷达之天线,就是垂直放置的。详细情形我目前也不太清楚,我猜想这是因为这些飞机雷达需要兼顾对地性能(平面阵列雷达出现後的飞机一般都已具备对地能力),而掠海飞行的反舰飞弹不需要下视,只要要求视野宽广即可。
前面提到电磁波的发射,以及电偶极方向与电磁波强度之关系。从那里我们可以看出水平放置以及垂直放置的天线发出电波的能量分布,并从中得到放置方式与功能的关系。在前者,电磁波在俯仰方向上是最强的,往两侧渐渐减弱;在後者,水平方向是最强的,而往上下两侧渐渐减弱。所以说当天线水平放置时,可以在俯仰方向维持高强度雷达波。故推测可能是为了兼顾对地处理能力而做这种布置。
相控阵雷达之波束产生原理与平面阵列雷达其实是相同的,但多了相位控制功能因而可不必借助机械而改变波束方向。在解释此原理前先介绍几个波的专有名词:波前、相位。波前定义为与波行进方向垂直之曲线或曲面,例如平行波波前即为垂直於波束之平面,球状发射波之波前为球面波等,换言之可以用波前的扩散来想像波的行进。相位就是相角,与位置、波长、周期、时间等有关,相位差就是相位的差异。如果撇开数学,纯粹定性的话,在雷达天线面上,各天线同时发射电磁波,则各电磁波就是同相,如果各天线发射电磁波有先後次序,则各天线发射之电磁波有相位差。这么解释较容易体会吧!现在来考虑同相的情况,我们在x轴上等间格安置一模一样的点波原,点波原在平面上传波方式为圆形平面,现在只要考虑x轴以上,因为他与x轴以下情况是一样的。今假设过了一段时间,各波原产生的波行进的距离是一样的,因此可以各波原为圆心取相同半径画半圆,如此可得到各波波前交织在一起的图像,如果继续画下去,不论里面交得多乱,最前端的形状几乎是一样的,即许多圆弧交线的最前端,事实上这就是其巨观之波前。现在,我们在每两点中间再加一个点波原,赵相同方法作图,会发现最前端曲线,也就是合成波前,更加平滑,所以说,当点波原距离越近,合成波前就越接近与这些点波原连线平行之曲线(在此为直线),这就是"海更士原理",只不过海更士是倒过来说的:"波前可视为无线多个点拨圆的连线。"经由实验可以知道这是成立的。对了,有没有注意到,这就是平面阵列雷达产生近平行波束的原理!
接著,讨论有相位差的情况了,这就是相控阵雷达控制波束的原理了。同样的,我们在x轴上等间格安置一模一样的点波原,为了方便说明,由左到又依次编号1,2,3....,并假设由1开始每格一个周期T的时间间隔下一个点波原才开始发射(时间间格可以自己挑,不过选择一个周期最好画)。好,开始画图吧:t=0时,1号开始发射。t=T时,2号开始发射,因为经过了一个周期,所以1也开始发射下一个波。t=2T时,以1号为圆心有两个半圆,以二号为圆心有一个半圆,同时1,2,3同时发射下一个波。照这样画下去,就会发现跟先前同相时的例子一样的圆弧交线,而且是朝著右上方传递的,当波原很接近时,该曲线就接近直线了。波就是这样往右偏折的。同样的道理,可以知道波如何往左、往上、往下偏。这就是电子扫描雷达的原理。当然要提升其效能就有其他复杂的工程问题了,如天线的密集度、处理资讯的能力等等。
因此相控阵雷达可选择雷达面上相邻的数个天线来当一个雷达用,或选用多个区块构成多组雷达来侦查同一目标以增加解析度,有的书籍上说相控阵雷达的每一个天线都相当於一个雷达,这会造成相当大的误解:如果每个都是雷达,何必选用一组去照射目标?每个天线固定在那里,要怎么去转向?了解其原理,就能避开误解了。由於是使用电子控制相位差扫描而不用机械,再加上可针对性的扫描,因此资料更新率以微秒计,远优於机械式雷达。此外由於相控阵雷达可制造窄波束,因此也具有电战功能,当然波束能多窄式取决於其他技术的,像美国APG-77雷达就可发射发散角仅2度(最外侧波行进方向与中央线之夹角)的窄波束。具有更好的反探测及电战能力
看看这里 ,就知道了。http://wenku..com/view/e7f3577fa26925c52cc5bf4a.html
㈢ 在相位比较法中,调节哪些旋钮可以改变直线的斜率调节哪些旋钮可以改变李萨如图形的形状
调节水平扫描和垂直扫描的同步时间,可以调节直线李沙育图形的斜率;而调节水平扫面的频率可以得到不同的稳定的李沙育图形。
由于两频率源间频率的差异和变化更灵敏和细致地反映在其相互间的相位信息中,所以相位比对的方法比直接测频或测周期能更灵敏地反映出所测频率源的情况。
比相法的原理是根据在某一特定时间间隔的始末两频率源间相位差的变化,来反映该段时间内两频率源间的平均频率偏差。
(3)相位差异技术的实验装置图扩展阅读:
与其他测频方法相比,比相法的测量结果不是以被测频率的整周期值的差异来反映测试结果,而是以比这整数值更精细的相位变化的差异来反映测试结果的,所以直接相位比对的精度远远高于直接测频或测周期方法的精度。
由于频差倍增,所以差拍测周期的一系列测频方法都是尽量扩大标准频率源和被测频率源之间的误差成分,以便于提高显示和观察的分辨率。
但因为设备较复杂,使用了大量的倍频器和混频器,所以线路噪声使被误差倍增后的信号的信噪比随着倍增倍数的增加而呈现出一种非线性的关系。同时,因比对设备噪声的引入,比对精度也在降低。
㈣ 《脉冲式线圈测试仪》 的测试款项:波形面积、波形面积差、电晕量,如何设定及是什么意思
匝间冲击测试仪电晕、面积、差积、相位
在电机、变压器使用过程中,由于绝缘强度不够,会引起工作电流过大、升温过高、机壳带电等故障,从而造成生产停顿、财产损失、人员伤亡等严重后果,因此对于匝间冲击耐压测试是非常有必要的.
根据我国GB775《旋转电机基本技术要求》.GB14711《中小型旋转电机安全 通用要求》标准,GB/T22714《交流低压成型绕组匝间绝缘试验规范》.GB/T22715《交流电机定子成型线圈耐电压水平》.GB/T22716《直流电机电枢绕组匝间绝缘试验规范》,GB/T22717《电机磁极线圈及磁场绕组匝间绝缘试验规范》、GB/T22719.1.1《交流低压电机散嵌绕组匝间绝缘 第1部分;试验方法》, GB/T22719.2《交流低压电机散嵌绕组匝间绝缘 第2部分;试验限值》,必须对电机成品、半成品进行浸漆前后匝间耐压绝缘试验。 高压电机定子线圈在通风槽口及出槽口处,其绝缘表面的电场分布是极不均匀的。当局部场强达到一定数值时,气体发生局部游离,在电窝处出现蓝色晕光,产生电晕。电晕的发生伴随着热、臭氧、氮的氧化物的产生,这些对电机绝缘都是极其有害的。另外由于热固性绝缘表面与槽壁接触不良或不稳定时,在电磁振动的作用下,将引起槽内间隙火花放电。这种火花放电造成的局部温升将使绝缘表面受到严重侵蚀。这一切都将对电机绝缘造成极大的损害。
图 2-1 面积比较示意图
波形面积近似的与能量损失成正比,所以可以使用面积比较方法来判断线圈中的能量损耗,有效的检测线圈层间和匝间短路。
2.2.2 面积差比较
如图2-2 所示,在任意指定A~B 区间内对被测线圈测试波形和标准波形的Y 轴方向的差异值进行计算(积分计算的结果为A~B 区间内的阴影部分)和标准波形在此区间的面积比较,基准用百分比来设定。
图2-2 面积差比较示意图
面积差比较方法主要表现了电感量L的差异和能量的损耗,这个比较方法可以有效的检测标准线圈和被测线圈的电感量L的差异。
2.2.3 电晕放电比较
如图2-3 所示,与波形的差异无关,在任意指定的A~B 区间内,仅在被测线圈测试波形包含的电晕放电尖峰中检出高频成分进行无损提取,并将计算结果与设定值进行比较,判定电晕放电量是否合格,设定值是一个整数。
2-3 电晕放电示意图
2.2.4 相位差比较
如图2-4 所示,用户可以指定一个需要作比较的过零点,仪器判断被测线圈测试波形和标准波形在这个过零点的偏移量,然后和标准波形的振荡周期作比较,并用这两个量的百分比作为判断依据,基准用百分比来设定。如图中,A~B间是偏移量,C~D间是标准
波形振荡周期,设定的是比较波形的第三个过零点。
图 2-4 相位差比较示意图
F提示:仪器仅能设置第2~10个过零点,第一个过零点还不能反映线圈的实际性能,所以不予设置。在实际的相位差比较中,将会产生四种结果:PASS、FAIL、FAIL1和FAIL2。PASS 表示合格,FAIL 表示不合格;FAIL1 代表未找到过零点,即在被测线圈测试波形
上找不到所设定的过零点;FAIL2 代表在标准波形上找不到完整的周期,如图2-4,若要使相位差比较能够正常工作,应该保证第三个过零点的存在。
AN9692H匝间冲击耐压测试仪是数字式匝间冲击耐压测试仪,将标准线圈采集的振荡波形存储于仪器中,测试时将被测品的波形与标准波形进行比较,根据电晕量、面积、面积差、相位差等参数进行判别,可有效、灵敏的检测线圈的层间短路、相间短路、微短路、绝缘破损、铁心铁损大等问题。
艾诺AN9691H,AN9692H匝间冲击耐压测试仪适用于中小型电机(Y180以下)及防爆电机、分马力电机、微特电机、家用电器电机、水泵电机、电动工具等行业,用于检测电机绕组的匝间绝缘、电晕放电、局部短路、接线错误和圈数不均衡等故障。
㈤ 相位差镜检技术是什么
建议:您好,相位差镜检红细胞,异常的红细胞形态超过70%以上可以诊断肾小球性血尿,也就是肾炎所引起,但是镜下红细胞超过10个以上才可以做出镜检的形态分型。
㈥ 声速测量的驻波法和相位法有什么异同
一、不同之处:
相位法测量声速一般用于实验室测量。通过对比接收波相对于发射波的相位变化,测出周期,再乘以频率就可以得到声速。相对于驻波法测声速,准确度还是比较高的,一般可达1~2%。但是很多实际的声波不是正弦波,这样就无法用相位法测量了。
声波在实际介质中传播时,相位会随介质密度的变化、混响等而变化,带来误差。另外对于固体介质,也较难进行测量。
所以实际上工程中较少应用,而是使用时差法,就是发射一个声波脉冲,接收端测量时间差,知道传播路程后就可测得声速。这种方法几乎适合大部分介质。
二、相同之处: 都用连续波测量,均依靠示波器测量
共振法:平行传播的声波与反射波产生干涉,形成驻波。改变半个波长的传播路程,驻波的波幅变化一个周期,从而可测得波长,乘以频率,得到声速。
相位法: 比较接收波相对与发射波的相位差,改变一个波长的传播路径,相位变化360度,从而通过测看相位图 ,就可测得波长,乘以频率,得到声速。
(6)相位差异技术的实验装置图扩展阅读:
与其他测频方法相比,比相法的测量结果不是以被测频率的整周期值的差异来反映测试结果,而是以比这整数值更精细的相位变化的差异来反映测试结果的,所以直接相位比对的精度远远高于直接测频或测周期方法的精度。
另外,由于频差倍增,所以差拍测周期的一系列测频方法都是尽量扩大标准频率源和被测频率源之间的误差成分,以便于提高显示和观察的分辨率。但因为设备较复杂,使用了大量的倍频器和混频器,所以线路噪声使被误差倍增后的信号的信噪比随着倍增倍数的增加而呈现出一种非线性的关系。同时,因比对设备噪声的引入,比对精度也在降低。
㈦ RC电路中相位差是如何引起的
由于电压电流随时间的变化而产生的,由于电阻和电容在过渡过程中的差异,就产生了相位的变化,即相位差。
按电阻电容排布,可分为RC串联电路和RC并联电路;单纯RC并联不能谐振,因为电阻不储能,LC并联可以谐振。
RC电路广泛应用于模拟电路、脉冲数字电路中,RC并联电路如果串联在电路中有衰减低频信号的作用,如果并联在电路中有衰减高频信号的作用。
最基本的被动线性元件为电阻器(R)、电容器(C)和电感元件(L)。
这些元件可以被用来组成4种不同的电路:RC电路、RL电路、LC电路和RLC电路,这些名称都缘于各自所使用元件的英语缩写。它们体现了一些对于模拟电子技术来说很重要的性质。它们都可以被用作被动滤波器。本条目主要讲述RC电路串联、并联状态的情况。
在实际应用中通常使用电容器(以及RC电路)而非电感来构成滤波电路。这是因为电容更容易制造,且元件的尺寸普遍更小。
㈧ 大学物理简谐方程中的相位差是取绝对值还是有正负的呀
都可以。
如果预先就知道一个超前另一个落后,就用绝对值计算方便;
如果预先不知道,那就取第一个相位减去第二个的,其差若大于零,就表示第一个超前第二个,若小于零,表示第一个落后第二个;若等于零,就同相。如果预先就知道一个超前另一个落后,就用绝对值计算方便;
如果预先不知道,那就取第一个相位减去第二个的,其差若大于零,就表示第一个超前第二个,若小于零,表示第一个落后第二个;若等于零,就同相。12这张图横坐标是x,给出的是某一时刻的波形,相当于在某个时刻给波拍了一张照片。
11这张图,横坐标是时间,给出的是原点处质点随时间的振动。
对于,波形图和振动图,判断质点的运动方向方法不一样。
12这种波形图,得看波形下一时刻的变化,比如图中,波形一小段时间后,由a变到了b,所以原点的质点,是朝着虚线,也就是向下(y负方向)运动,初相位就是pi/2
11这种振动图,曲线本身就代表了质点随时间的变化,所以只要看横坐标下一时刻,质点位置就行了,从图中看质点向y正方向运动,初相位就。通常以度(角度)作为单位初相位:正弦电压源U=Um sin(wt+φ); 。 相位(phase),即φ叫做初相位或初相角,波形循环一周即为,当t=0时。当讯号波形以周期的方式变化,也称作相角,是描述讯号波形变化的度量,其中wt+φ称为正弦量的相位角
㈨ 矢量传声器是如何测量粒子振速的
相位法测量声速一般用于实验室测量.通过对比接收波相对于发射波的相位变化,测出周期,再乘以频率就可以得到声速.相对于驻波法测声速,准确度还是比较高的,一般可达1~2%.但是很多实际的声波不是正弦波,这样就无法用相位法测量了.而且,声波在实际介质中传播时,相位会随介质密度的变化、混响等而变化,带来误差.另外对于固体介质,也较难进行测量.所以实际上工程中较少应用,而是使用时差法,就是发射一个声波脉冲,接收端测量时间差,知道传播路程后就可测得声速.这种方法几乎适合大部分介质.但其测得的是群速,与相位法测得的相速有区别.
实验原理
由波动理论可知,波速与波长、频率有如下关系:v = f λ,只要知道频率和波长就可以求出波速。本实验通过低频信号发生器控制换能器,信号发生器的输出频率就是声波频率。声波的波长用驻波法(共振干涉法)和行波法(相位比较法)测量。下图是超声波测声速实验装置图。
n 驻波法测波长
由声源发出的平面波经前方的平面反射后,入射波与发射波叠加,它们波动方程分别是:
叠加后合成波为:
y = ( 2Acos2pX/l ) cos2p ft
cos2pX/l = ±1 的各点振幅最大,称为波腹,对应的位置:
X =±nl/2 ( n =0,1,2,3……)
cos2pX/l = 0 的各点振幅最小,称为波节,对应的位置:
X = ±(2n+1)l/4 ( n =0,1,2,3……)
因此只要测得相邻两波腹(或波节)的位置Xn、Xn-1即可得波长。
n 相位比较法测波长
从换能器S1发出的超声波到达接收器S2,所以在同一时刻S1与S2处的波有一相位差:j = 2px/l其中l是波长,x为S1和S2之间距离