A. 国际热核聚变实验堆计划的简要概况
国际热核聚变实验堆(ITER)计划 ,简称“(ITER)计划” ,(ITER:International Thermonuclear Experimental Reactor),ITER计划 倡议于1985年,并于1988年开始实验堆的研究设计工作。经过十三年努力,耗资十五亿美元,在集成世界聚变研究主要成果基础上,ITER工程设计于2001年完成。此后经过五年谈判,ITER计划 七方2006年正式签署联合实施协定,启动实施ITER计划。ITER计划将历时35年,其中建造阶段10年、运行和开发利用阶段20年、去活化阶段5年。中国政府坚定支持中国参与ITER计划,胡锦涛多次就此做出重要指示。经过深入调研和充分论证,中国政府于2003年1月决定正式参加ITER计划谈判。此后,中国还积极推动谈判进程,为尽早启动实施ITER计划进行不懈努力,这期间,中国先后承办了ITER第九次和第十一次政府间谈判会议。ITER计划是目前世界上仅次于国际空间站的又一个国际大科学工程计划。该计划将集成当今国际上受控磁约束核聚变的主要科学和技术成果,首次建造可实现大规模聚变反应的聚变实验堆,将研究解决大量技术难题,是人类受控核聚变研究走向实用的关键一步,因此备受各国政府与科技界的高度重视和支持。
核聚变研究是当今世界科技界为解决人类未来能源问题而开展的重大国际合作计划。与不可再生能源和常规清洁能源不同,聚变能具有资源无限,不污染环境,不产生高放射性核废料等优点,是人类未来能源的主导形式之一,也是目前认识到的可以最终解决人类社会能源问题和环境问题、推动人类社会可持续发展的重要途径之一。ITER计划是实现聚变能商业化必不可少的一步,其目标是验证和平利用聚变能的科学和技术可行性。ITER计划集成了当今国际受控磁约束核聚变研究的主要科学和技术成果,拥有可靠的科学依据并具备坚实的技术基础。国际上对ITER计划的主流看法是:建造和运行ITER的科学和工程技术基础已经具备,成功的把握较大,经过示范堆、原型堆核电站阶段,可在本世纪中叶实现聚变能商业化。ITER计划是我国改革开放以来有机会参加的最大的多边国际大科学工程合作项目。参加ITER计划有利于大幅度提升我国在科学技术领域参加国际合作的层次;有利于推动我国聚变能研究开发,加快我国聚变能开发进程;有利于我国学习掌握大型国际科学工程项目的建设、管理、运行和维修经验;有利于提高我国超导技术、稀有金属材料技术、高电压技术等众多领域的研究开发能力;有利于锻炼和造就一批高水平、高素质的科研人员、工程技术人员和管理人员,为我国聚变事业的发展打下坚实人才基础。2003年1月国务院批准我国参加ITER计划谈判,经过三年谈判,2006年5月24日,经国务院批准,中国ITER谈判联合小组代表我国政府与欧盟、印度、日本、韩国、俄罗斯和美国共同草签了ITER计划协定,标志着ITER计划进入全面实施的准备阶段。(霍裕平院士ITER计划中国专家委员会首席科学家、郑州大学教授,潘传红研究员 中国核工业集团公司西南物理研究院院长,李建刚研究员 中国科学院等离子体物理研究所所长)
2006年5月24日,国家科学技术部代表我国政府与其他六方一起,在比利时首都布鲁塞尔草签了《国际热核聚变实验堆(International Thermonuclear Experimental Reactor)联合实施协定》。这标志着ITER计划实质上进入了正式执行阶段,即将开始工程建设,也标志着我国实质上参加了ITER计划。
B. 热核聚变实验堆的开发,对世界的发展有哪些帮助呢
要实现可控核聚变,根据目前的科学研究,至少需要100年时间。从实践理论的进展来看,发展可控核聚变,不断为人类提供能源是大势所趋,势在必行。核聚变能源是濒临枯竭的陆地能源和矿物能源不可缺少的替代品。从应用上分析,它几乎可以覆盖人类生产和生活所需的所有能源领域。核聚变原料 "氘 "由海水制成,"氚 "由锂制成(也来自聚合副反应)。
ITER项目于2005年正式启动,地点在法国的卡达拉辛,基本设计没有改变。该项目将于2015年完成,费用为120亿美元。欧盟将支付40%,而法国、中国、日本和美国将各支付10%。5%(最终美国、日本、俄罗斯、中国、韩国和印度各出资约9%)。
C. 江西再次轰动世界,“人造太阳”首次成功放电,我国科研发展到底有多硬核
我国自主研制的核聚变关键装置——中国环流器二号M装置——在成都建成并实现首次放电,标志着我国核聚变发展取得重大突破,自主掌握了大型先进磁约束核聚变实验装置的设计、建造、运行技术,为我国核聚变反应堆的自主设计与建造打下坚实基础。
随着中控大屏显示等离子体发出蓝色的光芒,中国环流器二号M装置首次成功放电,标志着这台先进核聚变关键装置正式投运。
核能的产生主要有核聚变和核裂变两种方式,目前核电站里普遍应用的就是核裂变反应,就是一个大质量的原子分裂成两个较小的原子,释放能量。而核聚变,可以理解为两个小质量的原子聚合成一个较大的原子,能够释放出巨大能量,太阳的能量也是源于此,是人类未来的理想能源。
中核集团董事长 余剑锋:像氘这样的(核聚变)材料在海水里面就很多,一般来讲一公升的海水就相当于三百公升汽油的能量,你想一想这样一个取之不竭用之不尽的我们地球资源,如果我们用聚变能,那人类的能源就可以说(就有)取之不竭用之不尽的清洁能源。
D. 什么是国际热核聚变实验堆计划意义是什么
核聚变炉实验用包模块是指核聚变实验中围绕核反应堆外部的保护膜。该膜具有持续冷却核聚变路和防止放射性泄漏的作用。我国主要使用氦冷固体材料作为包层模块。目前世界上最大的核聚变路实验是ITER,即国际热核聚变实验路项目。国际热核聚变实验堆(ITER)项目是目前世界上规模最大、影响力最大的国际科研合作项目之一,建设约10年、50亿美元(1998年价值)。Tor装置是可以引起大规模核聚变反应的超导扭矩标记,通常被称为“人工太阳”。
要开始融合反应,首先需要足够的能量来克服燃料这种带正电荷的原子核之间的库伦斥力。这个过程也称为“点火”。如果反应要继续进行,融合反应的速度必须足够高,才能保持温度高于点火温度。这里的反应率与核反应截面,即入射粒子和靶核之间发生反应的概率成正比。与氘融合相比,在无中子反应中用作燃料的原子核通常原子序数更高。也就是说,由于携带的电荷更多,它们之间的库隆斥力也更强,两个原子核很难接近,相应的点火温度更高。下面列举了几种没有中子的聚变反应的点火温度,可以看出,点火温度比氘聚变高好几倍,反应截面小得多。
E. 核聚变可以人为控制吗
人类对核能的利用已经相当普遍了!核电站已经为人类的能源供应做出了巨大的贡献,原子弹则战略上抵御了第三次世界大战。这两者都对人类做出了不可磨灭的贡献,它们都属于核裂变。核裂变通俗地讲是铀和钚的原子核分裂成两个或多个质量较小的原子的一种核反应,在这个过程中释放巨大的能量!但还有一种核反应却不能被真正有效的利用起来,原因在于它的不可控,这就是核聚变!
被誉为'人造太阳'核聚变反应堆的wendelstein
相信随着人类加大对可控核聚变的投入,人类终究从“石油文明”走向“核能文明”!
当你决定订阅的时候,你已经在学习的路上!获取更多知识快餐也可关注微信订阅号《启迪认识论》
F. 国际热核聚变实验堆计划的发展历程
由于聚变能的研究不仅关系到最终解决人类能源问题,而且还涉及众多最先进且非常敏感的技术,因此,ITER计划的形成除与科学技术本身的发展有关外,还始终与主要大国在政治和外交方面的考虑分不开。本文将主要从科学和技术角度作一些分析和说明。
1985年,作为结束冷战的标志性行动之一,前苏联领导人戈尔巴乔夫和美国总统里根在日内瓦峰会上倡议,由美、苏、欧、日共同启动国际热核聚变实验堆(ITER)计划。ITER计划的目标是要建造一个可自持燃烧(即点火)的托可马克核聚变实验堆,以便对未来聚变示范堆及商用聚变堆的物理和工程问题做深入探索。
最初,该计划仅确定由美、俄、欧、日四方参加,独立于联合国原子能委员会(IAEA)之外,总部分设美、日、欧三处。由于当时的科学和技术条件还不成熟,四方科技人员于1996年提出的ITER初步设计很不合理,要求投资上百亿美元。1998年,美国出于政治原因及国内纷争,以加强基础研究为名,宣布退出ITER计划。欧、日、俄三方则继续坚持合作,并基于上世纪90年代核聚变研究及其他高新技术的新发展,大幅度修改实验堆的设计。2001年,欧、日、俄联合工作组完成了ITER装置新的工程设计(EDA)及主要部件的研制,预计建造费用为50亿美元(1998年价),建造期8至10年,运行期20年。其后,三方分别组织了独立的审查,都认为设计合理,基本上可以接受。
2002年,欧、日、俄三方以EDA为基础开始协商ITER计划的国际协议及相应国际组织的建立,并表示欢迎中国与美国参加ITER计划。中国于2003年1月初正式宣布参加协商,其后美国在1月末由布什总统特别宣布重新参加ITER计划,韩国在2005年被接受参加ITER计划协商。以上六方于2005年6月签订协议,一致同意把ITER建在法国核技术研究中心Cadarache,从而结束了激烈的选址大战。印度于2006年加入ITER协商。最终,七个成员国政府于2006年5月25日草签了建设ITER的国际协定。目前国际组织正在组建,总干事和副总干事人选已确定。还有一些国家也正在考虑参加ITER计划。
在ITER建设总投资的50亿美元(1998年值)中,欧盟贡献46%,美、日、俄、中、韩、印各贡献约9%。根据协议,中国贡献中的70%以上由我国制造所约定的ITER部件折算,10%由我国派出所需合格人员折算,需支付国际组织的外汇不到20%。
作为聚变能实验堆,ITER要把上亿度、由氘氚组成的高温等离子体约束在体积达837立方米的磁笼中,产生50万千瓦的聚变功率,持续时间达500秒。50万千瓦热功率已经相当于一个小型热电站的水平。这将是人类第一次在地球上获得持续的、有大量核聚变反应的高温等离子体,产生接近电站规模的受控聚变能。
在ITER上开展的研究工作将揭示这种带有氘氚核聚变反应的高温等离子体的特性,探索它的约束、加热和能量损失机制,等离子体边界的行为以及最佳的控制条件,从而为今后建设商用的核聚变反应堆奠定坚实的科学基础。对ITER装置工程整体及各部件在50万千瓦聚变功率长时间持续过程中产生的变化及可能出现问题的研究,不仅将验证受控热核聚变能的工程可行性,而且还将对今后如何设计和建造聚变反应堆提供必不可少的信息。
ITER的建设、运行和实验研究是人类发展聚变能的必要一步,有可能直接决定真正聚变示范电站(DEMO)的设计和建设,并进而促进商用聚变电站的更快实现。
ITER装置是一个能产生大规模核聚变反应的超导托克马克。其装置中心是高温氘氚等离子体环,其中存在15兆安的等离子体电流,核聚变反应功率达50万千瓦,每秒释放多达1020个高能中子。等离子体环在屏蔽包层的环型包套中,屏蔽包层将吸收50万千瓦热功率及核聚变反应所产生的所有中子。
在包层外是巨大的环形真空室。在下侧有偏虑器与真空室相连,可排出核反应后的废气。真空室穿在16个大型超导环向场线圈(即纵场线圈)中。
环向超导磁体将产生5.3特斯拉的环向强磁场,是装置的关键部件之一,价值超过12亿美元。
穿过环的中心是一个巨大的超导线圈筒(中心螺管),在环向场线圈外侧还布有六个大型环向超导线圈,即极向场线圈。中心螺管和极向场线圈的作用是产生等离子体电流和控制等离子体位形。
上述系统整个被罩于一个大杜瓦中,坐落于底座上,构成实验堆本体。
在本体外分布4个10兆瓦的强流粒子加速器,10兆瓦的稳态毫米电磁波系统,20兆瓦的射频波系统及数十种先进的等离子体诊断测量系统。
整个体系还包括:大型供电系统、大型氚工厂、大型供水(包括去离子水)系统、大型高真空系统、大型液氮、液氦低温系统等。
ITER本体内所有可能的调整和维修都是通过远程控制的机器人或机器手完成。
ITER装置不仅反映了国际聚变能研究的最新成果,而且综合了当今世界各领域的一些顶尖技术,如:大型超导磁体技术,中能高流强加速器技术,连续、大功率毫米波技术,复杂的远程控制技术等等。
2013年9月25日(北京时间)消息,劳伦斯·利弗莫尔国家实验室报告称,世界最大激光器、被称为“人造太阳”的美国国家点火装置(NIF)正距离其目标越来越近,显示了一个可持续核聚变反应装置正在由梦想逐步成为现实。不过在设施达到高度稳定前,目前仍有一个显著障碍有待克服 。
G. 中国第一“人造太阳”基地是哪
中国第一复“人造太阳”基地是制合肥科学岛。
中国“人造太阳”EAST物理实验获重大突破,实现在国际上电子温度达到5000万度持续时间最长的等离子体放电,标志着中国在稳态磁约束聚变研究方面继续走在国际前列。
中国的全超导托卡马克核聚变实验装置EAST和中国、美国、俄罗斯等七方共同启动的国际热核聚变实验堆ITER都是旨在创造一个“太阳”,给人类带来源源不断的清洁能源,因此也俗称“人造太阳”。
(7)国际热核聚变实验装置扩展阅读:
2018年6月28日,国务院国资委在北京发布中央企业工业文化遗产(核工业)名录,首批专门发布核工业行业的12项工业文化遗产。中国第一座人造太阳实验装置是其中之一。
在刘志宏心中神秘的“人造太阳”的所在地, 其实就是中科院等离子体物理研究所,也是他获得博士学位的地方。在这里,他明白了,通过科学家们一代又一代的努力,已经建成了世界上首个全超导非圆截面托卡马克核聚变实验装置(EAST), 同时,于2006 年正式加入了国际热核聚变实验堆(ITER)项目,这也是我国迄今为止参与的最大的国际合作项目。
H. 国际热核聚变实验堆计划的中国情况
我国核聚变能研究开始于60年代初,尽管经历了长时间非常困难的环境,但始终能坚持稳定、逐步的发展,建成了两个在发展中国家最大的、理工结合的大型现代化专业研究所,即中国核工业集团公司所属的西南物理研究院(SWIP)及中国科学院所属的合肥等离子体物理研究所(ASIPP)。为了培养专业人才,还在中国科技大学、大连理工大学、华中科技大学、清华大学等高等院校中建立了核聚变及等离子体物理专业或研究室。科技部依托中国科大成立“国家磁约束聚变堆总体设计组”,中国科大核科学技术学院院长万元熙院士担任组长。
我国核聚变研究从一开始,即便规模很小时,就以在我国实现受控热核聚变能为主要目标。从上世纪70年代开始,集中选择了托克马克为主要研究途径,先后建成并运行了小型CT-6(中科院物理所)、KT-5(中国科技大学)、HT-6B(ASIPP)、HL-1(SWIP)、HT-6M(ASIPP)及中型HL-1M(SWIP)。SWIP建成的HL-2A经过进一步升级,有可能进入当前国际上正在运行的少数几个中型托克马克之列。在这些装置的成功研制过程中,组建并锻炼了一批聚变工程队伍。我国科学家在这些常规托克马克装置上开展了一系列十分有意义的研究工作。
自1991年,我国开展了超导托克马克发展计划(ASIPP),探索解决托克马克稳态运行问题。1994年建成并运行了世界上同类装置中第二大的HT-7装置,最近初步建成了首个与ITER位形相似(规模小很多)的全超导托克马克EAST。超导托克马克计划无疑为我国参加ITER计划在技术与人才方面做了进一步的准备。
聚变-裂变混合堆项目于1987年正式列入我国863计划,目的是探索利用核聚变反应的另一类有效途径,其中主要安排了一些与未来核聚变堆有关技术的研发。2000年由于诸多原因,聚变-裂变混合堆项目被中止,但核聚变堆概念设计以及堆材料和某些特殊堆技术的研究仍在两个专业院所继续进行。
尽管就规模和水平来说,我国核聚变能的研究和美、欧、日等发达国家还有不小的差距,但是我们有自已的特点,也在技术和人才等方面为参加ITER计划做了相当的准备。这使得我们有能力完成约定的ITER部件制造任务,为ITER计划做出相应的贡献,并有可能在合作过程中全面掌握聚变实验堆的技术,达到我国参加ITER计划总的目的。
我国是一个能源大国,在本世纪内每年的能耗都将是数十亿吨标煤。由于条件限制,在长时间内我国能源生产都将以煤为主,所占比例高达70%。考虑到我国社会经济的长期可持续发展,我们必须尽快用可靠的非化石能源(如核裂变或核聚变能、太阳能、水能等)来取代大部分煤或石油的消耗。因此,必然应该在能力许可范围内积极开展核聚变能的研究,尽可能地参加国际核聚变能的大型合作研发计划(如ITER计划)。我国参加ITER计划是基于能源长远的基本需求。
核聚变能的研发对每个大国都是必要的,但又是一个长期、大规模、高投入而且又是高风险的过程。我国核聚变研究目前距离发达国家还有很大差距,还须经过若干年的努力才能接近实验堆建设和研究阶段。如果采取单独建造实验堆,则又须花费上百亿资金和十数年时间,我国和国际的差距会进一步扩大。因此,参加ITER计划,参加ITER的建设和实验,从而全面掌握ITER的知识和技术,培养一批聚变工程和科研人才,使其成为我国聚变研究的一部分。再配合国内安排必要的基础研究、聚变反应堆材料的研究、聚变堆某些必要技术的研究等,则有可能在较短时间、用较小投资使我国核聚变能研究在整体上进入世界前沿,为我国自主地开展核聚变示范电站的研发奠定基础。
由中国自行设计、研制的世界上第一个全超导托卡马克EAST(原名HT--7U)核聚变实验装置(又称“人造太阳”)2006年成功完成首次工程调试,2007年3月通过国家验收。我们在一些战略高技术和产业关键核心技术取得重大突破,取得了一批重大原创成果,一些学科领域走到世界前列。科技创新能力大幅提升,有力支撑了中国经济社会发展。
我们还必须看到,ITER本身就是当代各类高新技术的综合,中国科技人员长期、全面地参加ITER的建设和研究工作,直接接触和了解各类技术,必将有利于我国高新技术及相应产业的发展。事实上,参加ITER计划已开始推动我国超导技术与相关产业的发展。由于ITER计划本身的重要性,我国作为完全的伙伴全面参加ITER计划,就成为我国参加国际科技合作走上更高层次的一个明显的标志。这也在国际上展示了我国在科技领域坚持开放的决心。我国聚变研究的中心目标,是促使核聚变能在可能的条件下,尽早在中国实现。因此参加ITER计划应该也只能是我国整体聚变能研发计划中的一个重要组成部分。国家将在参加ITER计划的同时支持与之配套或与之互补的一系列重要研究工作,如托克马克等离子体物理的基础研究、聚变堆第一壁等关键部件所需材料的开发、示范聚变堆的设计及必要技术或关键部件的研制等。参加ITER计划将是我国聚变能研究的一个重大机遇。 12日从中科院合肥物质科学研究院获悉,由中科院等离子体所研制的国际热核聚变实验堆计划(ITER)极向场导体采购包第二阶段PF5导体日前运抵法国福斯港,交付ITER现场。
国际热核聚变实验堆计划,简称ITER计划,是目前全球规模最大、影响最深远的国际科研合作项目之一。由中国与欧盟、印度、日本、韩国、俄罗斯和美国等七方共同实施。据悉,此次中方交付ITER现场中国制造任务的首件产品,也是ITER七方中首件交付ITER现场的大件产品。
PF导体采购包由中科院等离子体所负责研制。ITERPF导体是外方内圆的异型导体,其制造工艺复杂,包括焊接工艺、无损检测技术、导体成型及收绕技术等。等离子体所的研究院先后完成铠甲及焊缝无损检测、导体成型及收绕型技术等研发,并完成各种接收测试。2013年4月25日导体首先经过500公里的陆路从合肥到达上海港,然后经过10000海里从上海港口到达福斯港,到达离福斯港100公里外的ITER总部,整个行程共38天。
美、法等国在20世纪80年代中期发起ITER计划,旨在建立世界上第一个受控热核聚变实验反应堆,为人类输送巨大的清洁能量。中国是参与这个计划的七方成员之一,承担了ITER装置近10%的采购包。
I. 国际热核聚变实验装置将建造于那个国家
是法国
索词条
国际热核聚变实验堆计划
更多图片(11张)
“国际热核聚变实验版堆(ITER)计划”是目前权全球规模最大、影响最深远的国际科研合作项目之一,建造约需10年,耗资50亿美元(1998年值)。ITER装置是一个能产生大规模核聚变反应的超导托克马克,俗称“人造太阳”。2003年1月,国务院批准我国参加ITER计划谈判,2006年5月,经国务院批准,中国ITER谈判联合小组代表我国政府与欧盟、印度、日本、韩国、俄罗斯和美国共同草签了ITER计划协定。
J. 可控核聚变还需多少年
可控核聚变还需20年。因为一般核聚变由氘、氚离子聚合成氦,聚合中损失的质量转化为超强能量,这和太阳发光发热原理相同,所以可控核聚变研究装置又被称为“人造太阳”。
我国新一代可控核聚变研究装置“中国环流器二号M”(HL—2M)在成都正式建成放电,标志我国正式跨入全球可控核聚变研究前列,HL—2M将进一步加快人类探索未来能源的步伐。
发展趋势:
可控核聚变需要超高温、超高密度等条件,多采用先进托卡马克装置,通过超强磁场将1亿摄氏度的等离子体约束在真空室内,达到反应条件。
全球在共同探索其实现方法,建造模拟实验平台。HL—2M是我国自主知识产权、规模最大、参数最高的“人造太阳”。国际热核聚变实验堆计划是当今世界规模最大、影响最深远的国际大科学工程,我国于2006年正式签约加入该计划。