导航:首页 > 装置知识 > 基于菲涅耳公式测量折射率的实验方法与装置

基于菲涅耳公式测量折射率的实验方法与装置

发布时间:2022-04-09 12:38:40

㈠ 菲涅耳公式的介绍

菲涅耳公式(或菲涅耳方程),由奥古斯丁·让·菲涅耳导出。用来描述光在不同折射率的介质之间的行为。由公式推导出的光的反射称之为“菲涅尔反射”。1菲涅尔公式是光学中的重要公式,用它能解释反射光的强度、折射光的强度、相位与入射光的强度的关系。

㈡ 关于斯涅尔公式和斐索实验

斯涅尔公式
光入射到不同介质的界面上会发生反射和折射。其中入射光和折射光位于同一个平面上,并且与界面法线的夹角满足如下关系:
n1sinθ1 = n2sinθ2
其中,n1和n2分别是两个介质的折射率,θ1和θ2分别是入射光(或折射光)与界面法线的夹角,叫做入射角和折射角。
斐索实验介绍:
1859年,斐索做了一个流水实验,实验的目的是为了考察介质的运动对在其中传播的光速有何影响,从而判断以太是否被拖曳。
实验装置如下图所示,光束由光源发出后,经过半透镜后分为两束,一束光与水流方向一致,另一束光则与水流方向相反,两束光在观察者处产生干涉条纹。
斐索实验虽然只用了水、酒精和石英棒等很少几种透明物质做过,由于其非常符合菲涅耳的以太拖拽假设和相对论的速度变换式而使人们坚信,斐索实验的条纹变化将随着透明物质的折射率变化而变化,折射率越高,观察到的条纹变化越大。折射率越低,观察到的条纹变化越小, 因为空气的折射率只有1.0003,产生的条纹移动预计只有0.00016, 所以换用气体将无法观察到条纹变化

㈢ 求菲涅耳公式的原始推导

对不起,我是土木专业的我无能为力。

这种原始推导都是收藏啊,建议你去你学校的图书馆去查查,这种原始推导可能在库本图书库或外文原版图书库把

(你们图书馆网络化了吗?可以到图书馆里看看其他地方的书库,也许能找到。)

还有国外名校的在线书库也许有

看我能帮你找下不

补充:外国的版权要求都很严格的,像大不列颠网络全书 有原文的,看全问要信用卡才能进的

好不容易找到了一个关于 他研究的英文网站,上面有,不知道是你需要的么,看不懂可以用翻译工具。http://www.experiencefestival.com/a/Augustin-Jean_Fresnel/id/1922586
网站上有个
Including:
Augustin-Jean Fresnel - Biography
Augustin-Jean Fresnel - Researches
Augustin-Jean Fresnel - External link and reference
翻译:其中包括:
奥古斯丁-让菲涅尔-生平
奥古斯丁-让菲涅尔-研究
奥古斯丁-让菲涅尔-外部链接和参考

我看了一下这里应该有你需要的,因为我是外行,不能直接找给你了

还可以点最下面的Fresnel equations (菲涅耳方程区)
,这里字比较小怕你找不到,直接给你连接http://www.experiencefestival.com/fresnel_equations 这里是他大部分论文,还有其他人的不同见解,应该对你也有点用把

另:你对学术的研究令我十分佩服。因此我花了1整天的时间来给你找资料,这回答的最认真的问题,
希望你能继续努力,在学术上有所成就!

㈣ 菲涅耳公式的实验分析

现在用菲涅耳公式来解释半波损失问题。在洛埃镜实验中,光从空气入射到玻璃,即。按折射定律,知道。由于,,令入射光中的As1,Ap1均取正值,所以;。
从图中可以看到,在i1=90°的掠射情况下,入射光和反射光的传播方向几乎相同,它们的波面I和II几乎相互平行.此时,对Ap1′和Ap1规定的正方向也几乎相同,由于在无限靠近界面处反射光中电矢量的两个分量都取负值,而且满足,它们的合矢量几乎与这里入射光中的合矢量方向相反.在波的航进路程上,通常是每隔半个波长,振动矢量的方向相反.现在则是在同一地点(界面上的入射点),而不是相隔半个波长处,仅是由于反射过程,振动方向就变成相反了.所以称为半波损失(这是对电矢量说的,根据E、H和传播方向三者之间所构成的右螺旋关系可知,磁矢量在这情况中,也同样产生半波损失)。
在维纳驻波实验中,i1几乎等于零.仍设n1i2,得As1′0.但按照各自规定的正方向,反射光中的As1′和Ap1′都分别与入射光中的As1和Ap1反向,而且满足,这就是说合矢量反向.这也是在同一地点(入射点)而不是相隔半个波处,仅仅是由于反射过程使振动方向变成相反.所以在这情况中(i1≈0)也发生了半波损失.这也是对电矢量说的.由于这里反射光和入射光的传播方向是相反的,所以磁矢量的方向不变,不产生半波损失.因此,介质表面对驻波中的电矢量来说是波节,但对磁矢量来说仍应该是波腹.维纳实验所用感光乳胶在介质表面上不感光表示对感光作用说,电矢量是主要的.此处磁矢量虽是波腹,但乳胶并不感光,说明磁矢量对感光不起作用.这一结果是容易解释的,因为电磁波的磁矢量作用在电子上的洛仑兹力qvB比电矢量的作用力qE小得多,其比值为v2/c2,式中v和c分别为电子的速度和光速,一般可以略去不计。 总结洛埃镜实验和维纳实验,可得这样的结论:入射光在光疏介质(n1小)中前进,遇到光密介质(n2大)的界面时,在掠射(i1≈90°)或正射(i1≈0)两种情况下,反射光的振动方向对于入射光的振动方向都几乎相反,都将在反射过程中产生半波损失,这是仅对电矢量而言的.在光的效应中,一般仅考虑电矢量的作用.正是这个原因,我们常把电场矢量称为光矢量,电场称为光场.入射光在光密介质中前进,遇到光疏介质的界面而反射时(n1>n2),不产生半波损失。
由上可知,不论在掠射或正射时,相对于入射光的振动方向,折射光的振动方向永远不发生半波损失。

㈤ 什么是 菲涅耳反射 啊请具体解释,急

菲涅耳公式
一、菲涅耳公式
电磁波通过不同介质的分界面时全发生反射和折射.这一关系可由菲涅耳公式表达出来.上节提到的在反射过程中发生的半波损失问题,就可以用这个公式来解释.这一公式对以后讲到的许多光学现像都能圆满地加以说明.
菲涅耳公式的内容说明如下:
引言:在任何时刻,我们都可以把入射波、反射波和折射波的电矢量分 成两个分量,一个平行于入射面,另一个垂直于入射面.有关各量的 平行分量与垂直分量依次用指标p和s来表示.以i1、i1′和i2分别表示入射角、反射角和折射角,它们确定了各波的传播方向(在大多数情况下,只要注意各波的电场矢量即可,因为知道了各个波的传播方向,各波的磁场矢量就可按右螺旋关系确定).以A1、A1′和A2来依次表示入射波、反射波和折射波的电矢量的振幅,它们的分量相应就是Ap1、Ap1′、Ap2 和As1 、As1′、As2.由于三个波的传播方向各不相同,必须分别规定各分量的某一个方向作为正方向,这种规定当然是任意的.但是只要在一个问题的全部讨论过程中始终采取同一种正方向的选择,由此得到的各个关系式就具有普遍的意义.图中xy平面为两介质的分界面,z轴为法线方向,xz平面为入射面.规定电矢量的s分量以沿着+y方向的为正,这对于入射、反射和折射三个波都相同.图中I、II、III三个面依次表示入射、反射和折射三个波的波面.电矢量的p分量沿着这三个波面与入射面的交线,它们的正方向分别规定为如图所示。且s分量、p分量和传播方向三者构成右螺旋关系.

在传播过程中,电矢量的方向是在不断变化的,我们所注意的仅是在反射、折射过程这一瞬时的变化,所以菲涅耳公式所表示的有关各量的方向都是指紧靠两介质分界面O点处而言的(在图中为消楚起见,将通过O点的三个波面I、II、III画在离开O点较远之处).菲涅耳公式包括下列四式

前两式表示反射波的两个分量和入射波两个对应分量之比;后两式表示折射波和入射波两个对应分量之比,振动方向的变化则由正负号来决定.
注意 应当注意各分量量值之比是相对于入射波来计算的,但振动方向则分别按照各波的上述规定,不是直接相对于入射波作比 较(s分量还可比较,p分量则无法简单地用正负号来直接表示出各波之间的振动方向关系).

对通常的入射光波来说,As1和Ap1两分量的振动方向都可认为是正的,量值可认为彼此相等.这是因为对于通常的热光源所发的光,在垂直于传播方向的平面(波面)内电矢量(以及磁矢量)可以在任何方向振动,这些振动中的每一个矢量都在毫无规则地非常迅速地改变着.我们观察到的仅是它们的平均位值(关于这一点,将在第五章中进一步阐明).因而我们可以运用标量近似处理来代替矢量波.在随意选定了任何两个互相垂直的方向(例如s和p两个方向)之后,就可以把任一振动的振幅A沿所取的方向分成和两个分量.在平均效应中没有任何特殊理由必须认为那一个是正,那一个是负,因而通常就认为它们都是正的.这两个分振动的平均能量为

由此可知,.
既然入射光诸振动分量都看作是正的,所以菲涅耳公式中的符号,可以认为只是对反射和折射光而言的,反射光和折射光都是在入射点突然改变传播方向的,因此,一般地说,电矢量也将在这里突然改变方向.

详细分析:它不能简单的用入射光位相怎样改变来说明,因为正负值仅是相对于各自规定的方向说的,而要通过菲涅耳公式及有关的符号规定来分析。这样,既可以解释一束光垂直入射或掠射时反射光相对于入射光的半波损失问题,又可以解释两束不同情况下的反射光之间的额外程差问题。至于符号到底是否改变,取决于入射角的大小和折射角,换句话说,取决于入射角和介质的折射率。

二、半波损失的解释
现在用菲涅耳公式来解释半波损失问题。在洛埃镜实验中,光从空气入射到玻璃,即 。按折射定律 ,知道 。由于 , ,令入射光中的As1,Ap1均取正值,所以 ; 。

从图中可以看到,在i1=90°的掠射情况下,入射光和反射光的传播方向几乎相同,它们的波面I和II几乎相互平行.此时,对Ap1′和Ap1规定的正方向也几乎相同,由于在无限靠近界面处反射光中电矢量的两个分量都取负值,而且满足 ,它们的合矢量几乎与这里入射光中的合矢量方向相反.在波的航进路程上,通常是每隔半个波长,振动矢量的方向相反.现在则是在同一地点(界面上的入射点),而不是相隔半个波长处,仅是由于反射过程,振动方向就变成相反了.所以称为半波损失(这是对电矢量说的,根据E、H和传播方向三者之间所构成的右螺旋关系可知,磁矢量在这情况中,也同样产生半波损失).
在维纳驻波实验中,i1几乎等于零.仍设n1<n2,即i1>i2,得As1′<0;Ap1′>0.但按照各自规定的正方向,反射光中的As1′和Ap1′都分别与入射光中的As1和Ap1反向,而且满足 ,这就是说合矢量反向.这也是在同一地点(入射点)而不是相隔半个波处,仅仅是由于反射过程使振动方向变成相反.所以在这情况中(i1≈0)也发生了半波损失.这也是对电矢量说的.由于这里反射光和入射光的传播方向是相反的,所以磁矢量的方向不变,不产生半波损失.因此,介质表面对驻波中的电矢量来说是波节,但对磁矢量来说仍应该是波腹.维纳实验所用感光乳胶在介质表面上不感光表示对感光作用说,电矢量是主要的.此处磁矢量虽是波腹,但乳胶并不感光,说明磁矢量对感光不起作用.这一结果是容易解释的,因为电磁波的磁矢量作用在电子上的洛仑兹力qvB比电矢量的作用力qE小得多,其比值为v2/c2,式中v和c分别为电子的速度和光速,一般可以略去不计.
总结洛埃镜实验和维纳实验,可得这样的结论:入射光在光疏介质(n1小)中前进,遇到光密介质(n2大)的界面时,在掠射(i1≈90°)或正射(i1≈0)两种情况下,反射光的振动方向对于入射光的振动方向都几乎相反,都将在反射过程中产生半波损失,这是仅对电矢量而言的.在光的效应中,一般仅考虑电矢量的作用.正是这个原因,我们常把电场矢量称为光矢量,电场称为光场.入射光在光密介质中前进,遇到光疏介质的界面而反射时(n1>n2),不产生半波损失.
由上可知,不论在掠射或正射时,相对于入射光的振动方向,折射光的振动方向永远不发生半波损失.

㈥ 透明的薄膜折射率的测定实验中分光板厚度不均匀或表面粗糙,会有什么后果

薄膜折射率实验和分光板的材质、厚度、光滑度有很大关系的,如果没有严格按照要求去做,会严重影响实验的结果,导致实验不准确。

主要的光学薄膜器件包括反射膜、减反射膜、偏振膜、干涉滤光片和分光镜等等。它们在国民经济和国防建设中得到了广泛的应用,获得了科学技术工作者的日益重视。例如采用减反射膜后可使复杂的光学镜头的光通量损失成十倍地减小。

采用高反射比的反射镜可使激光器的输出功率成倍提高;利用光学薄膜可提高硅光电池的效率和稳定性。最简单的光学薄膜模型是表面光滑、各向同性的均匀介质薄层。在这种情况下,可以用光的干涉理论来研究光学薄膜的光学性质。

当一束单色平面波入射到光学薄膜上时,在它的两个表面上发生多次反射和折射,反射光和折射光的方向由反射定律和折射定律给出,反射光和折射光的振幅大小则由菲涅耳公式确定(见光在分界面上的折射和反射)。



相关信息

光学薄膜的特点是:表面光滑,膜层之间的界面呈几何分割;膜层的折射率在界面上可以发生跃变,但在膜层内是连续的;可以是透明介质,也可以是吸收介质;可以是法向均匀的,也可以是法向不均匀的。实际应用的薄膜要比理想薄膜复杂得多。

这是因为:制备时,薄膜的光学性质和物理性质偏离大块材料,其表面和界面是粗糙的,从而导致光束的漫散射;膜层之间的相互渗透形成扩散界面;由于膜层的生长、结构、应力等原因,形成了薄膜的各向异性;膜层具有复杂的时间效应。

㈦ 赫兹实验的具体过程

“以太”是经典力学中曾经站统治地位几百年的一个观点和基石,后来被证明其存在的实验的反向结论而被戏剧性地否定。

以太是一个历史上的名词,它的涵义也随着历史的发展而发展。
在古希腊,以太指的是青天或上层大气。在宇宙学中,有时又用以太来表示占据天体空间的物质。17世纪的R.迪卡儿是一个对科学思想的发展有重大影响的哲学家。他最先将以太引入科学,并赋予他某种力学性质。在迪卡儿看来,物体之间的所有作用力都必须通过某种中间媒介物质来传递,不存在任何超距作用。因此,空间不可能是空无所有的,它被以太这种媒介物质所充满。

17世纪的迪卡儿(1596年3月31日—1650年2月11日)认为:物质由微粒构成,物质微粒是唯一的实体,物质的本性是其空间广延性,机械运动即位置变动是物质唯一的运动形式。一切自然现象,一切物质性质(包括色、香、硬度、热等)都是由于物质粒子的机械相互作用产生的。有了物质(空间)和(机械)运动,就能按照物质运动本身的自然规律构造出全部世界,无须上帝照管。这类机械论的自然观以后曾统治自然科学两个多世纪。他又认为物质充满空间,即不存在真空(要说有一个绝对无物体的虚空或空间,那是反乎理性的),物质可以无限分割(宇宙中并不可能有天然不可分的原子或物质部分),空间是无限的(世界的广袤是无限定的),并且肯定物质世界的统一性与多样性(天上和地下的物质都是一样的,而且世界不是多元的”,“物质的全部花样或其形式的多样性,都依靠于运动)。因此恩格斯在《反杜林论》中称赞笛卡儿是辩证法的卓越代表人物之一。迪卡儿的方法论对于后来物理学的发展有重要的影响。

笛卡儿把他的机械论观点应用到天体,形成了他关于宇宙发生与构造的学说。他认为,从发展的观点来看而不只是从己有的形态来观察,对事物更易于理解。他用以太旋涡模型(如图示),第一次依靠力学而不是神学解释了天体、太阳、行星、卫星、慧星等的形成过程。他认为天体的运动来源于惯性(沿轨道切向)和某种宇宙物质,以太旋涡对天体的压力,在各种大小不同的旋涡的中心必有某一天体(如太阳),以这种假说来解释天体间的相互作用。

迪卡儿的天体演化说、旋涡模型和近距作用观点,正如他的整个思想体系一样,一方面以丰富的物理思想和严密的科学方法为特色,起着反对经院哲学、启发科学思维、推动当时自然科学前进的作用,对许多自然科学家的思想产生深远的影响。而另一方面又经常停留在直观和定性阶段,不是从定量的实验事实出发,因而一些 具体结论往往有很多缺陷,成为后来牛顿物理学的主要对立面,导致了广泛的争论。

尽管如此,作为自然科学家和哲学家,“迪卡儿”的唯物论已成为真正的自然科学的财富。

今天,当我们以物质的“物与磁”的统一场观点来认识整个宇宙体系之际,显然,可以清晰地发现,迪卡儿以太观中一个最大的忽略之处,是在于把以太与天体以及物质的微观粒子之间相互脱离。如果迪卡儿当时把以太与天体以及微观粒子紧密结合、并一体化思维的话,人类的科技进步必将少走许多弯路,科技水准必将早已远远超越今天的状态。

牛顿,1643年1月4日诞生于英格兰林肯郡乡村。 1686年,发表了他根据据J.开普勒行星运动定律得到的万有引力定律,并用以说明了月球和行星的运动以及潮汐现象,这是一项伟大的发现。看起来,牛顿的引力定律似乎支持超距作用观点,但是牛顿本人并不赞成超距作用解释。他在给R.本特利的一封著名的信中写道:“很难想象没有别种无形的媒介,无生命无感觉的物质可以毋须相互接触而对其他物质起作用和产生影响。……引力对于物质是天赋的、固有的和根本的,因此,没有其他东西的媒介,一个物体可超越距离通过真空对另一物体作用,并凭借和 通过它,作用力可从一个物体传递到另一个物体,在我看来,这种思想荒唐之极,我相信从来没有一个在哲学问题上具有充分思考能力的人会沉迷其中。” 牛顿本人倒是倾向于以太观点的,他在给R.玻意耳的信中私下表示相信,最终一定能够找到某种物质作用来说明引力。但是地对于以太的具体设想与当时颇有影响的R.迪卡儿观点只是在细节上有所不同。

众所周知,牛顿在理解光的本质上持微粒说。但他在同胡克、惠更斯等讨论光的本质时,说光具有这种或那种本能激发以太的振动。这意味着以太是光振动的媒质。于此,似乎牛顿对光的双重性有所理解。其实不然,他对以太媒质之存在极似空气之无所不在,只是远为稀薄、微细而具有强有力的弹性。他又重申说,就是由于以太的动物气质才使肌肉收缩和伸长,动物得以运动。他又进一步以以太来解释光的反射与折射,透明与不透明,以及颜色的产生(包括牛顿环)。他甚至于设想地球的引力是由于有如以太气质不断凝聚使然。《原理》第二编第六章诠释的结尾说,从记忆中他曾做实验倾向于以太充斥于所有物体的空隙之中的说法,虽然以太对于引力没有觉察的影响。

14、15世纪以来欧洲的学者对以太着了迷,以太学说风靡一时。后来,科学巨匠迪卡儿对以太的存在深信不疑。他认为行星之运行可以以太旋涡来解释。以太学说成为一时哲学思潮。尊重实验的牛顿也不免卷入这股哲学思潮中去,倾向于它存在。当时人们对超距作用看法不一。牛顿曾经提出他的引力相互作用定理,并不认为是最终的解释,而只是从实验中归纳出来的一条规则。因此,牛顿并未就引力本质作出结论。

可是,《原理》第二编最后文字中牛顿澄清了旋涡假设与天体运动无关。

显然,牛顿同迪卡儿一样,也没有把物质与以太统一一体而思维。因此,留下了“引力相互作用定理,并不认为是最终的解释,且未就引力本质作出结论”的遗憾。今天,我们从物质的“物、磁”二重性的原理,显然是可以归纳出以太与宇宙及物质的根本联系性极其特征的,进而对整个宇宙自然有一个更加深刻与本质的认识。

以太观认为,以太虽然不能为人的感官所感觉,但却能传递力的作用,如 磁力和月球对潮汐的作用力。 后来,以太又在很大程度上作为光波的荷载物同光的波动学说相联系。光的波动说是由R.胡克首先提出的并为C.惠更斯所进一步发展。在相当长的时期内(直到20 世纪初),人们对波的理解只局限于某种媒介物质的力学振动。这种媒介物质就称为波的荷载物,如空气就是声波的荷载物。由于 光可以在真空中传播,因此惠更斯提出,荷载光波的媒介物质(以太)应该充满包括真空在内的全部空间,并能渗透到通常的物质之中。除了作为光波的荷载物以外,惠更斯也用以太来说明引力的现象 。

牛顿虽然不同意胡克的光波动学说,但他也像笛卡儿一样反对超距作用并承认以太的存在。在他看来 以太不一定是单一的物质,因而能传递各种作用,如产生电、磁和引力等不同的现象。牛 顿也 认为以太可以传播振动,但以太的振动不是光,因为光的波动学说(当时人们还不知道横波,光波被认为是和声波一样的纵波)不能解释现在称为光的偏振现象,也不能解释光的直线传播现象。

18世纪是以太论没落的时期。由于法国迪卡儿主义拒绝引力的平方反比定律而使牛顿的追随者起来反对迪卡儿哲学体系,连同他倡导的以太论也在被反对之列。随着引力的平方反比定律在天体力学方面的成功以及探寻以太未获实际结果,使得超距作用观点得以流行。光的波动说也被放弃了,微粒说得到广泛的承认。到18世纪后期,证实了电荷之间(以及磁极之间)的作用力同样是与距离平方成反比。于是电磁以太的概念亦被抛弃,超距作用的观点在电学中也占了主导地位。

19世纪,以太论获得复兴和发展,首先是从光学开始的,这主要是T.杨和A.J.菲涅耳工作的结果。杨用光波的干涉解释了牛顿环,并在实验的启示下于1817年提出光波为横渡的新观点(当时对弹性体中的横波还没有进行过研究),解决了波动说长期不能解释光的偏振现象的困难。可见,以太观的复兴和发展,对促进科技进步是有利的。

菲涅耳用波动说成功地解释了光的衍射现象,他提出的理论方法(现常称为惠更斯——菲涅耳原理)能正确地计算出衍射图样,并能解释光的直线传播现象。菲涅耳进一步解释了光的双折射,获得很大成功。1823年,他根据杨的光波为横渡的学说和他自己1818年提出的透明物质中以太密度与其折射率二次方成正比的假定,在一定的边界条件下,推出关于反射光和折射光振幅的著名 公式,它很好地说明了D.布德斯特数年前从实验上测得的结果。

菲涅耳关于以太的一个重要理论工作是导出光在相对于以太参照系运动的透明物体中的速度公式。1818年,他为了解释阿喇戈关于星光折射行为的实验,在杨的想法基础上提出:透明物质中以太的密度与该物质的折射率二次方成正比,他还假定当一个物体相对以太参照系运动时,其内部的以太只是超过真空的那一部分被物体带动(以太部分曳引假说)。由此即可得出物体中以太的平均速公式:(1-1/nn)v ,其中 v 为物体的速度。

利用以上结果不难推得:在以太参照系中,运动物体内光的速为(准到v/c的一次方),u=c/n =(朴-1/nn)vcoso ,其中 o为u与v之间的夹角。上式称为菲涅耳运动媒介光速公式。它为以后的斐索实 验所证实。

19世纪中期曾进行了一些实验以显示地球相对以太参照系运动所引起的效应,并由此测定地球相对以太参照系的速度v,但都得出否定的结果。这些实验结果可从上述菲涅耳理论得到解释。根据菲涅耳运动媒质中的光速公式,当实验精度只达到v/c量级时,地球相对以太参照系的速度在这些实验中不会表现出来。要测出v,精度至少要达到vv/cc的量级(估计 vv/cc=10**-8),而当时的实验都未达到此精度。

杨和 菲涅耳的工作之后,光的波动说就在物理学中确立了它的地位。不过以太论也遇到一些问题。首先,若光波为横波则以太应为有弹性的固体媒质。这样,对为何天体运行其中会不受阻力的问题,有人提出了一种解释:以太可能是一种像蜡或沥青样的塑性物质,对于光那样快的振动,它具有足够的弹性像是固体,而对于像天体那样慢的运动则像流体。另外弹性媒质中除横波外一般还应有纵波,但实验却表明没有纵光波,如何消除以太的纵波以及如何得出推导反射强度公式所需要的边界条件是各种以太模型长期争论的难题。光学对以太性质所提出的要求似乎很难同通常的弹性力学相符合。为了适应光学的需要,人们要对以太假设一些非常的属性,如1839年麦克可拉模型和阿西模型。再如,由于对不同的光频率,折射率 n 的值也不同,于是曳引系数对于不同频率亦将不同。这样,每种频率的光将不得不有自己的以太等等。

随后,以太在电磁学中也获得了地位,这主要是由于m.法拉第和j.c.麦克斯韦的贡献。 在法拉第心目中,作用是逐步传过去的看法有着十分牢固的地位。他引入了力线来描述磁作用和电作用,在他看来,力线是现实的存在,空间被力线充满着,而光和热可能就是力线的横振动。他曾提出用力线来代替以太并认为物质原子可能就是聚集在某个点状中心附近的力线场。他在1851年又写道:如果接受光以太的存在,那么它可能是力线的荷载物。”但法拉第的观点并未为当时的理论物理学家们所接受。

到19世纪60年代前期,麦克斯韦提出位移电流的概念,并在前人工作的基础上提出用一组微分方程来描述电磁场的普遍规律。这组方程以后被称为麦克斯韦方程组。根据麦克斯韦方程组,可以推出电磁场的扰动以波的形式传播,以及电磁波在空气中的速度为3.1*10**8 米/秒,与当时己知的空气中的光速3.15*10**8米/秒,在 实验误差范围内是一致的。麦克斯韦在指出电磁扰动的传播与光传播的相似之后写道:光就是产生电磁现象的媒质(指以太 ) 的横振动。” 后来,H.R.赫兹用实验方法证实了电磁波的存在(1888年)。光的电磁理论成功地解释了光波的性质,这样以太不仅在电磁学中取得了地位,而且电磁以太同光以太也统一了起来。

麦克斯韦还设想用以太的力学运动来解释电磁现象,他在1855年的论文中,把磁感应强度B比做以太的速度。后来(1861年——1862年)他接受了W.汤姆孙(即开尔文)的看法,改成磁场代表转动而电场代表平动。他 认为以太绕磁力线转动形成一个个涡元,在相邻的涡元之间有一层电荷粒子。他并假定,当这些粒子偏离它们的平衡位置即有一位移时,就会对涡元内物质产生一作用力引起涡元的变形,这就代表静电现象。

关于电场同位移有某种对应,并不是完全新的想法。w. 汤姆孙就曾把电场比作以太的位移。另外,法拉第在更早(1838年)就 提出,当绝缘物质放在电场中时,其中的电荷将发生位移。麦克斯韦与法拉第不同之处在于,他认为不论有无绝缘物质存在,只要有电场就有以太电荷粒子的位移,位移D的大小与电场强度E成正比。当电荷粒Z的位移随时间变化时,将形成电流。这就是他所谓电流)才是真实的电流。

在这一时期还曾建立了其它一些以太模型。尽管麦克斯韦在电磁理论上取得了很大进展,但他以及后来的赫兹等人把电磁理论推广到运动物质上的意图却未获成功。

19世纪90年代H.A.洛伦兹提出了新的概念。他把物质的电磁性质归之于其中同原子相联系的电子的效应,至于 物质中的以太则同真空中的以太在密度和弹性上都并无区别。他还假定,物体运动时并不带动其中的以太运动。但是,由于物体中的电子随物体运动时,不仅要受到电场的作用力,还要受到磁场的作用力以及物体运动时其中将出现电介质运动电流,运动物质中的电磁波速度与静止物质中的并不相同。在考虑了上述效应后,他同样推出了菲涅耳关于运动物质中的光速公式。而菲涅耳理论所遇到的困难(不同频率的光有不同的以太)现己不存在。洛伦兹根据束缚电子的强追振动并可推出折射率随频率的变化。洛伦兹的上述理论被称为电子论,他获得了很大成功。

19世纪末可以说是以太论的极盛时期,但是,在洛伦兹理论中,以太除了荷载电磁振动之外,不再有任何其他的运动和变化。这样它几乎己退化为某种抽象的标志。除了作为电磁波的荷载物和绝对参照系,它己失去了所有其他具体生动的物理性质。这就又为它的衰落创造了条件。

为了测出地球相对以太参照系的运动,如上所述,实验精度必须达到vv/cc量级。到19世纪80年代,A.A.迈克耳孙和E.W.莫雷所作的实验第一次达到了这个精度,但得到的结果仍然是否定的(即地球相对以太不运动)。此后其他的一些实验亦得到同样的结果。于是以太进一步失去了它作为绝对参照系的性质。这一结果使得相对性原理得到普遍承认,并被推广到整个物理学领域 。

在19世纪末和20世纪初,虽然还进行了一些努力来拯救以太,但在狭义相对论确立以后,它终于被物理学家们所抛弃。人们接受了电磁场本身就是物质存在的一种形式的概念,而场可以在真空中以波的形式传播。 量子力学的建立更加强了这种现点,因为人们发现物质的原子以及组成它们的电子、质子和中子等粒子的运动也具有波的属性。波动性己成为物质运动的基本属性的一个方面。那种仅仅把波动理解为某种媒介物质的力学振动的狭隘观点己完全被冲破。

然而人们的认识仍在继续发展。到20世纪中期以后,人们又逐渐认识到真空并非是绝对的空,那里存在着不断的涨落过程(虚粒子的产生以及随后的湮没)这种真空涨落是相互作用着的场的一种量子效应。今天,理论物理学家进一步发现,真空具有更复杂的性质。真空态代表场的基态,它是简并的,实际的真空是这些简并态中的某一特定状态。目前粒子物理中所观察到的许多对称性的破坏是真空的这种特殊“取向”所引起的。在这种观点上建立的弱相互作用和电磁相互作用的电弱统一 理论己获得很大的成功。

这样看来,机械以太虽然死亡了,但以太的某些精神(不存在超距作用,不存在绝对空虚意义上的真空)仍然活着,并具有旺盛的生命力。

总之,以太论从14世纪诞生后,经过了三个世纪的发展壮大、衰落、到17世纪的灭亡,到18世纪的复苏、再发展、再壮大、再衰落,至直19世纪初的彻底失败的历史进程,乃至当今21世纪初的可能的、甚至是必然的重新复活。可见,以太的发展道路,是人类科技道路上的曲曲折折的进步历程。是人类对大自然认识水平提高与完善的光辉历程。因此,以太论的复苏,是人类认识自然大千世界的新的希望与新的曙光。

19世纪末,在光的电磁理论的发展过程中,有人认为宇宙间充满一种叫做“以太”的介质,光是靠以太来传播的,而且把这种“以太”选作绝对静止的参考系,凡是相对于这个绝对参考系的运动叫做绝对运动,以区别于对其他参考系的相对运动。经典电磁理论只有在相对于以太为静止的惯性系中才能成立。根据这个观点,当时物理学家设计了各种实验去寻找以太参考系。其中,1887年,迈克耳孙(A.A.Michelson)和莫雷(E.W.Morley)的实验特别有名。根据他们的设想,如果存在以太,而且以太又完全不为地球运动所带动,那么,地球对于以太的运动速度就是地球的绝对速度。利用地球的绝对运动的速度和光速在方向上的不同,应该在所设计的迈克耳孙干涉仪实验中得到某种预期的结果,从而求得地球相对于以太的绝对速度。

迈克耳孙和莫雷在不同地理条件、不同季节条件下多次进行实验,却始终看不到干涉条纹的移动。出乎意料的是原本为验证以太参考系而进行的实验,却无意中提出了否定以太参考系的证据,并被整个物理学领域接受而至今。狭义相对论正是在这种条件下破土而出的。

可是,由于光具有波粒二相性,是一个个非常非常微小的能量个体,不仅仅是直线传播(运行),而是具有波动特性的螺旋运动轨迹。尽管光波是电磁波的一种类型,但是,光波并不像大多数电磁波一样做球形扩张式传播。因此,光粒子不是靠以太来传播的,它犹如出镗的子弹,单方向直线(螺旋线)运行,只需启动能量,不需介质的传播,更不能简单地等同于声波的机械能量在其介质中的连续的球形扩张式传递。同时,把“以太”选作绝对静止的参考系,是一种主观片面性。因为,以太凭什么要绝对静止呢?如果“以太”不是绝对静止的物质体系,而恰恰是一个与星系的运动相关的,或者是同步的、广密的物质体系,那么,19世纪末之前,人们却正好把“以太”作为绝对静止的参考系来看待,因此则必然导致错误的结论和错误的理论体系!如果分布在地球表面的以太,是与地球运行速度(公转与自转)既同向又同步的话,如同“论统一场”所描述的那样。那么,1887年,迈克耳孙(A.A.Michelson)和莫雷(E.W.Morley)所做的证明以太存在的光干涉实验,事实上应该是充分地证明了以太肯定存在的科学结论。也即,实验肯定无误,是“以太绝对静止”这个假定的前提有误,因而导致了历史性的、截然不同的科学结论!!!

显而易见,迈克耳孙和莫雷的为验证以太参考系而进行的光干涉实验,因为其假定的前提条件的不完全充分性,因此不能作为否定以太参考系的证据,哪怕是已经被世界物理学界、科技界认可了一百多年。由此可见,否定以太的实验结论是一个历史的失误或错觉。

进一步地,当以太确实存在,而且不是绝对静止不动的以太,那么,仅仅建立在坐标变换条件下的爱因斯坦相对论,则自然只是数学上的变换而已,并不一定具有确切的物理意义。况且,相对论并没有从具体的物理意义上破译引力场这种特殊物质的物质性质和具体的引力传递与作用机制,仅仅只是一种数学上的描述而已。一个不能直接揭示其物理意义和物质本质的数学描述形式,尽管是所谓的十分精确,但是,它显然在对物质本质的深刻认识与系统全面地破译方面,仍然存在一定差距,甚至是相当的差距。因此,爱因斯坦自己也非常追求理论上的简洁性,并对统一场理论持续了几十年的探寻不已,且直至终生。当他对统一场无能为力之际,也极大地寄希望于后来人。

㈧ 工程光学的清华大学出版社

书名:普通高等教育十五国家级规划教材--工程光学
出版社:清华大学出版社
定价:48
条形码:9787302127222
ISBN:ISBN 7-302-12722-0
作者:田芊 廖延彪 孙利群
印刷日期:2006-5-1
出版日期:2006-5-1
精装平装_开本_页数:平装16开,537页
中图法:
中图法一级分类:
中图法二级分类:
书号:
简介:本书以工程光学为体系,从光学技术的角度,介绍了光学的一些基本概念、原理、方法及其应用。
本书共分10章,介绍了光波的基本性质和几何光学、物理光学、现代光学的有关内容。其中,几何光学的内容有光的成像技术、光学像的记录和显示技术、光学测量技术;物理光学的内容有光的干涉技术、光的衍射技术、光的偏振技术、光的调制技术;现代光学的内容有激光技术、光波导技术。
本书可作为机械类非光学专业的本科生教材或教学参考书,亦可供有关工程技术人员参考。
前 言
我国的光学专业,有的设置在机械工程院系,有的设置在电子工程院系,有的设置在物理学院系,因此,有关光学的教材版本很多。本《工程光学》主要是为了机械类非光学专业的学生进一步学习光学的有关知识而编写的。
大部分为本科生编写的光学教材,包括了几何光学和物理光学两部分内容。本《工程光学》同样也主要以这两部分内容为主,但考虑到机械类非光学专业学生的课程体制设置中有关光学的课程较少,为了使这些学生对光学有更全面的了解,本教材中也包括了现代光学的许多内容。这本《工程光学》是为了给这部分学生在学习这门课程时提供一本教材或教学参考书,同时也希望能够成为其他有关工程技术人员的学习参考书。
考虑到本教材主要是面向机械类非光学专业的学生,因此除介绍光学的有关最基本的理论之外,更多的是侧重于光学理论的应用,即从光学技术的角度来进行讲述,而这也是本教材之所以称为《工程光学》的原因。这样的考虑,也许会导致对光学理论的介绍较为肤浅,影响学生对光学科学的深入理解,但却能够避免学生在学习物理基础课后再学习光学的重复与枯燥,让学生们能够感到光学的实用性,认识到学习光学大有益处。
对于机械类非光学专业的学生,应该学习和掌握一些光学技术、电子技术,这样可以使这些学生的知识更为全面,以便更好地面对今后实际工作的要求和挑战。我们从20世纪90年代开始,在清华大学精密仪器与机械学系给机械制造专业的学生开设了工程光学课程,基于以上这些考虑,我们对该课程的内容和讲授安排进行了探索。授课10多年以来,从一些学生学习时的反应和毕业生的反馈情况来看,我们的考虑和探索基本是正确的,但还需要完善。
由于本教材的目的是对光学这一学科所包含内容的全貌有一个介绍,因此所选编的内容及篇幅较多一些。在利用本教材讲授工程光学课程时,可以根据教学计划和课时安排选择其中的部分内容,有些内容可以不讲而作为扩大知识面自学。
本教材由清华大学田芊、廖延彪、孙利群共同编写。廖延彪编写第1,5,6章和第7章部分内容以及第10章,孙利群编写第2,3,8章,田芊编写绪论、第4,9章和第7章部分内容以及附录,最后由田芊对本教材的完成进行定稿。在本教材编写时,我们参考了许多同类教材,学习和借鉴了这些教材的内容和方法,获益匪浅,在此深表谢意。在编写过程中,许多人提出了宝贵意见,为本教材的绘图和校对出版工作付出了辛劳,在此一并致谢。本教材一定有不足之处,恳请给予批评指正。
编者
2006年2月
目录:绪论1
0.1光学是一门重要而有用的科学与技术1
0.2光学一直在发展中并会有更大的发展2
0.3工程光学是着重于应用的科学与技术5
0.4工程光学的学习与课程安排6
第1章光波的基本特性8
1.1光的波动理论8
1.1.1光波与电磁波8
1.1.2平面波,球面波,柱面波10
1.1.3谐波12
1.1.4高斯光束15
1.2平面光波在各向同性介质分界面上的反射和折射17
1.2.1反射定律和折射定律17
1.2.2菲涅耳公式19
1.2.3反射率和透射率21
1.2.4反射和折射时的偏振25
1.2.5反射和折射时的相位26
1.2.6全反射27
1.3光波在金属表面上的反射和折射30
习题33
第2章光的成像技术35
2.1几何光学原理35
2.1.1实验三定律35
2.1.2全反射37
2.1.3费马原理38
2.2光学成像41
2.2.1基本概念与符号规则41
2.2.2单一球面成像42
2.2.3薄透镜成像45
2.2.4组合透镜成像51
2.2.5光阑55
2.3光学设计基础59
2.3.1光线的光路计算59
2.3.2像差理论66
2.4光学材料71
2.4.1光学玻璃71
2.4.2光学晶体78
2.4.3光学塑料81
2.5光度学基础84
2.5.1光度学量及其单位84
2.5.2光传播过程中光学量的变化规律88
2.5.3成像系统像面的照度92
习 题96
第3章光学像的记录和显示技术100
3.1眼睛和助视仪器100
3.1.1眼睛及其光学系统100
3.1.2放大镜和显微镜107
3.1.3望远镜的工作原理110
3.2光学成像器件114
3.2.1感光底片114
3.2.2电荷耦合器件116
3.2.3互补金属氧化物半导体123
3.3光学摄像系统127
3.3.1摄影物镜的光学特性128
3.3.2摄影物镜的基本类型131
3.3.3取景系统和调焦系统132
3.3.4电视摄像系统136
3.4光学显示系统139
3.4.1光学投影系统139
3.4.2光电显示系统145
习 题153
第4章光的干涉技术156
4.1产生光波干涉的条件156
4.1.1光波产生干涉现象的分析157
4.1.2产生光波干涉的必要条件158
4.1.3产生光波干涉的补充条件159
4.2分波面双光束干涉160
4.2.1双缝分波面双光束干涉160
4.2.2分波面双光束干涉的其他实验装置163
4.2.3干涉条纹清晰程度的影响因素165
4.3分振幅双光束干涉170
4.3.1平板分振幅干涉170
4.3.2等倾干涉171
4.3.3等厚干涉175
4.4双光束干涉仪181
4.4.1迈克尔逊干涉仪182
4.4.2斐索干涉仪186
4.4.3马赫?曾德尔干涉仪188
4.4.4赛格纳克干涉仪188
4.5多光束干涉192
4.5.1多束光干涉的光强分布192
4.5.2多光束干涉仪198
4.5.3多光束干涉的应用202
4.6薄膜光学简介204
4.6.1单层光学膜205
4.6.2多层光学膜208
4.6.3光学薄膜的制备及其应用213
习 题216
第5章光的衍射技术220
5.1衍射的基本理论220
5.1.1惠更斯?菲涅耳原理220
5.1.2夫琅禾费衍射和菲涅耳衍射224
5.2夫琅禾费单缝衍射226
5.2.1衍射光强的计算226
5.2.2对衍射光强分布公式的分析228
5.3夫琅禾费圆孔衍射229
5.4巴比涅原理233
5.5夫琅禾费多缝衍射234
5.5.1双缝的干涉和衍射234
5.5.2多缝的干涉和衍射237
5.6菲涅耳衍射241
5.6.1圆孔衍射和圆屏衍射241
5.6.2直边衍射244
5.6.3波带片 245
5.7衍射光栅248
5.7.1平面衍射光栅248
5.7.2闪耀光栅252
5.7.3光谱仪255
5.8全息技术257
5.8.1全息原理和全息图种类257
5.8.2全息技术应用举例261
5.9傅里叶光学263
5.9.1概述263
5.9.2薄透镜的傅里叶变换性质264
5.9.3光学傅里叶变换266
5.9.4光信息处理及其应用268
5.10二元光学269
5.10.1概述269
5.10.2二元光学的特点271
5.10.3二元光学器件的制作271
5.10.4二元光学的应用272
5.11近场光学275
5.11.1概述275
5.11.2近场光学原理275
5.11.3近场光学应用举例276
习 题278
第6章光的偏振技术281
6.1光的偏振特性281
6.1.1光的横波性281
6.1.2光波的偏振态283
6.1.3偏振光的表示方法286
6.2平面光波在晶体中的传播特性290
6.2.1晶体的介电张量290
6.2.2各向异性晶体中的单色平面光波292
6.2.3平面光波在晶体中的传播--解析法293
6.2.4平面光波在晶体中的传播--图解法296
6.3平面光波在晶体表面上的反射和折射301
6.3.1光波在晶体表面上的反射定律和折射定律301
6.3.2单轴晶体中的光路303
6.4偏振器件304
6.4.1概述304
6.4.2反射型偏振器304
6.4.3双折射型偏振器305
6.4.4二向色型偏振器307
6.4.5波片和补偿器308
6.4.6退偏器312
6.5通过光学元件后光强的计算313
6.5.1概述313
6.5.2用琼斯矢量计算313
6.5.3用斯托克斯矢量计算313
6.5.4用邦加球表示314
6.6偏振光的干涉315
6.6.1概述315
6.6.2平行光的偏振光干涉316
6.6.3会聚光的偏振光干涉318
6.7晶体的旋光性321
6.8偏振光仪器322
6.8.1旋光仪322
6.8.2椭偏仪323
习 题325
第7章光调制技术327
7.1非线性光学简介327
7.1.1概述327
7.1.2介质的非线性特性328
7.1.3非线性效应产生和频329
7.1.4非线性效应产生二次谐波332
7.1.5非线性效应产生差频332
7.1.6光纤中的非线性特性333
7.1.7受激非弹性散射334
7.2光的调制335
7.2.1幅度调制和光强调制335
7.2.2频率调制和相位调制337
7.2.3脉冲调制338
7.3电光调制339
7.3.1线性电光效应339
7.3.2晶体的线性电光系数341
7.3.3KDP晶体的线性电光效应343
7.3.4电光调制器件347
7.4磁光调制349
7.4.1磁致旋光效应349
7.4.2晶体的法拉第效应350
7.5声光调制352
7.5.1弹光效应352
7.5.2声光衍射353
习 题356
第8章光学测量技术357
8.1光学测量的基本装置357
8.1.1光具座及其基本部件357
8.1.2精密测角仪364
8.2光学玻璃的测量367
8.2.1光学玻璃折射率与色散的测量367
8.2.2光学玻璃的双折射测量371
8.2.3有色光学玻璃光谱特性的测量375
8.3光学零件的测量377
8.3.1光学零件面形偏差的测量377
8.3.2球面曲率半径的测量381
8.3.3平面光学零件光学不平行度的测量384
8.3.4焦距和顶焦距的测量389
8.4典型光学系统特性参数测量392
8.4.1显微系统特性参数检测392
8.4.2望远系统光学特性参数检测395
8.4.3照相物镜光学特性参数检测402
习 题410
第9章激光技术413
9.1激光的产生与特性413
9.1.1激光的产生413
9.1.2激光的特性414
9.2光的量子性与波粒二象性415
9.2.1光电效应与光量子(光子学)415
9.2.2光的波粒二象性417
9.2.3原子的能级分布417
9.3激光原理419
9.3.1原子的跃迁419
9.3.2激光器的构成423
9.3.3光学谐振腔426
9.3.4激光的模式430
9.4激光器433
9.4.1气体激光器433
9.4.2固体激光器440
9.4.3半导体激光器443
9.5激光技术451
9.5.1激光准直技术451
9.5.2激光测距技术453
9.5.3激光调制技术458
9.5.4激光稳频技术460
9.5.5激光脉冲技术466
9.5.6激光存储技术471
习 题475
第10章光波导技术 476
10.1概述476
10.1.1光波导476
10.1.2光导纤维477
10.2平面光波导的传输特性480
10.2.1平板光波导的结构480
10.2.2平板波导的模式480
10.2.3光波导损耗481
10.3光波导器件482
10.3.1光波导调制器482
10.3.2电光调制器483
10.3.3声光调制器484
10.3.4周期波导和反射滤波器485
10.3.5光波导偏振器486
10.3.6波导激光器486
10.4光波导耦合487
10.4.1光波导透镜488
10.4.2光波导反射镜和棱镜489
10.5集成光学系统举例489
10.5.1射频频谱分析仪490
10.5.2微型光波导陀螺仪491
10.6光纤的特性492
10.6.1均匀折射率光纤的光线理论492
10.6.2光纤的损耗493
10.6.3光纤的色散494
10.6.4光纤的偏振494
10.7特种光纤495
10.7.1变折射率光纤495
10.7.2红外光纤500
10.7.3塑料光纤501
10.8光纤器件501
10.8.1光纤连接器和耦合器502
10.8.2光纤波分/波合器502
10.8.3光纤偏振控制器503
10.8.4光纤滤波器503
10.8.5光纤光栅505
10.8.6光纤放大器和激光器505
10.9光纤传感器506
10.9.1概述506
10.9.2振幅调制传感型光纤传感器507
10.9.3相位调制传感型光纤传感器508
10.9.4偏振调制型光纤传感器512
10.9.5波长调制型光纤检测系统512
10.9.6传光型光纤检测系统513
附录A张量的基本知识515
附录B矢量分析与场论520
附录C电磁场理论的基本方程525
参考文献535

㈨ 急啊,论文摘要翻译

题目翻译如下
Admeasurement that the line polarized light incident angle leads with reflectivity relation and refraction。
内容翻译如下
The medium refraction rates are determined generally from the experiment , are have various measurement method. The main body of a book formula sets off from Feinieer , dece out the relational expression that isotropy transparent medium line polarized light reflectivity and refraction lead , bring forward the new method that the refraction making use of the reflectivity curve to determine medium's leads. Reflectivity changes a curve by the fact that the experiment determines line polarized light p component and s component with the incident angle, index of refraction reaching medium then. The sample refraction indicating , measuring out leads result and theory value approaches each other, the what be adopted experiment admeasurement scheme is feasible.

文章有些长、、望认真看完、、标准人工翻译、、希望可以帮助你、、

㈩ 物理光学的电子工业出版社图书信息

书名:物理光学
作者:梁铨廷
出版社:电子工业出版社
出版时间:2012-12-1
ISBN:9787121188671 绪论
第1章光的电磁理论
1.1光的电磁波性质
1.2平面电磁波
1.2.1波动方程的平面波解
1.2.2平面简谐波
1.2.3一般坐标系下的波函数
1.2.4复数形式的波函数
1.2.5平面简谐波的复振幅
1.2.6平面电磁波的性质
1.3球面波和柱面波
1.3.1球面波的波函数
1.3.2球面波的复振幅
1.3.3柱面波的波函数
1.4光源和光的辐射
1.4.1光源
1.4.2光辐射的经典模型
1.4.3辐射能
1.4.4对实际光波的认识
1.5电磁场的边值关系
1.6光在两介质分界面上的反射和折射
1.6.1反射定律和折射定律
1.6.2菲涅耳公式
1.6.3菲涅耳公式的讨论
1.6.4反射率和透射率
1.6.5反射和折射产生的偏振
1.7全反射
1.7.1反射系数和位相变化
1.7.2隐失波
1.7.3隐失波应用举例
1.8光波在金属表面的透射和反射
1.8.1金属中的透射波
1.8.2金属表面的反射
1.9光的吸收、色散和散射
1.9.1光的吸收
1.9.2光的色散
1.9.3光的散射
习题
第2章光波的叠加与分析
2.1两个频率相同、振动方向相同的单色光波的叠加
2.1.1代数加法
2.1.2复数方法
2.1.3相幅矢量加法
2.2驻波
2.2.1驻波的形成
2.2.2驻波实验
2.3两个频率相同、振动方向互相垂直的光波的叠加
2.3.1椭圆偏振光
2.3.2几种特殊情况
2.3.3左旋和右旋
2.3.4椭圆偏振光的强度
2.3.5利用全反射产生椭圆和圆偏振光
2.4不同频率的两个单色光波的叠加
2.4.1光拍
2.4.2群速度和相速度
2.5光波的分析
2.5.1周期性波的分析
2.5.2非周期性波的分析
习题
第3章光的干涉和干涉仪
3.1实际光波的干涉及实现方法
3.1.1相干条件
3.1.2光波分离方法
3.2杨氏干涉实验
3.2.1干涉图样的计算
3.2.2等光程差面与干涉条纹形状
3.3分波前干涉的其他实验装置
3.4条纹的对比度
3.4.1光源大小的影响
3.4.2光源非单色性的影响
3.4.3两相干光波振幅比的影响
3.5相干性理论
3.5.1互相干函数和复相干度
3.5.2时间相干度
3.5.3空间相干度
3.6平行平板产生的干涉
3.6.1条纹的定域
3.6.2等倾条纹
3.6.3圆形等倾条纹
3.6.4透射光条纹
3.7楔形平板产生的干涉
3.7.1定域面的位置及定域深度
3.7.2楔形平板产生的等厚条纹
3.7.3等厚条纹的应用
3.8用牛顿环测量透镜的曲率半径
3.8.1测量原理及精确度
3.8.2检验光学零件表面质量
3.9平面干涉仪
3.10迈克耳孙干涉仪
3.11泰曼干涉仪和傅里叶变换光谱仪
3.11.1泰曼干涉仪
3.11.2傅里叶变换光谱仪
3.12马赫-泽德干涉仪
习题
第4章多光束干涉与光学薄膜
4.1平行平板的多光束干涉
4.1.1干涉场的强度公式
4.1.2多光束干涉图样的特点
4.1.3干涉条纹的锐度
4.2法布里-珀罗干涉仪和陆末-盖尔克板
4.2.1法布里-珀罗干涉仪
4.2.2F.P干涉仪的应用
4.2.3陆末-盖尔克板
4.3多光束干涉原理在薄膜理论中的应用
4.3.1单层膜
4.3.2双层膜和多层膜
4.3.3干涉滤光片
4.4薄膜系统光学特性的矩阵计算方法
4.4.1薄膜的特征矩阵
4.4.2膜系反射率的计算
4.5薄膜波导
4.5.1薄膜波导的传播模式
4.5.2薄膜波导中的场分布
4.5.3薄膜波导的光耦合
习题
第5章光的衍射
5.1惠更斯-菲涅耳原理
5.2基尔霍夫衍射理论
5.2.1亥姆霍兹-基尔霍夫积分定理
5.2.2菲涅耳-基尔霍夫衍射公式
5.2.3巴俾涅原理
5.3菲涅耳衍射和夫琅禾费衍射
5.3.1两类衍射现象的特点
5.3.2两类衍射的近似计算公式
5.4矩孔和单缝的夫琅禾费衍射
5.4.1夫琅禾费衍射装置
5.4.2夫琅禾费衍射公式的意义
5.4.3矩孔衍射
5.4.4单缝衍射
5.5圆孔的夫琅禾费衍射
5.5.1强度公式
5.5.2衍射图样分析
5.6光学成像系统的衍射和分辨本领
5.6.1成像系统的衍射现象
5.6.2在像面观察的夫琅禾费衍射
5.6.3成像系统的分辨本领
5.6.4棱镜光谱仪的色分辨本领
5.7双缝夫琅禾费衍射
5.7.1双缝衍射强度分布
5.7.2瑞利干涉仪
5.8多缝夫琅禾费衍射
5.8.1强度分布公式
5.8.2多缝衍射图样
5.9衍射光栅
5.9.1光栅的分光性能
5.9.2闪耀光栅
5.9.3迈克耳孙阶梯光栅
5.9.4凹面光栅
5.9.5正弦(振幅)光栅
5.9.6三维光栅
5.10圆孔和圆屏的菲涅耳衍射
5.10.1菲涅耳衍射
5.10.2菲涅耳波带法
5.10.3圆孔衍射图样
5.10.4圆屏的菲涅耳衍射
5.10.5菲涅耳波带片
5.11直边的菲涅耳衍射
5.11.1菲涅耳积分及其图解
5.11.2半平面屏的菲涅耳衍射
5.11.3单缝菲涅耳衍射
5.11.4矩孔菲涅耳衍射
5.12全息照相
5.12.1什么是全息照相
5.12.2全息照相原理
5.12.3全息照相的特点和要求
5.12.4全息照相应用举例习题
第6章傅里叶光学
6.1平面波的复振幅及空间频率
6.1.1平面波沿传播方向的复振幅分布
6.1.2平面波在一个平面上的复振幅分布
6.2单色波场中复杂的复振幅分布及其分解
6.2.1单色波场中复杂的复振幅分布
6.2.2透镜的透射系数
6.2.3复杂复振幅分布的分解
6.3衍射现象的傅里叶分析方法
6.3.1夫琅禾费近似下衍射场与孔径场的变换关系
6.3.2夫琅禾费衍射的计算实例
6.3.3菲涅耳衍射的傅里叶变换表达式
6.4透镜的傅里叶变换性质和成像性质
6.4.1傅里叶变换性质
6.4.2透镜的成像性质
6.5相干成像系统分析及相干传递函数
6.5.1成像系统的普遍模型
6.5.2成像系统的线性和空间不变性
6.5.3扩展物体的成像
6.5.4相干传递函数(CTF)
6.6非相干成像系统分析及光学传递函数
6.6.1非相干系统的成像
6.6.2光学传递函数(OTF)
6.6.3OTF与CTF的关系
6.6.4衍射受限系统的OTF
6.6.5有像差系统的传递函数
6.7阿贝成像理论和阿贝-波特实验
6.7.1阿贝成像理论
6.7.2阿贝-波特实验
6.8相干光学信息处理
6.8.1相干光学处理系统
6.8.2处理举例
6.9非相干光学信息处理
习题
第7章光的偏振与晶体光学基础
7.1偏振光和自然光
7.1.1偏振光和自然光的特点
7.1.2从自然光获得线偏振光的方法
7.1.3马吕斯定律和消光比
7.2晶体的双折射
7.3双折射的电磁理论
7.3.1晶体的各向异性及介电张量
7.3.2单色平面波在晶体中的传播
7.4晶体光学性质的图形表示
7.4.1折射率椭球
7.4.2波矢面
7.4.3法线面
7.4.4光线面
7.5光波在晶体表面的反射和折射
7.5.1波法线方向的确定
7.5.2直接得到光线方向的惠更斯作图法
7.5.3双反射现象
7.6晶体光学器件
7.6.1偏振棱镜
7.6.2波片
7.6.3补偿器
7.7偏振光和偏振器件的矩阵表示
7.7.1偏振光的矩阵表示
7.7.2正交偏振
7.7.3偏振器件的矩阵表示
7.7.4琼斯矩阵的本征矢量
7.8偏振光的干涉
7.8.1偏振光干涉原理
7.8.2会聚偏振光的干涉
7.9旋光性
7.9.1旋光测量装置及旋光规律
7.9.2旋光现象的解释
7.9.3科纽棱镜
7.9.4磁致旋光效应
7.10晶体、液体和液晶的电光效应
7.10.1克尔效应
7.10.2泡克耳斯效应
7.10.3液晶的电光效应
7.10.4电光效应的应用
7.11光测弹性效应和玻璃内应力测定
7.11.1光测弹性效应
7.11.2玻璃内应力的测定
7.12晶体的非线性光学效应
7.12.1倍频效应
7.12.2混频效应
7.12.3光折变效应
7.12.4位相共轭光波的产生
7.12.5光学双稳态
习题
附录A场论的一些主要公式
附录B傅里叶级数、傅里叶积分和
傅里叶变换
附录C卷积和相关
附录Dδ函数
附录E贝塞尔函数
附录F矩阵
汉英名词索引
习题答案
参考文献

阅读全文

与基于菲涅耳公式测量折射率的实验方法与装置相关的资料

热点内容
变频无氟制冷剂多少钱 浏览:107
尼尔机械纪元小地图怎么显示 浏览:408
ac设备多少钱 浏览:986
尼尔机械纪元怎么一直往上飞 浏览:705
电机轴承型号与什么有关 浏览:20
阀门井开不起来怎么办 浏览:27
宜博机械键盘如何切换灯光 浏览:285
创客工具箱vip破解版 浏览:850
检测仪器校准报告是什么意思 浏览:26
五菱宏光的仪表盘显示的是什么 浏览:517
宝马仪器表绿灯亮什么原因 浏览:347
核酸快速检测设备有哪些 浏览:401
医院amh是用什么仪器检查 浏览:532
大众汽车仪表盘怎么开里程数 浏览:193
皮带机拉紧装置怎么设计 浏览:211
川崎6r排气阀门 浏览:766
铸造废沙再生可以做什么用 浏览:120
机械图纸上m4代表什么意思 浏览:6
超级机械狗怎么获取 浏览:763
简述机械超速保护装置的动作过程 浏览:390