1. 《发电厂电气部分》试题以及答案
1、我国最大的火电机组容量100万KW-------玉环电厂
我国最大的水电机组容量70万KW--------三峡水电站
我国最大的核电机组容量100万KW-------田湾核电厂
最大的火电发电厂容量454万KW-----------邹县电厂
最大的水电发电厂容量1820万KW---------三峡水电厂
最大的核能发电厂容量305万KW---------秦山核电厂(自主研发设计)
最大的抽水蓄能发电厂240万KW---------广东抽水蓄能电厂
2,新能源发电类型:风力发电,海洋能发电,地热发电,太阳能发电,生物质能发电,磁流体发电,电气体发电
3、火力发电厂的的生产过程:概括地说将煤中的化学能转化成电能的过程,
三个阶段1,燃料的化学能在锅炉中燃烧转变成热能,加热锅炉中的水,使之变为蒸汽(燃烧系统)2,锅炉中产生的蒸汽进入汽轮机,冲击汽轮机的转子旋转,将热能转变为机械能(汽水系统)3,由汽轮机的转子旋转的机械能带动发电机旋转,把机械能变为电能(电气系统)
4、热电厂,以热定电的运行方式。
抽水蓄能电厂在电力系统中的作用:调峰,填谷,事故备用,调频,黑启动,蓄能
汽轮发电机的特点:转速高,多采用隐极式,卧式,不能快速启动,只宜承担电力系统的基荷
水轮发电机的特点:转速低,极数多, 多采用凸极式转子,立式能快速启动易于承担峰荷
5、一次设备:通常把生产,变换,输送,分配和使用电能的设备,如发电机,变压器,断路器等称为一次设备。
1, 生产和转化电能的设备(发电机,变压器)
2, 接通和断开电路的开关电器(断路器,隔离开关,负荷开关,接触器,熔断器)
3, 限制故障电流和防御过电压的保护电器(电抗器和避雷器)
4, 载流导体
5, 互感器(电压互感器,电流互感器)
6, 无功补偿设备(并联电容器,串联电容器,并联电抗器)
7, 接地装置
6、二次设备:对一次设备和电力系统的运行状态进行测量,控制,监控,和起保护作用的设备,称为二次设备。(测量表计,继电保护,直流电源负荷,操作电器,信号设备及控制电缆)
7、发热对电气设备的影响:
1,使绝缘材料的绝缘性能下降
2,使金属材料的机械强度下降
3,使导体的接触部分的接触电阻增大
8、温度限制:导体正常最高温度一般不允许超过70℃
钢芯铝绞线及管型导线不允许超过80℃
导体表面镀锡不允许超过85℃
导体表面镀银不允许超过95℃
9、提高导体载流量的措施:
a) 减小导体的电阻(①最好采用电阻率低的材料②,减小接触电阻③,增加截面积 )
b) 增加导体的换热面
c) 提高换热系数
10、长期发热,指正常工作时电流长期通过而引起的发热,长期发热的热量,一部分分散到空气中去,另一部分使导体的的温度升高 ,发热功率与散热功率相互平衡。
11、短时发热:指载流导体发生短路时,短路开始至短路切除这段时间内导体发热的现象,其特点:一短路电流很大,导体内产生的热量来不及向周围扩散,可以认为在短路电流持续的时间内所产生的热量全部用来提升导体的温度,是一个绝热的过程。
二短路时导体温度变化范围很大,它的电阻和电容不能再视为常数,应为温度的函数。
12、导体电动力的计算公式: =1.73×10-7 × ×ish2 × 其中 当三相平行时,中间相最大,短路后的0.01秒 达到最大值
电动力与(电流,导体形状,布置方式)有关------动稳定校验
13、电气主接线设计的基本要求:
1, 可靠性是主接线设计的首要要求
2, 灵活性(操作方便,调度方便,扩建方便)
3, 经济性(节省投资,占地面积小,电能损耗小)
14、断路器和隔离开关的区别:
1, 断路器具有开合电路的专用灭弧装置,可以开断和闭合负荷电流和开断短路电流。隔离开关没有灭弧装置,其开合电流能力极低,只能用作设备停运和退出工作时的断开电路,保证与带电部分隔离,起着隔离电压的作用。
2, 送电时先合隔离开关,再合断路器。停电时,先停断路器,再停隔离开关。
15、限制短路电流的措施:
(1)选择适当的主接线形式和运行方式
(2)加装限流电抗器
(3)采用低压绕组分裂绕组变压器
其中主接线及运行方式中包括
a,在发电厂中尽量选择单元接线的形式和运行方式
b,在降压变压所中,采用电压器低压侧分裂运行的方式
c,对具有双回路的用户,采用线路分开运行方式
d,对环形供电网络,在环网中穿越功率在低处开环运行
16、厂用电的类型:工作电源,备用电源,启动电源,事故保安电源
17、厂用电负荷分类:
Ⅰ类厂用负荷:短时停电会造成主辅设备损坏,危害人身安全,主机停止运行及出力下降的厂用负荷(给水泵,凝结水泵,循环水泵,引风机,送风机,给粉机以及水电厂的调速器,压油泵,润滑油泵)
Ⅱ类厂用负荷:允许短时停运,不至于造成生产紊乱,但长时间停电会损坏设备,影响机组的正常运行的厂用负荷(工业水泵,疏水泵,灰浆泵,输煤设备,化学水处理,以及水电厂中的大部分电动机)
Ⅲ类厂用负荷:较长时间停电不会直接影响生产,仅造成生产上不方便的厂用负荷。(实验室,汽配厂,油处理室)
OⅠ类厂用负荷:一般的电源切换系统已无法满足要求,所以专门用不停电电源供电。
OⅡ类厂用负荷:直流保安负荷 0Ⅲ类厂用负荷:交流保安负荷
18、厂用电自启动的概念:若电动机失去电压以后,不与厂用电源断开,在其转速未下降很多或尚未停转前,在很短的时间内,厂用母线电压又恢复正常则电动机自动化加速斌恢复到稳定状态,这一过程成为电动机的自启动。
19、保证电动机自启动的措施:
(1)限制参加自启动电动机的数量
(2)负载转矩为定值的重要电动机,因它只能在额定电压下启动,也不参加自启动,可采用低电压保护,和自动重合闸装置。
(3)对于重要的厂用机械设备,应选用较高启动转矩,和允许过载倍数较大的电动机与其配套。
(4)在不得已的情况下,或增大常用变压器的容量,或结合限制短路电流的的问题一起考虑时适当减少厂用变压器的阻抗值。
20、电气设备选择的一般条件:
1,按正常工作条件选择电气设备(1),额定电压,一般可按照电气设备的电压不低于装置地点电网电压( )(2),额定电流,长期允许电流不小于该回路在各种合理运行方式下的最大持续电流( )(3),环境条件对设备选择的影响(温度,风速,污秽,海拔高度,地震烈度,覆冰厚度等)
2、 按短路状态校验:(1)短路热稳定校验(2)电动力稳定校验
21母线选择的项目:(一)材料,截面形状,布置方式 (二)母线截面积的选择:(1)按最大持续工作电流,(2)按经济电流密度 (三)点晕电压校验 (四)热稳定校验 (五)动稳定校验
22、电弧的形成与熄灭:
电弧产生过程(1)强电场发射电子(2)热发射,在高温下产生热自由电子(3)碰撞游离形成电弧 (4)热游离维持电弧燃烧
23、灭弧方法:游离作用小于去游离作用,增强游离作用而削弱游离作用。
(1)增大近极电压降。
(2)增大弧柱电压的顺轴梯度。
(3)增大电弧长度。
(4)改善灭弧介质,增大弧隙间的电绝缘强度。
24、交流灭弧的条件:决定熄弧的根本因素是弧隙的介质强度恢复强度恢复过程和加在弧熄上的弧隙电压恢复过程。
25,交流电弧比直流电弧易于切断,阻性电弧比感性电弧易于切断,交流电弧的特点:(1)每周有两次过零,瞬间可以产生高恢复电压,(2)容易发生振荡现象,(3)电弧过零时,如果总有介质强度恢复过程高于弧隙电压恢复过程,则电弧熄灭,反之电弧复燃。
26、六氟化硫断路器的优点:1,开断能力强,全开短时间短,断口开距小,体积小,质量轻,维护工作量小,噪声低,寿命长。
缺点:结构复杂,金属消耗量较大,制造工艺,材料和密封要求高,价格昂贵在电弧作用下产生低氟化合物。
真空断路器的优缺点:真空断路器具有开断能力强,灭弧迅速,触头不易氧化,运行维护简单,灭弧室不用检修,结构简单,体积小,质量轻,噪声低,寿命长,无火灾核爆炸危险。缺点:制造工艺,材料和密封要求高,开断电流和断口电压不能做得很高。
27、互感器的作用:将一次回路的高电压,大电流变为二次回路的标记电压(100V, 100 )小电流(5A,1A),这样使测量仪表,和保护电压线圈及其装置标准化和小型化,使二次回路采用低电压,小电流控制电缆,实现远方测量和控制。二次设备与高压部分隔离,且互感器二次均接地,保障了人身和设备的安全。使二次回路不受一次回路的限制,接线灵活,维护调试方便。
28,电流互感器的精度等级:在规定二次负荷变化范围内,一次电流为额定电流误差百分数。
稳态保护(P):P,PR 暂态保护TP:TPX,TPY,TPZ
29、安全净距:是以保障不放电为条件下,该段电压所允许在空中的物体边缘最小的电气距离。
A1:带电部分对接地部分的之间的空间最小安全净距。
A2:不同相的带电部分之间的空间最小安全净距
30、屋内配电装置形式:单层式,二层式,三层式,其特点:(1)由于允许的安全净距小和可以分层布置而使占地面积小,(2)维修,巡视,操作在屋内进行,可以减轻工作量,不受气候影响(3)外界污秽空气对电器影响较小,可以减小工作量。(4)屋内建设投资较大,建设周期长,但可以采用价格较低型的屋内设备。
31、屋外配电装置形式:中型配电装置,高型配电装置,半高型配电装置,其特点:(1)土建工作较小费用较低,建设周期短(2)与屋内配电装置相比,扩建比较方便。(3)相邻设备之间距离较大,便于带电作业。(4)与屋内配电装置相比,占地面积较大。(5)受外界环境影响较大,设备故障运行条件差,需加强绝缘。(5)不良气候对设备维修和操作有影响。
按宏观角度,发电厂的控制方式分为:主控制方式和机炉电集中控制方式。
按微观角度,发电厂设备的控制方式分为:模拟信号测控方式和数字信号测控方式。
32、相对编号法:
33、对控制回路的一般要求,(断路器回路必须完整,可靠,)因此必须要满足以下的要求:
1, 断路器的合闸和跳闸回路是按短路时通电来设计的。
2, 断路器既能在远方由控制开关进行手动合闸和跳闸,又能在自动控制装置和继电保护作用下的自动合闸和跳闸。
3, 控制回路应具有反应断路器位置状态信号。
4, 具有防止断路器多次合,跳闸的“防跳”装置。
5, 对控制回路及其电源是否完好,应该进行监视。
6, 对于采用气压,液压,和弹簧操作的断路器,应有对压力是否正常,弹簧是否拉紧到位的监视回路和动作闭锁回路。
34、事故信号:如断路器发生事故跳闸时,立即用蜂鸣器发出较强的音响,通知运行人员进行处理,同时断路器的位置发出闪光。
预告信号:当运行设备出现危及安全运行的异常情况时,例如发电机过负荷,便发出一种有别于事故信号的音响———铃响。同时标有故障的光子牌也变亮。
2. 在智能电网上都可以用到什么产品
智能电网就是电网的智能化(智电电力),也被称为“电网2.0”,它是建立在集成的、高速双向通信网络的基础上,通过先进的传感和测量技术、先进的设备技术、先进的控制方法以及先进的决策支持系统技术的应用,实现电网的可靠、安全、经济、高效、环境友好和使用安全的目标,其主要特征包括自愈、激励和包括用户、抵御攻击、提供满足21世纪用户需求的电能质量、容许各种不同发电形式的接入、启动电力市场以及资产的优化高效运行。
中国物联网校企联盟:智能电网由很多部分组成,可分为:智能变电站,智能配电网,智能电能表,智能交互终端,智能调度,智能家电,智能用电楼宇,智能城市用电网,智能发电系统,新型储能系统。
国家电网中国电力科学研究院:以物理电网为基础(中国的智能电网是以特高压电网为骨干网架、各电压等级电网协调发展的坚强电网为基础),将现代先进的传感测量技术、通讯技术、信息技术、计算机技术和控制技术与物理电网高度集成而形成的新型电网。它以充分满足用户对电力的需求和优化资源配置、确保电力供应的安全性、可靠性和经济性、满足环保约束、保证电能质量、适应电力市场化发展等为目的,实现对用户可靠、经济、清洁、互动的电力供应和增值服务。
与现有电网相比,智能电网体现出电力流、信息流和业务流高度融合的显著特点,其先进性和优势主要表现在:
(1)具有坚强的电网基础体系和技术支撑体系,能够抵御各类外部干扰和攻击,能够适应大规模清洁能源和可再生能源的接入,电网的坚强性得到巩固和提升。
(2)信息技术、传感器技术、自动控制技术与电网基础设施有机融合,可获取电网的全景信息,及时发现、预见可能发生的故障。故障发生时,电网可以快速隔离故障,实现自我恢复,从而避免大面积停电的发生。
(3)柔性交/直流输电、网厂协调、智能调度、电力储能、配电自动化等技术的广泛应用,使电网运行控制更加灵活、经济,并能适应大量分布式电源、微电网及电动汽车充放电设施的接入。
(4)通信、信息和现代管理技术的综合运用,将大大提高电力设备使用效率,降低电能损耗,使电网运行更加经济和高效。
(5)实现实时和非实时信息的高度集成、共享与利用,为运行管理展示全面、完整和精细的电网运营状态图,同时能够提供相应的辅助决策支持、控制实施方案和应对预案。
(6)建立双向互动的服务模式,用户可以实时了解供电能力、电能质量、电价状况和停电信息,合理安排电器使用;电力企业可以获取用户的详细用电信息,为其提供更多的增值服务。
在绿色节能意识的驱动下,智能电网成为世界各国竞相发展的一个重点领域。
智能电网是电力网络,是一个自我修复,让消费者积极参与,能及时从袭击和自然灾害复原,容纳所有发电和能量储存,能接纳新产品,服务和市场,优化资产利用和经营效率,为数字经济提供电源质量。
智能电网建立在集成的、高速双向通信网络基础之上,旨在利用先进传感和测量技术、先进设备技术、先进控制方法,以及先进决策支持系统技术,实现电网可靠、安全、经济、高效、环境友好和使用安全的高效运行。
它的发展是一个渐进的逐步演变,是一场彻底的变革,是现有技术和新技术协同发展的产物,除了网络和智能电表外还饱含了更广泛的范围。
建设以特高压电网为骨干网架,各级电网协调发展,以信息化、自动化、互动化为特征的坚强智能电网,全面提高电网的安全性、经济性、适应性和互动性,坚强是基础, 智能是关键。
其重要意义体现在以下几个方面:
(1)具备强大的资源优化配置能力。我国智能电网建成后,将实现大水电、大煤电、大核电、大规模可再生能源的跨区域、远距离、大容量、低损耗、高效率输送,区域间电力交换能力明显提升。
(2)具备更高的安全稳定运行水平。电网的安全稳定性和供电可靠性将大幅提升,电网各级防线之间紧密协调,具备抵御突发性事件和严重故障的能力,能够有效避免大范围连锁故障的发生,显著提高供电可靠性,减少停电损失。
(3)适应并促进清洁能源发展。电网将具备风电机组功率预测和动态建模、低电压穿越和有功无功控制以及常规机组快速调节等控制机制,结合大容量储能技术的推广应用,对清洁能源并网的运行控制能力将显著提升,使清洁能源成为更加经济、高效、可靠的能源供给方式。
(4)实现高度智能化的电网调度。全面建成横向集成、纵向贯通的智能电网调度技术支持系统,实现电网在线智能分析、预警和决策,以及各类新型发输电技术设备的高效调控和交直流混合电网的精益化控制。
(5)满足电动汽车等新型电力用户的服务要求。将形成完善的电动汽车充放电配套基础设施网,满足电动汽车行业的发展需要,适应用户需求,实现电动汽车与电网的高效互动。
(6)实现电网资产高效利用和全寿命周期管理。可实现电网设施全寿命周期内的统筹管理。通过智能电网调度和需求侧管理,电网资产利用小时数大幅提升,电网资产利用效率显著提高。
(7)实现电力用户与电网之间的便捷互动。将形成智能用电互动平台,完善需求侧管理,为用户提供优质的电力服务。同时,电网可综合利用分布式电源、智能电能表、分时电价政策以及电动汽车充放电机制,有效平衡电网负荷,降低负荷峰谷差,减少电网及电源建设成本。
(8)实现电网管理信息化和精益化。将形成覆盖电网各个环节的通信网络体系,实现电网数据管理、信息运行维护综合监管、电网空间信息服务以及生产和调度应用集成等功能,全面实现电网管理的信息化和精益化。
(9)发挥电网基础设施的增值服务潜力。在提供电力的同时,服务国家“三网融合”战略,为用户提供社区广告、网络电视、语音等集成服务,为供水、热力、燃气等行业的信息化、互动化提供平台支持,拓展及提升电网基础设施增值服务的范围和能力,有力推动智能城市的发展。
(10)促进电网相关产业的快速发展。电力工业属于资金密集型和技术密集型行业,具有投资大、产业链长等特点。建设智能电网,有利于促进装备制造和通信信息等行业的技术升级,为我国占领世界电力装备制造领域的制高点奠定基础。
智能电网对世界经济社会发展的促进作用,智能电网建设对于应对全球气候变化,促进世界经济社会可持续发展具有重要作用。主要表现在以下几点
(1)促进清洁能源的开发利用,减少温室气体排放,推动低碳经济发展。
(2)优化能源结构,实现多种能源形式的互补,确保能源供应的安全稳定。
(3)有效提高能源输送和使用效率,增强电网运行的安全性、可靠性和灵活性。
(4)推动相关领域的技术创新,促进装备制造和信息通信等行业的技术升级,扩大就业,促进社会经济可持续发展。
(5)实现电网与用户的双向互动,革新电力服务的传统模式,为用户提供更加优质、便捷的服务,提高人民生活质量。
3. 造钢铁的锅炉的原理
兄弟~~~~这个真的不能口述,得复制了~~!!!
1、按冶炼方法分类:
平炉钢:包括碳素钢和低合金钢。按炉衬材料不同又分酸性和碱性平炉钢两种。
转炉钢:包括碳素钢和低合金钢。按吹氧位置不同又分底吹、侧吹和氧气顶吹转炉钢三种。
电炉钢:主要是合金钢。按电炉种类不同又分电弧炉钢、感应电炉钢、真空感应电炉钢和电渣炉钢四种。
沸腾钢、镇静钢和半镇静钢:按脱氧程度和浇注制度不同区分。
2、按化学成分分类:
碳素钢:是铁和碳的合金。据中除铁和碳之外,含有硅、锰、磷和硫等元素。按含碳量不同可分 为低碳(C<0.25%)、中碳(C:0.25%-0.60%)和高碳(C>0.60%)钢三类。碳含量小于0.04%的钢称工业纯铁。
普通低合金钢:在低碳普碳钢的基础上加入少量合金元素(如硅、钙、钛、铌、硼和稀土元素等,其总量不超过3%)。而获得较好综合性能的钢种。
合金钢:是含有一种或多种 适量合金元素的钢种,具有良好和特殊性能。按合金元素总含量不同可分为低合金(总量<5%)、中合金(合金总量在5%-10%)和高合金(总量>10%)钢三类。
3、按用途分类:
结构钢:按用途不同分建造用钢和机械用钢两类。建造用钢用于建造锅炉、船舶、桥梁、厂房和其他建筑物。机械用钢用于制造机器或机械零件。
工具钢:用于制造各种工具的高碳钢和中碳钢,包括碳素工具钢、合金工具钢和高速工具钢等。
特殊钢:具有特殊的物理和化学性能的特殊用途钢类,包括不锈耐酸钢、耐热钢、电热合金和磁性材料等。
常用冶炼方法
1、转炉炼钢:
一种不需外加热源、主要以液态生铁为原料的炼钢方法。其主要特点是靠转炉内液态生铁的物理热和生铁内各组分,如碳、锰、硅、磷等与送入炉内的氧气进行化学反应所产生的热量作冶炼热源来炼钢。炉料除铁水外,还有造渣料(石灰、石英、萤石等);为了调整温度,还可加入废钢以及少量的冷生铁和矿石等。转炉按炉衬耐火材料性质分为碱性(用镁砂或白云为内衬)和酸性(用硅质材料为内衬);按气体吹入炉内的部分分为底吹顶吹和侧吹;按所采用的气体分为空气转炉和氧气转炉。酸性转炉不能去除生铁中的硫和磷,须用优质生铁,因而应用范围受到限制。碱性转炉适于用高磷生铁炼钢,曾在西欧获得较大发展。空气吹炼的转炉钢,因其含氮量高,且所用的原料有局限性,又不能多配废钢,未在世界范围内得到推广。1952年氧气顶吹转炉问世,现已成为世界上的主要炼钢方法。在氧气顶吹转炉炼钢法的基础上,为吹炼高磷生铁,又出现了喷吹石灰粉的氧气顶吹转炉炼钢法。随氧气底吹的风嘴技术的发展成功,1967年德国和法国分别建成氧气底吹转炉。1971年美国引进此项技术后又发展了底吹氧气喷石灰粉转炉,用于吹炼含磷生铁。1975年法国和卢森堡又开发成功顶底复合吹炼的转炉炼钢法。
2、氧气顶吹转炉炼钢:
用纯氧从转炉顶部吹炼铁水成钢的转炉炼钢方法,或称LD法;在美国通常称BOF法,也称BOP法。它是现代炼钢的主要方法。炉子是一个直立的坩埚状容器,用直立的水冷氧枪从顶部插入炉内供氧。炉身可倾动。炉料通常为铁水、废钢和造渣材料;也可加入少量冷生铁和铁矿石。通过氧枪从熔池上面向下吹入高压的纯氧(含O299.5%以上),氧化去除铁水中的硅、锰、碳和磷等元素,并通过造渣进行脱磷和脱硫。各种元素氧化所产生的热量,加热了熔池的液态金属,使钢水达到现定的化学成分和温度。它主要用于冶炼非合金钢和低合金钢;但通过精炼手段,也可用于冶炼不锈钢等合金钢。
3、氧气底吹转炉炼钢:
通过转炉底部的氧气喷嘴把氧气吹入炉内熔池,使铁水冶炼成钢的转炉炼钢方法。其特点是;炉子的高度与直径比较小;炉底较平并能快速拆卸和更换;用风嘴、分配器系统和炉身上的供氧系统代替氧气顶吹转炉的氧枪系统。由于吹炼平稳、喷溅少、烟尘量少、渣中氧化铁含量低,因此氧气底吹转炉的金属收得率比氧气顶吹转炉的高1%~2%;采用粉状造渣料,由于颗粒细、比表面大,增大了反应界面,因此成渣快,有利于脱硫和脱磷。此法特别适用于吹炼中磷生铁,因此在西欧用得最广。
4、连续炼钢:
不分炉次地将原料(铁水、废钢)从炉子一端不断地加入,将成品(钢水)从炉子的另一端不断地流出的炼钢方法。连续炼钢工艺的设想早在19世纪就已出现。由于这种工艺具有设备小、工艺过程简单而且稳定等潜在优越性,几十年来许多国家都作了各种各样方法的大量试验,其中主要有槽式法、喷雾法和泡沫法三类,但迄今为止都尚未投入工业化生产。
5、混合炼钢:
用一个炉子炼钢、另一个电炉炼还原渣或还原渣与合金,然后在一定的高度下进行冲混的炼钢方法。用此法处理平炉、转炉及电炉所炼钢水,可提高钢的质量。冲混可增加渣、钢间的接触面积,加速化学反应以及脱氧、脱硫,并有吸附和聚合气体及夹杂物的作用,从而提高钢的纯结度和质量。
6、复合吹炼转炉炼钢:
在顶吹和底吹氧气转炉炼钢法的基础上,综合两者的优点并克服两者的缺点而发展起来的新炼钢方法,即在原有顶吹转炉底部吹入不同气体,以改善熔池搅拌。目前,世界上大多数国家用这种炼钢法,并发展了多种类型的复吹转炉炼钢技术,常见的如英国钢公司开发的以空气+N2或Ar2作底吹气体、以N2作冷却气体的熔池搅拌复吹转炉炼钢法——BSC——BAP法,德国克勒克纳——马克斯冶金厂开发的用天然保护底枪、从底部向熔池分别喷入煤和氧的KMS法、日本川崎钢铁公司开发的将占总氧量30%的氧气混合石灰粉一道从炉底吹入熔池的K——BOP法以及新日本钢铁公司开发的将占总氧量10%——20%的氧气从底部吹入,并用丙烷或天然气冷却炉底喷嘴的LD——OB法等。
7、顶吹氧气平炉炼钢:
从50年代中期开始,在平炉生产中采用1~5支水冷氧枪由炉顶插入熔炼室,直接向熔池吹氧的炼钢方法。该法改善了熔池反应的动力学条件,使碳氧反应的热效应由原来的吸热变为放热,并改善了热工条件;生产率大幅度地得到提高。
8、电弧炉炼钢:
利用电弧热效应熔炼金属和其他物料的一种炼钢方法。炼钢用三相交流电弧炉是最常见的直接加热电弧炉。炼钢过程中,由于炉内无可燃气体,可根据工艺要求,形成氧化性或还原性气氛和条件,故可以用于冶炼优质非合金钢和合金钢。按电炉每吨炉容量的大小,可将电弧炉分为普通功率电弧炉、高功率电弧炉和超高功率电弧炉。电弧炉炼钢向高功率、超高功率发展的目的是为了缩短冶炼时间、降低电耗、提高生产率、降低成本。随着高功率和超高功率电炉的出现,电弧炉已成为熔化器,一切精炼工艺都在精炼装置内进行。近十年来直流电弧炉由于电极消耗低、电压波动小和噪音小而得到迅速发展,可用于冶炼优质钢和铁合金。
9、STB法:
原文为Sumitomo Top and Bottom blowing process,由日本住友金属公司开发的顶底复吹转炉炼钢法。该法综合了氧气顶吹转炉炼钢法和氧气底吹转炉炼钢法两者的优点。用于吹炼低碳钢,脱磷效果好且成本下降显著。所用的底吹气体为O2、CO2、N2等。在STB法基础上又开发了从顶部喷吹粉末的STB—P法,进一步改善了高碳钢的脱磷条件,并用于精炼不锈钢。
10、RH法:
又称循环法真空处理。由德国Ruhrstahl/Heraeus二公司共同开发。真空室下方装有两个导管,插入钢水,抽真空后钢水上升至一定高度,再在上升管吹入惰性气体Ar、Ar上升带动钢液进入真空室接受真空处理,随后经另一导管流回钢包。真空室上装有加合金的加料系统。此法已成为大容量钢包(>80t)的钢水主要真空处理方法。
11、RH—OB:
RH吹氧法。是在真空循环脱气(RH)法中加上吹氧操作(Oxygen Blowing)来升温。用于精炼不锈钢,是利用减压下可优先进行脱碳反应;用于精炼普通钢则可减轻转炉负荷。也可采用加铝升温。
12、OBM—S法:
原文为Oxygen Bottom Maxhutte—Scarp,由德国Maxhutte-Klockner厂发明的以天然气或丙烷作底吹氧枪冷却介质的氧气底吹转炉炼钢法。OBM—S是在OBM氧气底吹转炉的炉帽上安装侧吹氧枪,底部氧枪吹煤气、天然气预热废钢,从而达到增加废钢比的目的。
13、NK—CB法:
原文为NKK Combined Blowing System,由日本钢管公司于1973年建立的顶底复吹转炉炼钢法,即在顶吹的同时,从炉底吹入少量气体(Ar,CO2,N2),以加强钢渣的搅拌,并控制钢水中的CO分压。该法采用多孔砖喷嘴,用于炼低碳钢可降低成本;用于炼高碳钢则有利于脱磷。该法应与铁水预处理工艺结合起来
14、MVOD:
在VAD法的设备上增设水冷氧枪,使之在真空下可吹氧脱碳的方法,由于真空下脱碳为放热反应,可省去VAD法的真空加热措施。操作过程与VOD法相同。
15、LF法:
原文为Ladle Furnace,是1971年日本特殊钢公司(大同钢特殊钢公司)开发的钢包炉精炼法。其设备和工艺由氩气搅拌、埋弧加热和合金加料系统组合而成。这种工艺的优点是:能精确地控制钢水化学成分和温度;降低夹杂物含量;合金元素收得率高。LF炉已成为炼钢炉与连铸机之间不可缺少的一种炉外精炼设备。
16、LD炼钢法:
1952年奥钢联林茨(Linz)厂与奥地利阿尔卑斯矿冶公司多纳维茨(Donawitz)厂最早在工业上开发成功的氧气顶吹转炉炼钢法,并以该两厂的第一个字母而命名。该法问世后在全世界范围迅速得到推广。美国称此法为BOF或BOP法,即Basic Oxygen Furnace 或Process 的简称。详见氧气顶吹, 转炉。
17、LD—OTB法:
原文为LD—Oxgyen Top an Bottom Process,由日本神户制钢公司加古川厂开发的顶底复合吹炼转炉炼钢工艺。其特点是使用了专门的底吹单环缝形喷嘴(SA喷嘴),因而底吹气体能控制在很宽的范围内。底部吹入惰性气体。
18、LD—HC法:
原文为LD—Hainaut Saubre CRM,系比利时开发的用于吹炼高磷铁水的顶底复合吹炼转炉炼钢法,即LD+底吹氧,用碳氢化合物保护喷嘴。
19、LD-AC法:
原文为LD - Arbed - Centre National,法国钢铁研究所开发的顶吹氧气喷石灰粉炼钢法,用于吹炼高磷铁水。
20、KS法:
原文Klockner Steelmaking,系采用100%固体料操作的底部喷煤粉氧气转炉炼钢工艺。底吹氧比率为60%~100%。
21、K—ES法:
将底吹气体技术、二次燃烧技术和喷煤粉技术结合起来的电弧炉炼钢法,它是由日本东京炼钢公司和德国Kiokner公司共同开发的技术,可以以煤代电。
22、FINKL—VAD法:
电弧加热钢包脱气法或称真空电弧脱气法。其特点是在真空室的盖上增设有电弧加热装置,并在真空下用氩气搅拌。该法的脱气效果稳定,而且能脱硫、脱碳和加入大量合金。设备主要由真空室、电弧加热系统、合金加料装置、抽真空系统及液压系统组成。
23、DH法:
德国Dortmund Horder联合冶金公司开发的一种真空处理装置。内衬耐火材料的真空室,下部装上有耐火衬的导管插入钢包,真空室或钢包周期性地放下与提升,使一部分钢水进入真空室,处理后返回钢包。上部有加合金料装置和真空加热保温装置。目前已不再建造这种设备。
24、CLU法:
一种不锈钢的精炼方法。其原理与AOD法相同,物点是采用水蒸气代替氩气。该方法是法国Creusot-Loire公司和瑞典Uddeholm公司共同研制成功的,并于1973年正式投入生产。水蒸气与钢液接触后分解为H2和O2;H2使CO分压降低。同时,该分解反应为吸热反应,因而可抑制钢液温度上升。但铬的氧化烧损比AOD法的严重。
25、CAS法:
原文为Composition adjustment by sealed argonbubbling,是在氩气密封下进行合金成分微调的炉外精炼方法。该法由钢包底部吹氩,将渣排开后,下降浸渍罩,继续吹氩,然后加合金微调成分。其优点是可精确控制成分,且合金收得率高。
26、CAS—OB法:
原文为Compositon adjustment by sealed argon bubbling with oxygen blowing,是在CAS设备上增设吹氧枪的炉外精炼方法。降可微调合金成分外,它还可加铝并吹氧升温(化学热法),升温速度为5~13℃/分。这种方法可使钢水温度精确地控制在±3℃,从而有利于配合连铸生产。
27、ASEA-SKF法:
瑞典开发的一种钢包精炼法。它采用低频电磁搅拌,在常压下进行电弧加热,在钢包中造渣精炼,在另一工位真空除气,并设有氧枪,可在减压下吹氧脱碳。为了提高精炼效果,它还可在钢包底部通过多孔砖吹氩搅拌,并能加入合金调整钢液成分。
28、AOD法:
氩氧脱碳法和简称,原文为Argon-Oxygen Decarburisation,是冶炼低碳不锈钢的主要精炼法。1964年由美国碳化物公司研制成功,1968年用于实际生产。其冶金原理是用Ar稀释CO,使其分压降低,达到真空的效果,从而使碳脱到很低的水平。AOD炉体和传动装置与转炉相类似,风眼安放在接近炉底的侧壁上,向炉内吹入的是Ar+O2混合气体,原料为初炼炉熔化的钢水。吹炼过程分为氧化期、还原期、精炼期。它已成为不锈钢的主要生产工艺。
特殊冶金法
包括电渣重熔、真空冶金、等离子冶金、电子束熔炼、区域熔炼等多种炼钢方法的总称。某些高新技术或特殊用途要求特高纯度的钢,若用普通炼钢方法加炉外精炼达不到要求时,则可采用特殊冶金方法炼制。
电渣重熔:将冶炼好的钢铸造或锻压成为电极,通过熔渣电阻热进行二次重熔的精炼工艺,也称ESR。它的热源来自熔渣电阻热,重熔时自耗电极浸入熔渣中,电流通过电离后的熔渣,使熔渣升温达到比被熔自耗电极熔点高得多的温度。插入熔渣中的自耗电极端头熔化后形成熔滴,并靠自重穿越渣池,得到渣洗精炼而后在减少空气污染的情况下进入金属熔池。钢锭与结晶器壁之间形成薄的渣皮,既减缓了径向冷却,也改善了成品钢锭表面质量,借助结晶器底部水冷,凝固成轴向结晶倾向和偏析少的重熔钢锭,改善了热加工塑性。
等离子冶金:以等离子流为热源的冶金过程,即利用等离子枪将电能转变为定向等离子射流中的热能。等离子射流具有电弧稳定、热量高度集中、可达到非常高的温度等特点。有的等离子枪的工作温度高达5000~20000℃。等离子枪可用惰性气体(Ar)、还原性气体(H2)等为介质,以达到不同的冶金目的。等离子炉可用于熔炼高熔点金属和活泼金属以及金属或合金的提纯。等离子体技术也已用于钢铁厂废尘处理和铁合金生产工艺。
喷射冶金:为加速液体金属与物料的物理化学反应,用气体喷射的方法把粉末物料送入液体金属,完成冶金反应的工艺,亦称喷粉冶金。该工艺广泛用于铁水予处理和钢包精炼,以达到脱硫、脱氧、成分微调、使夹杂物变性的目的。此工艺的反应速度快,物料利用率高。
区域熔炼:1952年W.G.Pfann提出的一种利用液固相中杂质元素溶解度不同的特点提炼金属的工艺。其操作原理是:设一个均匀的固态金属棒中有一小段金属被熔化成液体,那么,若这一小段液态区域自左向右缓慢移动,则每移动一次,杂质都会重新分布,其效果就相当于把杂质驱赶到右端。经过多次这样的重复,左端金属便可达到很高的纯度。
真空冶金:在低于0.1MPa至超高真空条件下[133.3×(<760~10-12)Pa]进行的冶金过程,包括金属及合金的提炼、冶炼、重熔、精炼、成形和热处理。目的主要在于:①减少金属受气相的污染;②降低溶解于金属中的气体或易挥发的杂质含量;③促进有气态产物的化学反应;④避免由耐火材料容器带来的污染。以适应高性能金属材料及新型金属材料的需要。随着生产电热材料、电工合金、软磁合金以及高温镍基合金等高性能和新型金属材料的需要,发展了各种真空熔炼方法,主要有真空电阻熔炼、真空感应熔炼、真空电弧重熔、电子束熔炼及电渣重熔等。
真空电弧熔炼:在真空(10-2~10-1Pa)下借助电弧供热重熔金属和合金的工艺,也称VAR法。其过程是:以水冷铜坩埚为正极,被熔自耗电极接在经滑动密封进入炉体的假电极上为负极,输入低压直流电流在电极与坩埚底之间引弧,借助电弧供热重熔金属和合金。伴随自耗电极的熔化,通过控制电极的下降速度,将自耗电极重熔为成分均匀、组织致密、纯净度高和偏析少的重熔钢锭。它不仅用于重熔活性金属和耐热难熔金属,而且也用于重熔使用要求较严格的高温合金和特殊钢。
真空电子束熔炼:在较高真空(133.3×10-4~133.3×10-8Pa)下用电子枪发射电子束,轰击被熔炼物料(作为阳极),使之熔化并滴入水冷铜结晶器凝固成锭的熔炼方法。锭由机械装置连续抽出。此法可以调节能量分布,控制熔化速度。电子束重熔材料的纯净度比其他真空熔炼法的更高。它适于熔炼钨、钼等金属及其合金、高级合金钢、高温合金和超纯金属。
真空电阻熔炼:在真空下以电流通过导体所产生的热为热源的熔炼方法。一般采取间接加热,由电热体把热能传给炉中物料。根据需要,电阻炉内的气氛可以是惰性或保护性的。真空电阻炉可设计成熔炼炉或热处理炉。
真空感应熔炼:在真空下利用感应电热效应熔炼金属和合金的工艺。按炉料和容量选择电源频率。它有高频(>104Hz)和中频(50~104Hz)以及工频(50或60Hz)两类。感应炉又分有芯(闭槽式)和无芯(坩埚式)两大类。前者电热效率高,功率因数高,但要有起熔体,熔炼温度低,适用于单一品种的连续熔炼;后者熔炼温度高,电热效率低,适于特殊钢和镍基合金等的熔炼。真空感应熔炼在高温合金、高强度钢和超高强度钢等生产中得到广泛应用。
炼钢工艺过程
造渣:调整钢、铁生产中熔渣成分、碱度和粘度及其反应能力的操作。目的是通过渣——金属反应炼出具有所要求成分和温度的金属。例如氧气顶吹转炉造渣和吹氧操作是为了生成有足够流动性和碱度的熔渣,以便把硫、磷降到计划钢种的上限以下,并使吹氧时喷溅和溢渣的量减至最小。
出渣:电弧炉炼钢时根据不同冶炼条件和目的在冶炼过程中所采取的放渣或扒渣操作。如用单渣法冶炼时,氧化末期须扒氧化渣;用双渣法造还原渣时,原来的氧化渣必须彻底放出,以防回磷等。
熔池搅拌:向金属熔池供应能量,使金属液和熔渣产生运动,以改善冶金反应的动力学条件。熔池搅拌可藉助于气体、机械、电磁感应等方法来实现。
电炉底吹:通过置于炉底的喷嘴将N2、Ar、CO2、CO、CH4、O2等气体根据工艺要求吹入炉内熔池以达到加速熔化,促进冶金反应过程的目的。采用底吹工艺可缩短冶炼时间,降低电耗,改善脱磷、脱硫操作,提高钢中残锰量,提高金属和合金收得率。并能使钢水成分、温度更均匀,从而改善钢质量,降低成本,提高生产率。
熔化期:炼钢的熔化期主要是对平炉和电炉炼钢而言。电弧炉炼钢从通电开始到炉料全部熔清为止、平炉炼钢从兑完铁水到炉料全部化完为止都称熔化期。熔化期的任务是尽快将炉料熔化及升温,并造好熔化期的炉渣。
氧化期和脱炭期:普通功率电弧炉炼钢的氧化期,通常指炉料溶清、取样分析到扒完氧化渣这一工艺阶段。也有认为是从吹氧或加矿脱碳开始的。氧化期的主要任务是氧化钢液中的碳、磷;去除气体及夹杂物;使钢液均匀加热升温。脱碳是氧化期的一项重要操作工艺。为了保证钢的纯净度,要求脱碳量大于0.2%左右。随着炉外精炼技术的发展,电弧炉的氧化精炼大多移到钢包或精炼炉中进行。
精炼期:炼钢过程通过造渣和其他方法把对钢的质量有害的一些元素和化合物,经化学反应选入气相或排、浮入渣中,使之从钢液中排除的工艺操作期。
还原期:普通功率电弧炉炼钢操作中,通常把氧化末期扒渣完毕到出钢这段时间称为还原期。其主要任务是造还原渣进行扩散、脱氧、脱硫、控制化学成分和调整温度。目前高功率和超功率电弧炉炼钢操作已取消还原期。
炉外精炼:将炼钢炉(转炉、电炉等)中初炼过的钢液移到另一个容器中进行精炼的炼钢过程,也叫二次冶金。炼钢过程因此分为初炼和精炼两步进行。初炼:炉料在氧化性气氛的炉内进行熔化、脱磷、脱碳和主合金化。精炼:将初炼的钢液在真空、惰性气体或还原性气氛的容器中进行脱气、脱氧、脱硫,去除夹杂物和进行成分微调等。将炼钢分两步进行的好处是:可提高钢的质量,缩短冶炼时间,简化工艺过程并降低生产成本。炉外精炼的种类很多,大致可分为常压下炉外精炼和真空下炉外精炼两类。按处理方式的不同,又可分为钢包处理型炉外精炼及钢包精炼型炉外精炼等。
钢液搅拌:炉外精炼过程中对钢液进行的搅拌。它使钢液成分和温度均匀化,并能促进冶金反应。多数冶金反应过程是相界面反应,反应物和生成物的扩散速度是这些反应的限制性环节。钢液在静止状态下,其冶金反应速度很慢,如电炉中静止的钢液脱硫需30~60分钟;而在炉精炼中采取搅拌钢液的办法脱硫只需3~5分钟。钢液在静止状态下,夹杂物靠上浮除去,排除速度较慢;搅拌钢液时,夹杂物的除去速度按指数规律递增,并与搅拌强度、类型和夹杂物的特性、浓度有关。
钢包喂丝:通过喂丝机向钢包内喂入用铁皮包裹的脱氧、脱硫及微调成分的粉剂,如Ca-Si粉、或直接喂入铝线、碳线等对钢水进行深脱硫、钙处理以及微调钢中碳和铝等成分的方法。它还具有清洁钢水、改善非金属夹杂物形态的功能。
钢包处理:钢包处理型炉外精炼的简称。其特点是精炼时间短(约10~30分钟),精炼任务单一,没有补偿钢水温度降低的加热装置,工艺操作简单,设备投资少。它有钢水脱气、脱硫、成分控制和改变夹杂物形态等装置。如真空循环脱气法(RH、DH),钢包真空吹氩法(Gazid),钢包喷粉处理法(IJ、TN、SL)等均属此类。
钢包精炼:钢包精炼型炉外精炼的简称。其特点是比钢包处理的精炼时间长(约60~180分钟),具有多种精炼功能,有补偿钢水温度降低的加热装置,适于各类高合金钢和特殊性能钢种(如超纯钢种)的精炼。真空吹氧脱碳法(VOD)、真空电弧加热脱气法(VAD)、钢包精炼法(ASEA-SKF)、封闭式吹氩成分微调法(CAS)等,均属此类;与此类似的还有氩氧脱碳法(AOD)。
惰性气体处理:向钢液中吹入惰性气体,这种气体本身不参与冶金反应,但从钢水中上升的每个小气泡都相当于一个“小真空室”(气泡中H2、N2、CO的分压接近于零),具有“气洗”作用。炉外精炼法生产不锈钢的原理,就是应用不同的CO分压下碳铬和温度之间的平衡关系。用惰性气体加氧进行精炼脱碳,可以降低碳氧反应中CO分压,在较低温度的条件下,碳含量降低而铬不被氧化。
预合金化:向钢液加入一种或几种合金元素,使其达到成品钢成分规格要求的操作过程称为合金化。多数情况下脱氧和合金化是同时进行的,加入钢中的脱氧剂一部分消耗于钢的脱氧,转化为脱氧产物排出;另一部则为钢水所吸收,起合金化作用。在脱氧操作未全部完成前,与脱氧剂同时加入的合金被钢水吸收所起到的合金化作用称为预合金化。
成分控制:保证成品钢成分全部符合标准要求的操作。成分控制贯穿于从配料到出钢的各个环节,但重点是合金化时对合金元素成分的控制。对优质钢往往要求把成分精确地控制在一个狭窄的范围内;一般在不影响钢性能的前提下,按中、下限控制。
增硅:吹炼终点时,钢液中含硅量极低。为达到各钢号对硅含量的要求,必须以合金料形式加入一定量的硅。它除了用作脱氧剂消耗部分外,还使钢液中的硅增加。增硅量要经过准确计算,不可超过吹炼钢种所允许的范围。
终点控制:氧气转炉炼钢吹炼终点(吹氧结束)时使金属的化学成分和温度同时达到计划钢种出钢要求而进行的控制。终点控制有增碳法和拉碳法两种方法。
出钢:钢液的温度和成分达到所炼钢种的规定要求时将钢水放出的操作。出钢时要注意防止熔渣流入钢包。用于调整钢水温度、成分和脱氧用的添加剂在出钢过程中加入钢包或出钢流中。
4. 发电厂电气部分复习资料
第一、二章
一、 发电厂类型
1、火力发电厂
2、水力发电厂
3、核电厂
核电厂是利用原子核内部蕴藏的能量产生电能。核电厂的燃料是铀。
1千克铀-235全部裂变放出的能量相当于2700吨标准煤燃 烧放出的能量。
二、变电所类型
1、枢纽变电所: 电源多、电压等级高,全所停电将引起电力系统解列,甚至瘫痪;
2、中间变电所: 高压侧以交换潮流为主,同时又降压给当地用电。全所停电将引起区域电网解列;
3、地区变电所: 以向地区用户供电为主,是某一地区或城市的主要变电所。全所停电仅使该地区供电中断;
4、终端变电所: 接近负荷点,降压后直接向用户供电。全所停电只影响用户。
三、电气设备
1、 一次设备:直接参与生产和分配电能的设备。
2、 二次设备:对一次设备进行测量、控制、监视和保护的设备
3、 主接线:把发电机、变压器、断路器等各种电气设备按预期生产流程连成的电路,称为电气主接线。
第三章 常用计算的基本理论和方法
发热:电气设备流过电流时将产生损耗,如电阻损耗、磁滞和涡流损耗、介质损耗等,这些损耗都将变成热量使电气设备的温度升高。
长期发热----由工作电流所引起。
短时发热----由故障时的短路电流所引起。
1、发热对电器的不良影响
1)机械强度下降(与受热时间、温度有关)
2)接触电阻增加
3)绝缘性能下降
最高允许温度----能使导体可靠工作的最高温度。
正常的最高允许温度:一般θC≤700C ,钢芯铝绞线及管形导体θC≤800C,镀锡: θC≤850C 。
2、短时最高允许温度:硬铝、铝锰合金:θd≤2000C ,硬铜:θd≤3000C
3、短时发热过程特点:属于绝热过程,导体产生的热量全部用于使导体升温;
4、大电流导体附近钢构的发热
随着机组容量的加大,导体电流也相应增大,导体周围出现强大的交变电磁场,使附近钢构中产生很大的磁滞和涡流损耗,钢构因而发热。如果钢构是闭合回路,其中尚有环流存在,发热还会增多。当导体电流大于3000A时,附近钢构的发热便不容忽视。
危害:钢构变形、接触连接损坏、混凝土爆裂。
第三节 导体短路的电动力计算
1、平行导体中电动的方向:若两导体中的电流同方向,电动力的作用将使它们彼此靠近。
2、B相所受的电动力大于A、C相(约大7%),计算时应考虑B相。
3、三相电动力计算公式: (N)
4、两相短路与三相短路最大电动力的比较:
Fmax(2)/ Fmax(3)=0.866
第四节 电气设备及主接线的可靠性分析
一、基本概念
1、可靠性
元件、设备和系统在规定的条件下和预定的时间内,完成规定功能的概率。
2、可修复元件
发生故障后经过修理能再次恢复到原来的工作状态的元件。
由可修复元件组成的系统称为可修复系统。3、不可修复元件
发生故障后不能修理或虽能修复但不经济的元件。
4、电气设备的工作状态
可分为 运行状态(可用状态)或停运状态(不可用状态)。
第四章 电气主接线
电气主接线:又称为一次接线或电气主系统。由高压电器通过连接线,按其功能要求组成接受和分配电能的电路。
对主接线的基本要求:可靠性、灵活性、经济性
断路器和隔离开关的操作顺序:
断开线路时:
1)跳断路器;2)拉负荷侧隔离开关;3)拉电源侧隔离开关
投入线路时:
1) 合电源侧隔离开关; 2)合负荷侧隔离开关; 3)合断路器
1、 单母线接线
单母线接线的缺点:可靠性和灵活性较差,当母线或母线隔离开关故障或检修时,必须停电;在出线断路器检修期间,必须停止该回路的工作。
2、单母线分段接线
一段母线发生故障时,非故障段母线不间断供电;
3、单母线带旁路母线接线
旁路母线和旁路断路器的作用:不停电检修线路断路器。
不停电检修出线断路器的操作步骤:
注意:
(1)隔离开关两端电压相等时才能合上之;
(2)保证供电不能中断;
(3)线路要有断路器进行保护。
设要检修线路的断路器QF1。检修步骤为:
1)、合旁路断路器两侧的隔离开关;
2)、合旁路断路器对旁母充电,若旁母有故障,旁路断路器跳闸,此时先检修旁母;若旁母无故障则进行下列操作
3)、合旁路隔离开关;
4)、跳开出线断路器QF1;
5)、拉开QF1线路侧隔离开关;
6)、拉开QF1母线侧隔离开关;
7)、检修QF1。
此时线路由旁路断路器进行保护。
4、 双母线接线
1)、接线特点:它具有两组母线W1、W2。每回线路都经一台断路器和两组隔离开关分别与两组母线连接,母线之间通过母线联络断路器QF(简称母联)连接。
2)、优缺点:
(1)供电可靠 ,调度灵活,扩建方便;
(2)检修母线可不停电
(3)、检修母线隔离开关只停该回线
(4)、可用母联断路器代替线路断路器工作;
3)、倒闸操作
以检修工作母线为例。步骤:
(1)、合上母联两端的隔离开关;
(2)、合上母联检查备用母线的完好性;若母联跳闸,则表明备用母线有故障,若其不跳,可进行下列操作;
(3)、合上接在备用母线上的隔离开关;(先通)
(4)、拉开接在工作母线上的隔离开关;(后断)
(5)、跳开母联;
(6)、拉开母联两侧的隔离开关
(7)、检修母线。
4)、用母联断路器代替线路断路器工作的操作设线路L1上的断路器QF1拒动。步骤如下:(1)、合母联两侧的隔离开关;(2)、合母联检查备用母线的完好性;(3)、合该线路接在备用母线上的隔离开关;(4)、拉开该线路接在工作母线上的隔离开关;(5)、此时母联代替线路断路器来保护线路。
5、双母线工作母线分段带旁路母线
1)、优点
母线分段可减少母线故障时的停电范围;检修断路器无须停电。
注意:
双母线接线含单母线分段的所有优点;双母线带旁母接线含单母线分段带旁母接线的所有优点
6、3/2接线
1)、接线特点:两回线路共用三组断路器。2)、优缺点(1)、供电可靠、灵活、操作简单;(2)、检修任一断路器均无需停电;(3)、投资大、控制保护复杂。
无 母 线 接 线 形 式1、单元接线1)接线特点:发电机变压器连接成一个单元,再经断路器接至高压母线。
2.桥形接线
当只有两台变压器和两条输电线路时,可采用桥形接线,使用断路器数目最少。
桥连断路器设置在变压器侧,称为内桥; 桥连断路器则设置在线路侧,称为外桥。 1)、内桥
线路切、投方便,但变压器故障时有一回线路要停电。适用于(故障较多的)长线路及变压器不需要经常切换的场合;
2)、外桥
变压器切、投方便,但线路故障时有一台变压器也被切除。适用于线路较短、变压器需要经常切换的场合;
另外:◆出线接入环网,可采用外桥接线;
◆系统在本厂有穿越功率时可用外桥,但如果线路较长时也可用内桥加外跨条的接线。不过,检修线路断路器时就变成一台断路器带两回线路,冒扩大事故之险。
3、角形接线1)特点:每回线路均从两组断路器间引出,断路器布置闭合成环,线路总数等于断路器组数。
2—3 主变压器的选择分类:
●向系统或用户输送功率的变压器,称为主变压器;
●用于两种电压等级之间交换功率的变压器,称为联络变压器;
●只供本厂(所)用电的变压器,称为厂(所)用变压器或称自用变压器。
2---4限制短路电流的方法
一、选择适当的主接线形式和运行方式
1、对大容量发电机尽可能采用单元接线;
2、减少并联支路或增加串联支路。如:
◆降压变电所中可采用变压器低压侧分列运行
◆对环形供电网络,可在环网中穿越功率最小处开环运行
二、加装限流电抗器
作用:a 限制短路电流、b 维持母线残压。
1. 加装普通电抗器
1) 电缆出线端加装出线电抗器, 电抗百分值取3%~6%。
2) 2.母线装设电抗器,电抗百分值取为8%~12%。
缺点:母线电抗器两端的电压不等。
3、加装分裂电抗器
优点:正常运行时压降小,短路时电抗大,限流作用强。三、采用低压分裂绕组变压器
第五章 厂用电接线及设计
1、厂用电:发电厂内用来为锅炉、汽轮机、水轮机、发电机等主要设备服务的机械的用电及照明用电。
2、厂用电率:厂用电耗电量占同一时期发电厂全部发电量的百分数。
3、厂用电负荷分类
I类负荷 :凡短时停电会造成设备损坏、危及人身安全、主机停运及大量影响出力的厂用负荷。
Ⅱ类负荷 :允许短时停电(几秒至几分钟),恢复供电后不致造成生产紊乱的厂用负荷。
Ⅲ类负荷 :较长时间停电,不会直接影响生产,仅造成生产上的不方便的负荷。
事故保安负荷:指在停机过程中及停机后一段时间内仍应保证供电的负荷。
厂用电电压分为厂用高压和厂用低压,高压为3kV、6kV、10kV,低压为380/220V。
备用电源的备用方式:明备用:平时备用电源不投入运行。
暗备用:亦称互为备用,平时备用电源投入。
A 大中型火电厂一般采用明备用,4~6台工作变压器配一台备用变。
B 水电厂及变电所多采用暗备用方式。
C 采用明备用能减少厂用变的总容量。
例:四个工作母线段,每段的负荷为S。
采用明备用,总容量为4S+S=5S; 采用暗备用,总容量为2S×4=8S
4、厂用电接线的接线原则
对高压厂用母线以单母线按炉分段为原则。低压厂用母线的Ⅰ类电动机也按炉分段。
按炉分段:将只为本台炉服务的电动机接在同一个厂用母线段上。
厂用电动机的供电方式:
1)个别供电:每台电动机直接接在相应电压的厂用母线上。
2)成组供电:由厂用母线经电缆供电给车间配电盘,数台电动机连接在配电盘母线上。
5、电动机的自启动校验1)当断开电源或厂用电压降低时,电动机转速就会下降,甚至会停止运行,这一转速下降的过程称为惰行。
2)电动机失去电压以后,不与电源断开,在很短时间(一般在0.5—1.5s)内,厂用电压又恢复或通过自动切换装置 将备用电源投入,此时,电动机惰行尚未结束,又自动启动恢复到稳定状态运行,这一过程称为电动机的自启动。
(1)失压自启动----运行中突然出现事故,电压降低,事故消除电压恢复时形成的自启动;
(2)空载自启动---- 备用电源空载状态时,自动投入失去电源的工作段所形成的自启动;
(3)带负荷自启动。备用电源已带一部分负荷,又自动投入失去电源的工作段时形成的自启动。
6、异步电动机的转矩M与外加电压的平方成正比。
7、保证重要厂用机械电动机能自启动的措施:1)限制参加自启动的电动机数量,对不重要设备的电动机不参加自启动。
2)负载转矩为定值的重要设备电动机也不要参加自启动
3)对重要的机械设备,应选用具有高启动转矩和允许过载倍数较大的电动机
4)在不得已的情况下,增大厂用变压器的容量。
第 六 章 设备的原理与选择
一、电器选择的一般条件
原则:按正常工作条件进行选择,并按短路状态来校验热稳定和动稳定。
下列几种情况可不校验热稳定或动稳定:
1) 用熔断器保护的电器,其热稳定由熔断时间保证,故可不验算热稳定。
2)采用有限流电阻的熔断器保护的设备,可不校验动稳定。
3) 在电压互感器回路中的裸导体和电器可不验算动、热稳定。
4)支持绝缘子不用校验热稳定。
高压断路器的作用:正常运行时,把设备或线路接入电路或退出运行;当设备或线路发生故障时,能快速切除故障回路。
开断能力:断路器在切断电流时熄灭电弧的能力。
二、电弧的产生与熄灭
1、电弧概念
1) 电弧是一种能量集中、温度很高、亮度很大的气体自持放电现象。大气中,1cm距离加30000伏的电压即会产生电弧;电弧产生后只需15~30伏的电压便可维持。
2)电弧由阴极区、弧柱、阳极区组成。
3)电弧是一束游离气体、质量极轻、易变形。
2、电弧的形成
电弧的产生和维持是触头间中性质点(分子和原子)被游离的结果。
游离----中性质点转化为带电质点。
1)强电场发射---- 强电场(3×106V/m以上)下阴极表面的电子被电场力拉出而形成触头空间的自由电子(弧隙间产生电子的初因)。
2)热电子发射---- 高温的阴极表面在电场力的作用下向外发射电子。
3)碰撞游离
e + H = H++2e H----中性质点
电子的动能>原子或分子的游离能 游离
电子的动能<原子或分子的游离能 成为负离子
4)热游离
在高温作用下,具有足够动能的中性质点互相碰撞时游离出电子和正离子。
开始发生热游离的温度:一般气体,9000—10000℃,金属蒸气,4000—5000℃
3、去游离----自由电子和正离子相互吸引导致的中和现象。
去游离的形式:
1)复合:正离子和负离子互相中和的现象
电子与正离子:e + H+----H
正、负离子: e + H ----H- H- + H+ ----2H
2)扩散
带电质点从电弧内部逸出而进入周围介质中的现象。
原因:温差大、离子浓度差大。
方向:由浓度高、温度高的空间扩散至浓度低、温度低的空间。
5、近阴极效应----交流电流过零瞬间,新阴极附近的薄层空间内介质强度突然升高的现象。
6、起始介质强度:
电流过零后的0.1~1μS的时间内,由于近阴极效应,弧隙所出现的150~250V的介质强度。
7、熄灭电弧的条件式: Ud(t)>Ur(t)
物理意义:电流过零后,弧隙介质强度一直大于系统电源恢复电压,电弧便熄灭。
断路器灭弧的基本方法
1、利用灭弧介质;
如变压器油或断路器油、SF6等
2、利用特殊金属材料作灭弧触头;
3、吹弧
纵吹、横吹、混吹
4、多断口灭弧
5、利用短弧原理(多用于低压电器)
短弧----几毫米长的电弧
6、增大断路器触头的分离速度
8、隔离开关的用途
1)隔离电压
2)倒闸操作
3)分合小电流
(1)分、合避雷器、电压互感器和空载母线;
(2)分、和励磁电流不超过2A的空载变压器;
(3)关合电容电流不超过5A的空载线路。
三、互感器的作用:
1、将高电压和大电流变成二次回路标准的低电压(100V)和小电流(5A或1A),使测量仪表和保护装置标准化、小型化;
2、隔离高电压,保证人身和设备的安全。
(一)电磁式电流互感器
1、工作原理与变压器相似
特点:1)一次绕组串连在电路中,一次绕组流过被测电路的电流;
2)正常情况下,电流 互感器在近于短路的状态下运行。
2、变比:电流互感器一、二次额定电流之比
Ki=IN1/IN2≈N2/N1
4) 电流误差
5) 相位差
3、准确级----在规定的二次负荷变化范围内,一次电流为额定值时的最大电流误差。
4、10%误差曲线----在保证电流误差不超过-10%的条件下,一次电流的倍数n(n=I1/IN1)与允许的最大二次负载阻抗Z2i的关系曲线。
5、额定容量
SN2=I2N2ZN2 (IN2一般为5A或1A)
同一台电流互感器,使用在不同的准确级时,有不同的额定容量。
6、二次绕组开路
励磁磁势由I0N1增为I1N1,φ饱和,变为平顶波,而 e∝ dφ/dt ,在波顶e2≈0;在φ过零时,e2 ↗,所以e为尖顶波。
后果:
1)产生危险高压,危及人身安全和仪表、继电器绝缘;
2)引起铁芯和绕组过热;
3)产生剩磁,使互感器特性变坏(误差增加);
(二)电磁式电压互感器
1、工作原理 (同变压器)
特点:1)容量很小,只有几十到几百伏安;
2)二次负荷恒定,运行时接近于空载状态。
2、变比:Ku=UN1/UN2 UN2=100V或100/√3V
三相三柱式电压互感器不能用来测相对地电压。
3、3~35kV的电压互感器一般经隔离开关和熔断器接入;
380V的电压互感器直接经熔断器接入;
110kV及以上的电压互感器只经隔离开关接入。
4、熔断器的作用
一次侧:切除电压互感器本身或引线上的故障;
二次侧:防止二次侧过负荷或短路引起的持续过流。
第五节 高压熔断器的选择
1.按额定电压选择
UN≥UNS
对于充填石英砂有限流作用的熔断器(如RN1型), 应保证 UN=UNS。
UN>UNS 灭弧时间快,过电压倍数高,产生电晕,损害设备。
UN<UNS 难灭弧,烧坏外壳。2.额定电流选择
1)熔管额定电流 Inft≥熔体额定电流Infs Inft----载流和接触部分允许的长期工作电流
Infs----长期通过熔体而熔体不熔断的最大工作电流
第 七 章 配电装置
1、 配电装置
根据主接线的连接方式,由开关电器、保护和测量电器、母线和必要的辅助设备组建而成,用来接受和分配电能的装置。
2、种类
1)按装设地点分:屋内、屋外配电装置。
2)按组装方式分:装配式、成套式
装配式配电装置----在现场将电器组装而成的配电装置。
成套配电装置----在制造厂预先将开关电器、互感器等组成各种电路成套供应的配电装置。
3、 配电装置的安全净距
不同相的带电部分之间或带电部分对接地部分之间在空间所允许的最短距离。
4、 屋内配电装置
布置型式:一般可以分为三层、二层和单层式。
5、 屋外配电装置
布置型式:根据电器和母线布置的高度,可分为中型、半高型和高型。
6、安装电抗器时应注意A、C两相的电抗器不能重叠在一起。
第 八 章 二次接线
一、 二次接线图
二次接线图的内容
1、二次接线图----表示二次设备相互连接的电气接线图。
2、二次回路
包括交流电压回路、交流电流回路、控制回路、监测回路、保护回路、信号回路、调节回路等。
3、在二次接线图中,设备图形符号按常态画出;
4、常态:断路器主触头断开或元件不带电时的状态;三、安装接线图
为了施工、运行和维护方便,在展开图的基础上,还应进一步绘制安装接线图。安装接线图包括屏面布置图、屏后接线图、端子排图和电缆联系图。
1、屏面布置图
屏面布置图是展示在控制屏(台)、继电保护屏和其他监控屏台上二次设备布置情况的图纸,是制造商加工屏台、安装二次设备的依据。
2、屏后接线图
站在屏后所看到的接线图。
3、安装单位
一个屏内某个一次回路所有二次设备的总称。
4、相对编号法
“甲编乙的号,乙编甲的号。”
8—3 断路器的控制与信号接线
1、跳跃
断路器手动合闸合在永久性故障线路上,继电保护动作,断路器跳闸,若此时合闸按钮未松开或触点卡住不能复位,断路器再次跳闸,而在继电保护 动作,断路器又跳闸,这种一次合闸操作造成断路器多次合、跳闸的现象称为跳跃。
8—4 中 央 信 号
一、中央信号包括事故信号和预告信号
1、事故信号:断路器事故跳闸后发出的信号。此时,信号灯闪光,电喇叭响。
2、预告信号:设备运行中出现危及安全的异常情况时发出的信号。
此时断路器不跳闸,电喇叭发出的响声不同于事故信号 的响声。此外,音响为延时启动(在0—8秒范围内可调),小于延时的动作信号,便不会发出音响,以免造成误动。
第 十 章 变压器的运行
1变压器的额定容量是指长时间所能连续输出的最大功率。2、变压器的负荷能力系指在短时间内所能输出的功率。3、一般认为:当变压器绝缘的机械强度降低至15%~20%时,变压器的预期寿命即算终止。
4、绕组温度每增加6℃,预期寿命缩短一半,此即所谓热老化定律(或绝缘老化的6℃规则)。
5、变压器运行时,如维持变压器绕组热点的温度在98℃,可以获得正常预期寿命。
6、 变压器的过负荷能力
1)正常过负荷 :变压器的正常过负荷,不影响变压器正常预期寿命。
百分之一规则:夏季低1%,则冬季可过1% 。但对强迫油循环水冷的变压器,不能超过10% ;对其它变压器,不能超过15% 。
2)变压器的事故过负荷
当系统发生事故时,要保证不间断供电,变压器绝缘老化加速是次要的,所以事故过负荷是牺牲变压器寿命的。
7、升压型和降压型结构
三绕组变压器通常采用同心式绕组,绕组的排列在制造上有升压型和降压型两种。高压绕组总是排列在最外层,升压型的排列为:铁芯一中压一低压一高压,高一中之间的阻抗最大。降压型的排列为:铁芯一低压一中压一高压,高一低之间的阻抗最大。降压型变压器中的无功损耗约为升压型的160%、170%。因此升压型通常应用在低压向高压送电(或反之)为主的场合,降压型一般用在向中压供电为主,低压供电为辅的场合。
考虑:1、绝缘; 2、磁藕合程度
自耦变压器是一种多绕组变压器,其特点就是其中两个绕组除有电磁联系外,在电路上也有联系。
8.自耦变压器的过电压问题
1)高压电网和中压电网之间具有电气连接,过电压可能从一个电压等级的电网转移到另一个电压等级电网。中压或高压的出口端,都必须装设阀型避雷器保护。
2)自耦变压器的中性点必须直接或经过小电抗接地。否则当高压侧电网发生单相接地时,在中压绕组其它两相会出现过电压。
9、变压器并列运行的条件:
1)并列运行的变压器一次电压相等,二次电压相等,也就是变压比相等(偏差≤±5%);
2)额定短路电压相等(偏差≤±10% );
3)极性相同,相位相同,也就是接线组别相同。
5. 2021年试油连续油管复习题.wps
摘要 1先整性管理应包括()等各个阶段的管道情况,井符合国家法律法规的规定, A、设计、施工,投产,运行和廉弃 B、设计、采购、投产、运行和弃 C、设计、采购、施工,运行和康弃
6. 谁能详细阐述一下用电设备的知识。
一、触电原因分析
据多年来的触电事故统计分析,触电死亡的主要原因
是:
1.缺乏电气安全知识
电线附近放风筝;带负荷拉高压隔离开关;低压架空线折断后不停电,用手误碰火线;线不明的情况下带电接线,误触带电体;手触摸破损的胶盖刀闸;儿童在水泵电动机外壳上玩耍、触摸灯头或插座;随意乱动电器等。
2.违反安全操作规程
带负荷拉高压隔离开关;在高低压同杆架设的线路电杆上检修低压线或广播线时碰触有电导线;在高压线路下修造房屋接触高压线;剪修高压线附近树木接触高压线等。带电换电杆架线;带电拉临时照明线;带电修理电动工具、换行灯变压器、搬动用电设备;火线误接在电动工具外壳上;用湿手拧灯泡等。
3.设备不合格
高压架空线架设高度离房屋等建筑的距离不符合安全距离,高压线和附近树木距离太小;高低压交叉线路,低压线误设在高压线上面。用电设备进出线未包扎好裸露在外;人触及不合格的临时线等等。
4.维修管理不善
大风刮断低压线路和刮倒电杆后,没有及时处理;胶盖刀闸胶木盖破损长期不修理;瓷瓶破裂后火线与拉线长期相碰;水泵电动机接线破损使外壳长期带电等。
5.偶然因素
大风刮断电力线路触到人体等。
为了避免触电事故,应当加强电气安全知识的教育和学习贯彻执行安全操作规程和其他电气规程,采用合格的电气设备经常保持电气设备安全运行。
二、触电事故规律
1,触电事故有明显季节性
据统计资料,一年之中第二、三季度事故较多,6、9月的事故最集中。主要原因是,夏秋天气潮湿、多雨,降低了电气设备的绝缘性能;人体多汗,人体电阻降低,易导电;天气炎热,工作人员多不穿工作服和带绝缘护具,触电危险性增大;正值农忙季节,农村用电量增加,触电事故增多。
2.低压触电多于高压触电
国内外统计资料表明,低压触电事故所占触电事故比例要大于高压触电事故。主要原因是低压设备多,低压电网广,与人接触机会多;设备简陋,管理不严,思想麻痹;群众缺乏电气安全知识。但是,这与专业电工的触电事故比例相反,即专业电工的高压触电事故比低压触电事故多。
3.触电事故因地域不同而不同
据统计,农村触电事故多于城市,主要原因是农村用电设备因陋就简,技术水平低,管理不严,电气安全知识缺乏。
4.触电事故“因人而异”
中青年工人、非专业电工、临时工等触电事故多。主要原因是,一方面这些人多是主要操作者,接触电气设备的机会多;另一方面多数操作者不谨慎,责任心还不强,经验不足,电气安全知识比较欠缺等。
5.触电事故多发生在电气连接部位
统计资料表明,电气事故点多数发生在接线端、压接头、焊接头、电线接头、电缆头、灯头、插头、插座、控制器、接触器、熔断器等分支线、接户线处。主要原因是,这些连接部位机械牢固性较差、接触电阻较大、绝缘强度较低以及可能发生化学反应的缘故。
6.触电事故因行业性质不同而不同
冶金、矿山、建筑、机械等行业由于存在潮湿、高温、现场
混乱、移动式设备和携带式设备多或现场金属设备多等不利因素,因此,触电事故较多。
7.携带式设备和移动式设备触电事故多
主要原因是,这些设备需要经常移动,工作条件差,在设备和电源处容易发生故障或损坏,而且经常在人的紧握之下工作,一旦触电就难以摆脱电源。
8.违章作业和误操作引起的触电事故多
主要原因是由于安全教育不够、安全规章制度不严和安全措施不完备、操作者素质不高造成的。
触电事故往往发生得很突然,且经常在极短的时间内造
成严重的后果,死亡率较高。触电事故有一些规律,掌握这些
规律对于安全检查和实施安全技术措施以及安排其他的电气安全工作有很大意义。触电事故的发生,情况是复杂的,不是一成不变的,应当在实践中不断分析和总结触电事故的规律,为做好电气安全工作提供可靠的依据。
第二节电气火灾和爆炸的原因、预防及扑救常识
一、电气火灾和爆炸的原因
电气火灾和爆炸在火灾、爆炸事故中占有很大的比例。如线路、电动机、开关等电气设备都可能引起火灾。变压器等带油电气设备除了可能发生火灾,还有爆炸的危险。造成电气火灾与爆炸的原因很多。除设备缺陷、安装不当等设计和施工方面的原因外,电流产生的热量和火花或电弧是引发火灾和爆炸事故的直接原因。
1.过热
电气设备过热主要是由电流产生的热量造成的。
导体的电阻虽然很小,但其电阻总是客观存在的。因此,电流通过导体时要消耗一定的电能,这部分电能转化为热能,使导体温度升高,并使其周围的其他材料受热。对于电动机和变压器等带有铁磁材料的电气设备,除电流通过导体产生的热量外,还有在铁磁材料中产生的热量。因此,这类电气设备的铁芯也是一个热源。
当电气设备的绝缘性能降低时,通过绝缘材料的泄漏电流增加,可能导致绝缘材料温度升高。
由上面的分析可知,电气设备运行时总是要发热的,但是,设计、施工正确及运行正常的电气设备,其最高温度和其与周围环境温差(即最高温升)都不会超过某一允许范围。例如:裸导线和塑料绝缘线的最高温度一般不超过70°C。也就是说,电气设备正常的发热是允许的。但当电气设备的正常运行遭到破坏时,发热量要增加,温度升高,达到一定条件,可能引起火灾。
引起电气设备过热的不正常运行大体包括以下几种情况:
(1)短路。发生短路时,线路中的电流增加为正常时的几倍甚至几十倍,使设备温度急剧上升,大大超过允许范围。如果温度达到可燃物的自燃点,即引起燃烧,从而导致火灾。
下面是引起短路的几种常见情况:电气设备的绝缘老化变质,或受到高温、潮湿或腐蚀的作用失去绝缘能力;绝缘导线直接缠绕、勾挂在铁钉或铁丝上时,由于磨损和铁锈蚀,使绝缘破坏;设备安装不当或工作疏忽,使电气设备的绝缘受到机械损伤;雷击等过电压的作用,电气设备的绝缘可能遭到击穿;在安装和检修工作中,由于接线和操作的错误等。
(2)过载。过载会引起电气设备发热,造成过载的原因大体上有以下两种情况:一是设计时选用线路或设备不合理,以至在额定负载下产生过热;二是使用不合理,即线路或设备的负载超过额定值,或连续使用时间过长,超过线路或设备的设计能力,由此造成过热。
(3)接触不良。接触部分是发生过热的一个重点部位,易造成局部发热、烧毁。有下列几种情况易引起接触不良:不可拆卸的接头连接不牢、焊接不良或接头处混有杂质,都会增加接触电阻而导致接头过热;可拆卸的接头连接不紧密或由于震动变松,也会导致接头发热:活动触头,如闸刀开关的触头、插头的触头、灯泡与灯座的接触处等活动触头,如果没有足够的接触压力或接触表面粗糙不平.会导致触头过热;对于铜铝接头,由于铜和铝电性不同,接头处易因电解作用而腐蚀,从而导致接头过热。
(4)铁芯发热。变压器、电动机等设备的铁芯,如果铁芯绝
缘损坏或承受长时间过电压,涡流损耗和磁滞损耗将增加,使设备过热。
(5)散热不良。各种电气设备在设计和安装时都要考虑有
一定的散热或通风措施,如果这些部分受到破坏,就会造成
设备过热。
此外,电炉等直接利用电流的热量进行工作的电气设备,
工作温度都比较高,如安置或使用不当,均可能引起火灾。
2.电火花和电弧
一般电火花的温度都很高,特别是电弧,温度可高达3000°C -6000° C,因此,电火花和电弧不仅能引起可燃物燃烧,还能使金属熔化、飞溅,构成危险的火源。在有爆炸危险的场所,电火花和电弧更是引起火灾和爆炸的一个十分危险的因素。
电火花大体包括工作火花和事故火花两类。
工作火花是指电气设备正常工作时或正常操作过程中产的。如开关或接触器开合时产生的火花、插销拔出或擂人时的火花等。
事故火花是线路或设备发生故障时出现的。如发生短路或接地时出现的火花、绝缘损坏时出现的闪光、导线连接松脱时的火花、保险丝熔断时的火花、过电压放电火花、静电火花以及修理工作中错误操作引起的火花等。
此外,还有因碰撞引起的机械性质的火花;灯泡破碎时,炽热的灯丝有类似火花的危险作用。
二、电气火灾的预防
根据电气火灾和爆炸形成的主要原因,电气火灾应主要从以下几个方面进行预防:
(1)要合理选用电气设备和导线,不要使其超负载运行。
(2)在安装开关、熔断器或架线时,应避开易燃物,与易燃
物保持必要的防火间距。
(3)保持电气设备正常运行,特别注意线路或设备连接处的接触保持正常运行状态,以避免因连接不牢或接触不良,使设备过热。
(4)要定期清扫电气设备,保持设备清洁。
(5)加强对设备的运行管理。要定期检修、试验,防止绝缘损坏等造成短路。
(6)电气设备的金属外壳应可靠接地或接零。
(7)要保证电气设备的通风良好,散热效果好。
三、电气火灾的扑救常识
1.电气火灾的特点
电气火灾与一般火灾相比,有两个突出的特点:
(1)电气设备着火后可能仍然带电,并且在一定范围内存在触电危险。
(2)充油电气设备如变压器等受热后可能会喷油、甚至爆炸,造成火灾蔓延且危及救火人员的安全。
所以,扑救电气火灾必须根据现场火灾情况,采取适当的方法,以保证灭火人员的安全。
2.断电灭火
电气设备发生火灾或引燃周围可燃物时,首先应设法切断电源,必须注意以下事项:
(1)处于火灾区的电气设备因受潮或烟熏,绝缘能力降低,所以拉开关断电时,要使用绝缘工具。
(2)剪断电线时,不同相电线应错位剪断,防止线路发生短路。
(3)应在电源侧的电线支持点附近剪断电线,防止电线剪断后跌落在地上,造成电击或短路。
(4)如果火势已威胁邻近电气设备时,应迅速拉开相应的开关。
(5)夜间发生电气火灾,切断电源时,要考虑临时照明问
题,以利扑救。如需要供电部门切断电源时,应及时联系。
3.带电灭火
如果无法及时切断电源,而需要带电灭火时,要注意以下几点:
(1)应选用不导电的灭火器材灭火,如干粉、二氧化碳、1211灭火器,不得使用泡沫灭火器带电灭火。
(2)要保持人及所使用的导电消防器材与带电体之间的足够的安全距离,扑救人员应带绝缘手套。
(3)对架空线路等空中设备进行灭火时,人与带电体之间的仰角不应超过45°C。而且应站在线路外侧,防止电线断落后触及人体。如带电体已断落地面,应划出一定警戒区,以防跨步电压伤人。
4.充油电气设备灭火
(1)充油设备着火时,应立即切断电源,如外部局部着火时,可用二氧化碳,1211、干粉等灭火器材灭火。
(2)如设备内部着火,且火势较大,切断电源后可用水灭火,有事故贮油池的应设法将油放人池中,再行扑救。
7. 你认为风电被电网限制20%以上出力是技术问题么
风机发展太快,已经对电网造成很大影响了。低电压穿越已经改造的差不多了,avc改造完毕后会提高电网的应对性。你说的大范围的限电我认为主要不是电网故意限制,是需要看当地风电场的并网点容量,你所在的并网点220kV,或者110kV,容量不能过100也许,而东北、内蒙的风场大的可以到40万,中型的20万,东北、内蒙地区用电量低,电网最初设计时没有设计那么大,但新能源发展的趋势是国家政策,电网可以调度风电场,但须遵从国家发展趋势,于是风电场大兴建造起来,而电网并没有与之或者提前改造,导致了大范围限电。目前来看,风电场建设如果依靠在500kV主站附近,限电几乎很少的,也就是春节了差不多,因为你影响不到它什么,你满发和0出力对于它的电压几乎没影响。建议你向上级反应一下,变电站的位置很重要,躲过那些线路末端,靠近主站!还有,智能电网会来的,面包会有的
8. 大风电并网存在什么问题
1、全国范围内电源普遍过剩电力系统必须保证同一时刻发电和负荷的平衡,风电固然有波动性,但考虑到负荷随时间变化的情况,这种波动性实际上是可以视为一个负的负荷波动,现在弃风限电更重要的原因是电源的整体过剩。以辽宁省为例,省内火电装机3000w,风电600w,红沿河一期四台也投运,400w的核电,可调节的水电装机小于200w,供热期的直调火电机组占比60%,可调节的能力很小,再加上网架结构的一些问题,整个辽宁省的电源小时数都偏低,全国在03年缺电之后也是过剩情况。所以电源的普遍过剩,可调节能力低是主要问题,风电的波动性和电气特性则是次要问题。
2、电气特性问题大规模风电脱网事故02、03年在德国和西班牙都出过,之后欧洲开始重视这个问题,大概05、06年开始低电压穿越的改造,老机组的改造是非强制性的,电网按装机出钱鼓励改造;新机组的改造是强制性的,机组必须通过检测,将检测数据提交后进行整个风电场的仿真测试,完全通过后允许并网。国内基本仿照德国的路子,也是甘肃出了四次大的脱网事故后开始重视这个问题,现在是某中字头的科研机构进行强制性的检测,具体情况懂风电的也都清楚,不展开说了。个人认为,低电压穿越这个要求还是有必要的,尤其是千万千瓦级的大风电基地,脱网的影响很大,但是具体的措施有待商榷。国内09,10年开始提这个事儿,11年出的事故,12年出了一个很严格的并网标准;而中国风电的大发展是05-06年开始的,等于发展了5-6年后发现我还要进行低电压穿越改造,而且这种改造是一刀切的,不管新投产机组还是已有老机组;这就像我刚买了一辆国四标准的车没多久,政府强制要求必须符合国五标准,不符合标准不能上路,而不管你的车是新购买还是现有的。
3、垃圾电这个提法很有意思,除了电网公司之外没听过这样的声音,典型的屁股决定脑袋思维,居民生活用电负荷一样波动性很大,也没听过垃圾负荷的说法。站在电网角度,当然希望每个电源都是可控可调节的,从冷备用到满负荷只花很少时间。这也正好说明了电网对风电的认识还停留在低层次,至少有一部分人是这样的。欧洲电网对风电的接纳能力很高,丹麦年用电量20%是风电,曾经出现过国内某个时刻90%出力由风电提供,因此国内电网还是有很大消纳潜力的,只不过认识不够。
9. 太阳能的优点和作用
太阳是光明的象征,46亿年来太阳一直照耀着地球,送来光,也送来热。将阳光聚焦,可以将光能转化为热能。传说阿基米德就曾经利用聚光镜反射阳光,烧毁了来犯的敌舰。
取之不尽、用之不竭的太阳能是一种可广泛利用的清洁能源。在日照充分的地方,人们在生产和生活中已大量使用太阳灶、太阳能热水器和干燥器。太阳灶的原理很简单,用金属或其他材料制成类似镜面的装置,将阳光反射到某一焦点,就可以得到100摄氏度或者更高的温度,足够用来做饭、烧水或加热各种物体了。如果镜面的方向能够随着太阳的位置变化而自动调整,太阳能的利用率就更高了。例如,现在世界上最大的抛物面型反射聚光器有9层楼高,总面积2500平方米,焦点温度高达4,000摄氏度,许多金属都可以被熔化。
太阳能热水器的构造要简单的多。因为不需要它产生太高的温度。在大多数情况下,可以将太阳能热水器的集热器制成箱式、蛇型管式、直管式、平板式或枕式,通过管道与水源和储水箱相连。太阳能热水器在我国北方比较常见。
阳光也可以用来发电。比较常见的光电池是硅电池,它能将13%~20%的日光能转化为电能。许多电子计算器和其他小型电子仪器现在已经采用太阳能电池供电,人造卫星和宇宙飞船更是主要依靠太阳能电池来提供电力。但是阳光在达到地面以前要经过大气的反射、散射和吸收,能量损失较大,加上阴天、昼夜变化和雨雪等降水过程的影响,目前地面上利用日光发电受到一定限制。
海水中储存着大量的以热能形式保存的太阳能,主要表现为海水表层和深层间的温差。因为水的沸点与气压有关,如果建造一个装置,用抽真空的方法使表层的海水在20摄氏度时汽化,并推动汽轮机,再将深层的冷水提上来使蒸汽冷却,如此周而复始,就可以发电了。法国已经建成了世界上第一座温差发电站,发电容量为14000千瓦。
10. 1.什么叫做非煤矿山
非煤矿山是指开采金属矿石、放射性矿石以及作为石油化工原料、建筑材料、辅助原料、耐火材料及其他非金属矿物(煤炭除外)的矿山和尾矿库。非煤矿山虽无瓦斯爆炸的危险,但在其他方面与煤矿无根本区别。由于矿体条件多种多样,非煤矿山的采矿方法主要有空场、充填、崩落三大类。
有害因素
起重伤害
起重伤害是指各种起重作业(包括起重机安装、检修、试验)中发生的挤压、坠落、(吊具、吊重)物体打击事故和触电。在非煤矿山生产过程中,选矿车间和机修车间存在大量的起重设备,发生起重伤害的几率比较大。其危害因素主要表现为牵引链断裂或滑动件滑脱、碰撞、突然停车等。由此引发的事故有毁坏设备、人员伤亡、影响生产等。起重伤害的一般原因有以下几个方面:超载;牵引链或产品未达到规定质量要求;无证操作起重设备或作业人员违章操作;开关失灵,不能及时切断电源,致使运行失控;操作人员注意力不集中或视觉障碍,不能及时停车;被运物件体积过大;突然停电;起重设备故障等。在生产过程中,还存在压力容器爆炸、高温、腐蚀、雷击、地震、采光照明不良等危险、有害因素。
辐射
辐射危害:一般非煤矿山开采,即使不是生产铀等放射性矿石的矿山,都含有微量的放射性物质,如氡。氡的产生是226镭原子衰变的结果,这种衰变是自然发生的,人们无法控制这种衰变,因而氡的产生是连续的,氡从岩石里跑到空气中的过程也是连续的。氡进入人体的主要途径是呼吸道。吸人的氡经上呼吸道进入肺部,并通过渗透作用至肺泡壁溶于血液循环系统分布到全身,并积聚在含脂肪较多的器官或组织中,按其本身固有的规律进行衰变,损害肺部和上呼吸道,加速某些慢性疾病的发展,严重危害职工身体健康。
火灾
火灾具有突发性的特点,虽然存在有事故征兆,但由于监测、预测手段不完善,以及人们对火灾发生规律掌握不够等原因,火灾往往在人们意想不到的时候发生。火灾事故后果往往比较严重,容易造成重大伤亡,尤其是特大火灾事故。因此,必须加强对火灾事故的预防。发生火灾事故的原因比较复杂,因为构成燃烧条件的三要素(着火源、可燃物、助燃物)普遍存在于人们的生产、生活中。例如,着火源有明火、化学反应热、物质的分解自燃、热辐射、高温表面、撞击或摩擦、电气火花、静电放电、雷电等多种;可燃物有各种可燃气体、可燃固体、可燃液体。非煤矿山火灾事故的一般原因有以下几个方面:
(1)生活和生产用火不慎。通过对大量火灾事故的调查和分析表明,有不少事故是由于操作者缺少有关的科学知识,在火灾险情面前思想麻痹,存在侥幸心理,不负责任,违章操作。
(2)设备不良。如设计错误且不符合防火或防爆的要求,电气设备设计、安装、使用维护不当等。
(3)物料的原因。例如,可燃物质的自燃,各种危险物品的相互作用,机械摩擦及撞击生热,在运输装卸时受剧烈振动等。
(4)环境的原因。如潮湿、高温、通风不良、雷击、静电、地震等自然因素。
(5)管理的原因。
(6)建筑结构布局不合理,建筑材料选用不当等因素。
粉尘和噪声
非煤矿山在生产过程中(如凿岩、爆破、铲装、放矿、运输和破碎等)会产生大量的粉尘,尾矿库也存在一定的粉尘。粉尘危害性大小与粉尘的分散度、游离二氧化硅含量、粉尘物质组成及粉尘浓度有关,一般随着游离二氧化硅含量和有害物质的增加而增大。不同粒径的粉尘中,呼吸性粉尘对人的危害最大。人员长期吸人粉尘后,使肺组织发生病理学改变,因此丧失正常的通气和换气功能,严重损害身体健康。
噪声就是使人感到不愉快的声音,不仅对人体的听力、心理、生理产生影响,还可引起职业性耳聋,而且对生产活动也产生不利影响。在高噪声环境中作业,人的心情易烦躁,容易疲劳,反应迟钝,工作效率低,可诱发事故。噪声产生于物体的振动,振动是生产中常见的危险因素,它与噪声相结合作用于人体。振动可直接作用于人体,也可通过地板或其他物体作用于人体,按其作用部位可分为局部振动和全身振动。产生振动多见于使用风动工具、电动工具及其他有较强机械摩擦作用的地方。
在非煤矿山生产过程中,噪声与振动主要来源于气动凿岩工具的空气动力噪声,各设备在运转中的振动、摩擦、碰撞而产生的机械噪声和电动机等电气设备所产生的电磁辐射噪声。产生噪声和振动的设备和场所主要有:空压机和空压机泵房;通风机和通风机房;水泵和水泵房;绞车和绞车房;爆破作业场所;破碎设备和破碎作业场所;凿岩设备和凿岩工作面;运输设备和设备通过的巷道;装岩机和装岩作业场所;机修设备(如锻钎机)及机修车间等。
水灾
(1)造成水害的原因。在非煤矿山开采过程中,可能存在由地表塌陷或地质构造形成的裂隙、通道进入矿井的地表水危害,采空区和废弃巷道中储存的“人工水体”的危害,以及原岩溶洞、裂隙等构造中的原岩水体的危害。产生水害的主要原因可能是:采掘过程中没有探水或探水工艺不合理;采掘过程中突然遇到含水的地质构造;爆破时揭露水体;钻孔时揭露水体;地压活动揭露水体;排水设施、设备设计不合理;排水设施、设备施工不合理;采掘过程中违章作业;没有及时发现突水征兆;发现突水征兆没有及时采取探水措施或没有及时探水;发现突水征兆后没有及时采取防水措施;发现突水征兆采取了不合适的探水、防水措施;采掘过程中没有采取合理的疏水、导水措施,使采空区、废弃巷道积水;巷道、工作面和地面水体内外连通;降雨量突然加大时,造成井下涌水量突然增大。
(2)危害及破坏形式。矿井、地表水或突然降雨都可能造成矿井水灾事故,这些事故包括:
①采掘工作面突水;
②采掘工作面或采空区透水。由于各种通道使采空区与储水体连通,使大量的水体直接进入采空区,从而形成采空区、巷道甚至矿井被淹;
③地表水或突然大量降雨进入井下。通过裂隙、溶洞、废弃巷道、透水层、地表露头与采空区、巷道、采掘工作面连通,使大量的水体直接进入采空区再进人人员作业场所,或直接进入作业场所。
机械伤害
机械性伤害主要指机械设备运动(静止)部件、工具、加工件直接与人体接触引起的夹击、碰撞、剪切、卷入、绞、碾、割、刺等形式的伤害。各类转动机械的外露传动部分(如齿轮、轴、履带等)和往复运动部分都有可能对人体造成机械伤害。
同时机械伤害也是非煤矿山生产过程中最常见的伤害之一,易造成机械伤害的机械、设备包括:运输机械,掘进机械,装载机械,钻探机械,破碎设备,通风、排水设备,选矿设备,其他转动及传动设备。
坠落和提升运输
坠落危害是指在高处作业中发生坠落造成的伤亡事故。非煤矿山生产中可能产生坠落伤害事故的主要场所或区域有:竖井、斜井、天井、溜井、采场及各类操作平台。
提升运输是非煤矿山生产过程中一个重要组成部分。非煤矿山主要有竖井提升、斜井提升和水平运输(机车运输、带式输送机运输)。提升运输事故主要表现为:
(1)竖井提升:断绳、过卷、蹲罐毁物伤人;突然卡罐或急剧停机,挤罐或信号工、卷扬工操作失误造成人员坠落。
(2)斜井提升:跑车、掉道毁物伤人;斜井落石伤人。其中跑车事故是斜井提升运输危害最大的事故,其产生的主要原因有如下2种:
①矿车运行状态不良。
a.钢丝绳断裂。钢丝绳承载时强度不够或负荷超限时都可能产生钢丝绳断裂。
b.摘挂钩失误。未挂钩下放或过早摘钩,都会造成跑车事故。
c.制动装置失灵。制动装置主要包括工作闸或制动闸,如果失效就会造成制动装置失灵。
d.绞车工操作失误。司机精神不集中,未带电“放飞车”。
e.挂车违章。超挂车辆、车辆超装或车辆脱离连接。
②防跑车装置。
a.设计原因。主要指设计的防跑车装置不符合实际,不能起到防跑车作用。
b.安装缺陷。不安装或安装不当,起不到应有的作用。
c.工作状态不良。工作状态异常或出现故障,起不到防跑车的作用。
(3)水平运输。
①机车运输:常见的事故有机车撞车,机车撞、压行人,机车掉道等。其中机车撞压行人是危害最大的事故。产生机车运行撞压伤人事故的主要原因有:
a.行人方面。行人行走地点不当,如行人在轨道间、轨道上、巷道窄侧行走,就可能被机车撞伤;行人安全意识差或精神不集中,行人不及时躲避、与机车抢道或扒跳车,都可能会造成事故;周围环境的影响,如无人行道、无躲避硐室、设备材料堆积、巷道受压变形、照度不够、噪声大等。
b.机车运行方面。操作原因,如超速运行、违章操作、判断失误、操作失控等;制动装置失效等。
c.其他因素。如无信号或信号不起作用、操作员无证驾驶或精神不集中、行车视线不良等。
②胶带运输:主要表现为绞人伤害,胶带运输机产生绞人伤害的主要原因有:
a.人的因素:胶带机运转过程中清理物料、加油或处理故障;疲劳失误、绊滑跌倒、衣袖未扎;违章跨越、违章乘坐;操作人员精神不集中。
b.物的因素:防护装置失效;设计不满足要求;信号装置失效或未开启等。
电气设备或设施
非煤矿山生产系统大量使用电气设备,存在电气事故危害。充油型互感器、电力电容器长时间过负荷运行,会产生大量热量,导致内部绝缘损坏,如果保护监测装置失效,将会造成火灾、爆炸;另外,配电线路、开关、熔断器、插销座、电热设备、照明器具、电动机等均有可能引起电伤害。
(1)电气火灾产生原因。
①由于电气线路或设备设计不合理、安装存在缺陷或运行时短路、过载、接触不良、铁心短路、散热不良、漏电等导致过热。
②电热器具和照明灯具形成引燃源。
③电火花和电弧,包括电气设备正常工作或操作过程中产生的电火花、电气设备或电气线路故障时产生的事故电火花、雷电放电产生的电弧、静电火花等。
(2)电击危害。
①分布。配电室、配电线路以及在生产过程中使用的各种电气拖动设备、移动电气设备、手持电动工具、照明线路及照明器具或与带电体连通的金属导体等,都存在直接接触电击或间接接触电击的可能。
②伤害方式和途径。
a.伤害方式。触电伤害是由电流的能量造成的。当电流流过人体时,人体受到局部电能作用,使人体内细胞的正常工作遭到不同程度破坏,产生生物学效应、热效应、化学效应和机械效应,会引起压迫感、打击感、痉挛、疼痛、呼吸困难、血压异常、昏迷、心律不齐等,严重时会引起窒息、心室颤动而导致死亡。
b.伤害途径。人体触及带电体;人体触及正常状态下不带电而当设备或线路故障(如漏电)时意外带电的金属导体(如设备外壳);人体进入地面带电区域时,两脚之间承受到跨步电压。
③产生电击的原因。
a.电气线路或电气设备在设计、安装上存在缺陷,或在运行中缺乏必要的检修维护,使设备或线路存在漏电、过热、短路、接头松脱、断线碰壳、绝缘老化、绝缘击穿、绝缘损坏、PE线断线等隐患;
b.没有设置必要的安全技术措施(如保护接零、漏电保护、安全电压、等电位连接等),或安全措施失效;
c.电气设备运行管理不当,安全管理制度不完善;
d.电工或机电设备操作人员的操作失误,或违章作业等。
(3)可能造成触电的场所。
①分布。配电室、配电线路等。
②伤害方式和途径。
a.伤害方式。由电流的热效应、化学效应、机械效应对人体造成局部伤害,形成电弧烧伤、电流灼伤、电烙印、电气机械性伤害、电光眼等。
b.伤害途径。
直接烧伤:当带电体与人体之间产生电弧时,电流流过人体形成烧伤。直接电弧烧伤是与电击同时发生的。
间接烧伤:当电弧发生在人体附近时,对人体产生烧伤,包括融化了的炽热金属溅出造成的烫伤。
电流灼伤:人体与带电体接触,电流通过人体由电能转换为热能造成的伤害。
③产生触电的原因:带负荷(特别是感应负荷)拉开裸露的闸刀开关;误操作引起短路;近距离靠近高压带电体作业;线路短路、开启式熔断器熔断时,炽热的金属微粒飞溅;人体过于接近带电体等。
地压
地压灾害是非煤矿山开采过程中的一大安全隐患,如果预防不当,管理措施不到位,将会造成事故。采空区、采场和巷道受岩石压力的影响,都可能引发地压灾害。
(1)引起地压灾害的原因:采矿方法不合理;穿越地压活动区域;穿越地质构造区域;矿柱被破坏;采场矿柱设计不合理或未保护完好;在应该进行支护的井巷没有支护或支护设计不合理;遇到新的地质构造而没有及时采取措施;采场或巷道施工工艺不合理;采场或巷道施工时违章作业;遇到新的岩石而没有按岩性进行施工;爆破参数设计不合理;爆破工序不合理;爆破施工时违章作业;地下水作用、岩石风化等其他地压活动的影响或破坏。
(2)地压灾害危害。地压灾害通常表现为采场顶板大范围垮落、陷落和冒落,采空区大范围垮落或陷落,巷道或采掘工作面的片帮、冒顶或底板鼓胀等,竖井井壁破裂、井筒涌砂、岩帮片落,地表沉陷等。
①采场顶板大范围垮落、陷落和冒顶,其主要危害有:破坏采场和周围的巷道;造成采场内人员的伤亡;破坏采场内的设备和设施;破坏矿井的正常通风;造成生产秩序的紊乱;其他危害。如排水管道经过采场,可能造成排水系统破坏,引起水害,继而破坏矿井的供电系统等。
②巷道或采掘工作面的片帮、冒顶危害。岩体的地压活动造成巷道的片帮和冒顶,其危害主要有:巷道内人员的伤亡;破坏巷道内的设备、设施;破坏正常的生产系统;破坏巷道等。
中毒、窒息
(1)中毒、窒息原因分析。根据非煤矿山生产工艺的特点,引起中毒窒息的原因主要为爆破后产生的炮烟和其他有毒烟尘。其他有毒烟尘,如:矿体氧化形成的硫化物与空气的混合物,开采过程中遇到的溶洞、采空区,巷道中存在的有毒气体,火灾后产生的有毒烟气等。
爆破后形成的炮烟是造成人员中毒的主要原因之一。造成炮烟中毒的主要原因是通风不畅和违章作业。发生人员中毒、窒息的原因包括:
①违章作业。如放炮后通风时间不足就进入工作面作业,人员没有按要求撤离到不会发生炮烟中毒的巷道等;
②通风设计不合理,使炮烟长时间在作业区域滞留,独头巷道掘进时没有设置局部通风,没有足够的风量稀释炮烟,设计的通风时间过短等;
③由于警戒标志不合理或没有标志,人员意外进入通风不畅、长期不通风的盲巷、采空区、硐室等;
④突然遇到含有大量窒息性气体、有毒气体、粉尘的地质构造,大量窒息性气体、有毒气体、粉尘突然涌出到采掘工作面或其他人员作业场所,人员没有防护措施;
⑤出现意外情况。如意外的风流短路,人员意外进入炮烟污染区并长时间停留,意外的停风等。
(2)中毒、窒息场所。可能发生中毒、窒息的主要场所包括:爆破作业面,炮烟流经的巷道,炮烟积聚的采空区,炮烟进入的硐室,盲巷、盲井,通风不良的巷道,采空区,使用有毒或腐蚀性药剂的选矿车间等。
爆破作业
爆破作业是非煤矿山生产过程中的重要工序,其作用是利用炸药在爆破瞬间放出的能量对周围介质作功,以破碎矿岩,达到掘进和采矿的目的。
在非煤矿山开采过程中须使用大量的炸药。炸药从地面炸药库向井下运输的途中,装药和起爆的过程中、未爆炸或未爆炸完全的炸药在装卸矿岩的过程中,都有发生爆炸的可能。爆炸产生的震动、冲击波和飞石对人员、设备设施、构筑物等有较大的损害。常见的爆破危害有爆破震动、爆破冲击波、爆破飞石、瞎炮、早爆、迟爆等。
(1)爆破作业中的几种意外事故。
①拒爆(瞎炮)。②早爆。③自爆。④迟爆。
(2)爆破产生的有害效应。
①爆破地震效应。炸药在岩土体中爆炸后,在距爆源的一定范围内,岩土体中产生弹性震动波,即爆破地震;硐室爆破时,因一次装药量较大,爆破地震也比较强烈,对附近的构筑物、设备设施和岩体等会产生较大影响,很可能引起大范围的冒顶片帮事故。
②爆破飞石。飞石是爆破时从岩体表面射出且飞越很远的个别碎块。爆破时,由于药包最小抵抗线掌握不准,装药过多,造成爆破飞石超过安全允许范围,或因对安全距离估计不足,造成人身伤亡和设备损失,是爆破产生的有害效应之一。
③爆破冲击波。爆破时,部分爆炸气体产物随崩落的岩土冲出,在空气中形成冲击波,可能危害附近的构筑物、设备设施和岩体等。
④爆破有毒气体。爆破时会产生大量的有毒有害气体,如果没有及时稀释和排出,过早进入工作面将会对作业人员的身体造成极大伤害,甚至导致人员中毒死亡。
(3)导致爆破事故的主要原因。爆破事故产生的原因主要有:放炮后过早进入工作面;盲炮处理不当或打残眼;炸药运输过程中强烈振动或摩擦;装药工艺不合理或违章作业;起爆工艺不合理或违章作业;警戒不到位,信号不完善,安全距离不够;爆破器材质量不良,点火迟缓,拖延点炮时间;非爆破专业人员作业,爆破作业人员违章;使用爆破性能不明的材料;炸药库管理不严等。
(4)易发生爆破事故的场所。在非煤矿山开采过程中,可能发生爆破事故的作业场所主要有:炸药库,运送炸药的巷道,运送矿岩的巷道,爆破作业的工作面,爆破作业的采场,爆破后的工作面,爆破后的采场,爆破器材加工地等。