1. 增升装置用于飞机的巡航飞行有影响吗
飞机飞行有很多抄速度限制,规袭定了什么速度能做什么不能做什么。
对于襟翼,飞机上有最大襟翼速度,超过这个速度,襟翼就会受损。而且在巡航阶段,飞机的速度很大,通过襟翼来增升的代价就是阻力也大大增大,所以巡航过程中打开增升装置,既不安全,也不经济。
2. 什么是飞机的增升装置
飞机的升力主要随飞行速度和迎角的变化而变化。如果以小速度飞行,则要求较大的升力系内数和迎角,机翼容才能产生足够的升力来维持飞机飞行。用增加迎角的方法来增大升力系数从而减小迎角,是有限的。因为飞机的迎角最多只能增大到临界迎角。因此,为了保证飞机在起飞和着陆时仍能产生足够的升力,有必要在机翼上装设增大升力系数的装置,即增升装置。目前使用比较广泛的增升装置有前缘缝翼,前缘襟翼,后缘襟翼等。
前缘缝翼位于机翼前缘,打开时使下翼面的高压气流流过缝隙贴近上翼面流动,能延缓大迎角状态下机翼上表面的气流分离,提高了最大升力系数和临界迎角。但是在迎角较小时,打开前缘缝翼反而会使上下翼面压强差减小,从而降低升力系数。
前缘襟翼可以减小大迎角状态下机翼前缘与相对气流之间的夹角,延缓气流分离,又能增大机翼弯度,使最大升力系数和临界迎角增大。
后缘襟翼位于机翼后缘,有分裂襟翼、简单襟翼、开缝襟翼、后退襟翼,后退开缝襟翼几种。放下后缘襟翼,即增大升力系数,同时也增大了阻力系数。
3. 飞机增升的几项原则
增升装置的原理: 增升装置的目的是增大最大升力系数。
开缝襟翼是由简单襟翼改进而来(图3)。放下开缝襟翼,在增大翼型相对弯度的同时,襟翼前缘与机翼后缘之间形成缝隙,空气从下表面通过缝隙流向上表面,可以吹除机翼后部的涡流,与无缝隙相比,可延迟气流分离,因此,增升效果好于简单襟翼。
开缝襟翼:
为了进一步提高开缝襟翼的增升效果,襟翼放下之后,襟翼本身又展开成一个开缝翼,因而形成两条缝隙,这种襟翼称为双缝襟翼。
放下双缝襟翼,有更多的高速气流通过两道缝隙流到上翼面,增加边界层能量,可使气流分离推迟到更大的襟翼偏度。此外,放下双缝襟翼,襟翼还向后滑动,增大了机翼的面积。因此,双缝襟翼有更好的增升效果。
4. 气动增升装置的原理是什么分析富勒襟翼的增升原理。
气动增升装置的原理:用增加机翼弯度,面积和延迟气流偏离的方法来增加升力。
富勒襟回翼的增升原理:富答勒襟翼是一种后腿式开缝襟翼。使用时襟翼沿滑轨后退,同时下偏,这样既增加了机翼弯度,又增加了机翼面积,并且机翼下边的气流通过缝隙吹走机翼上边后缘的涡流,增升效果明显
5. 飞机主要哪些部件组成各部件作用是什么
大多数飞机都是由下面六个主要部分组成,即:机翼、机身、尾翼、起落装置、操纵系统和动力装置。它们各有其独特的功用。
一、机身
机身主要用来装载人员、货物、燃油、武器和机载设备,并通过它将机翼、尾翼、起落架等部件连成一个整体。在轻型飞机和歼击机、强击机上,还常将发动机装在机身内。
二、机翼
机翼是飞机上用来产生升力的主要部件,一般分为左右两个翼面。
机翼通常有平直翼、后掠翼、三角翼等。机翼前后绿都保持基本平直的称平直翼,机翼前缘和后缘都向后掠称后掠翼,机翼平面形状成三角形的称三角翼,前一种适用于低速飞机,后两种适用于高速飞机。近来先进飞机还采用了边条机翼、前掠机翼等平面形状。
左右机翼后缘各设一个副翼,飞行员利用副翼进行滚转操纵。即飞行员向左压杆时,左机翼上的副翼向上偏转,左机翼升力下降;
右机翼上的副翼下偏,右机翼升力增加,在两个机翼升力差作用下飞机向左滚转。为了降低起飞离地速度和着陆接地速度,缩短起飞和着陆滑跑距离,左右机翼后缘还装有襟翼。襟翼平时处于收上位置,起飞着陆时放下。
三、尾翼
1、垂直尾翼
垂直尾翼垂直安装在机身尾部,主要功能为保持飞机的方向平衡和操纵。
通常垂直尾翼后线设有方向舵。飞行员利用方向舵进行方向操纵。当飞行员右用航时,方向舵右们,相对气流吹在垂尾上,使垂尾产生一个向左的侧力,此侧力相对于飞机重心产生一个使飞机机头有偏的力矩,从而使机头右偏。
同样,蹬左舵时,方向舵左偏,机头左偏。某些高速飞机,没有独立的方向舵。整个垂尾跟着脚蹬操纵而偏转,称为全动垂尾。
2、水平尾翼
水平尾翼水平安装在机身尾部,主要功能为保持俯仰平衡和俯仰操纵。低速飞机水平尾翼前段为水平安定面,是不可操纵的,其后缘设有升降舵,飞行员利用升降舵进行俯仰操纵。
即飞行员拉杆时,升降舵上偏,相对气流吹向水平尾翼时,水平尾翼产生附加的负升力(向下的升力),此力对飞机重心产生一个使机头上仰的力矩,从而使飞机抬头。同样飞行员推杯时升降舵下偏,飞机低头。
超音速飞机采用全动平尾,即将水平安定面与升降舵合为一体。飞行员推拉杆时整个水平尾翼都随之偏转。飞行员用全动平尾来进行俯仰操纵。其操纵原理与升降舵相同。某些高速飞机为了提高滚转性能,在左、右压杆时,左、右平尾反向偏转,以产生附加的滚转力矩,这种平尾称为差动平尾。
有些飞机的水平尾翼放在机翼前边,这种飞机叫鸭式飞机。这时放在机翼前面的水平尾翼称为鸭翼或前翼。也有一部分飞机没有水平尾翼,这种飞机称为无尾飞机。现在有些飞机还采用了三翼面的布局方法,也就是说既有机翼前面的前翼,也有机翼后面的水平尾翼。
四、起落装置
起落装置的功用是使飞机在地面或水面进行起飞、着陆、滑行和停放。着陆时还通过起落装置吸收撞击能量,改善着陆性能。
早期陆上飞机起落装置比较简单,只有三个起落架,而且在空中不能收起,飞行阻力大。现代的陆上飞机起落装置包含起落架和改善起落性能的装置两部分,且起落架在起飞后即可收起,以减少飞行阻力。改善起落性能的装置主要有起飞加速器、机轮刹车、减速伞等。水上飞机的起落架由浮筒代替机轮。
五、控制系统
飞机操纵系统是指从座舱中飞行员驾驶杆(盘)到水平尾翼、副翼、方向舵等操纵面,用来传递飞行员操纵指令,改变飞行状态的整个系统。早期的操纵系统是由拉杆、摇臂(或钢索)组成的纯机械操纵系统。现代飞机在操纵系统中采用了很多自动控制装置,因而,通常把它称为飞行控制系统。
六、动力装置
飞机动力装置是用来产生拉力(螺旋桨飞机)或推力(喷气式飞机),使飞机前进的装置。采用推力矢量的动力装置,还可用来进行机动飞行。现代的军用飞机多数为喷气式飞机。 喷气式飞机的动力装置主要分为涡轮喷气发动机和涡轮风扇发动机两类。
设计制造
大多数飞机是由公司制造的,目的是为客户批量生产。小型涡轮螺旋桨飞机的设计和规划过程(包括安全测试)可持续长达四年,而大型飞机则需要更长的时间。
在此过程中,确定了飞机的目标和设计规范。首先,建筑公司使用图纸和方程、模拟、风洞测试和经验来预测飞机的行为。公司使用计算机来绘制、规划和进行飞机的初始模拟。然后在风洞中测试飞机全部或某些部分的小型模型和模型,以验证其空气动力学特性。
当设计通过这些过程时,该公司构建了数量有限的原型用于地面测试。航空管理机构的代表经常进行首飞。飞行测试继续进行,直到飞机满足所有要求。然后,国家航空管理公共机构授权该公司开始生产。
在美国,该机构是美国联邦航空管理局(FAA),在欧盟是欧洲航空安全局(EASA)。在加拿大,负责和授权大规模生产飞机的公共机构是加拿大运输部。
当零件或组件需要通过焊接连接在一起以用于几乎任何航空航天或国防应用时,它必须符合最严格和特定的安全法规和标准。Nadcap或国家航空航天和国防承包商认证计划为航空航天工程制定了质量、质量管理和质量保证的全球要求。
运输公共机构的许可。例如,欧洲公司空客制造的飞机需要获得美国联邦航空局的认证才能在美国飞行,而美国波音公司制造的飞机需要获得欧洲航空安全局的批准才能在欧盟飞行。
为了应对机场附近城市地区空中交通增长造成的噪声污染增加,法规已导致飞机发动机的噪声降低。
业余爱好者可以自行设计和建造小型飞机。其他自制飞机可以使用预先制造的零件套件组装成基本飞机,然后必须由制造商完成。
很少有公司大规模生产飞机。然而,为一家公司生产一架飞机实际上是一个涉及数十家甚至数百家其他公司和工厂的过程,这些公司和工厂生产进入飞机的零件。例如,一家公司可以负责起落架的生产,而另一家公司则负责雷达。
此类零件的生产不限于同一个城市或国家;就大型飞机制造公司而言,此类零件可能来自世界各地
零件被送到飞机公司的主要工厂,生产线就在那里。在大型飞机的情况下,可以存在专用于飞机某些部件组装的生产线,尤其是机翼和机身。
完成后,将对飞机进行严格检查以寻找缺陷和缺陷。经检查员批准后,飞机将进行一系列飞行测试,以确保所有系统都正常工作并且飞机操作正常。通过这些测试后,飞机就可以接受“最终修饰”(内部配置、喷漆等),然后就可以为客户做好准备了。
以上内容参考 网络-飞机
6. 副翼是增升装置吗
副翼不是增升装置,常用的增升装置主要有前缘缝翼和后缘襟翼。
副翼是指安装在机翼翼梢后缘外侧的一小块可动的翼面。为飞机的主操作舵面,飞行员操纵左右副翼差动偏转所产生的滚转力矩可以使飞机做横滚机动。翼展长而翼弦短。
副翼的翼展一般约占整个机翼翼展的1/6到1/5左右,其翼弦占整个机翼弦长的1/5到1/4左右。
副翼反效
偏转飞机副翼能产生滚转力矩,使飞机滚转。由于机翼的弹性,副翼产生的力矩作用在机翼上也会使机翼向与副翼偏转的相反方向变形扭转,改变机翼的攻角,从而在气动力的作用下产生一个与副翼产生的滚转力矩方向相反的力矩。
当飞行速度达到某一值时,操纵副翼产生的滚转力矩与机翼上气动力引起的弹性变形产生的力矩相互抵消,就会使副翼失效(即副翼效应为零),飞机无法操纵。这时的飞行速度称为反效速度。量规的设计尤为重要。
当飞行速度继续提高,超过反效速度,操作副翼产生的滚转力矩将小于在气动力作用下因机翼变形而产生的反方向力矩。此时副翼效应为负而起相反的作用。——这种情况就被称作“副翼反效” 。
7. 飞机结构中的翼梁,翼肋,纵墙,桁条和蒙皮各起什么作用
1、翼梁作用是承受全部或大部分的弯矩和剪力。翼梁由缘条、腹板和支柱等组成,剖面多为工字型。翼梁固支在机身上。
2、翼肋形成并维持剖面之形状;并将纵向骨架与蒙皮连成一体;把由蒙皮和桁条传来的空气动力载荷给翼梁,起到保形、传递翼梁和桁条的剪流作用。
3、纵墙作用是承受剪力,承受弯矩,与梁的区别在于缘条很弱且不与机身相连,也即纵墙与机身铰接。纵樯通常布置在机翼的前缘或后缘,与机翼上下蒙皮相连,形成一封闭的盒段以承受扭矩。
4、桁条作用是支撑蒙皮,提高蒙皮的承载能力,将气动力传给翼肋。
5、蒙皮通常用硬铝板材制成,用铆钉或粘接剂固定于纵横向骨架上,形成光滑的表面。空气动力直接作用在蒙皮上,起到承受和传递气动载荷的作用。
(7)简述飞机增升装置的主要作用是什么扩展阅读
飞机结构中机翼的作用
机翼是飞机最主要的部件之一,其主要功用是产生升力。同时机翼内部可以用来装置油箱和设备等;在机翼上还安装有改善起降性能的增升装置和用于飞机侧向操纵的副翼;很多飞机的起落架和动力装置也固定在机翼上。
目前大型飞机的扰流片大多是安装在机翼上表面襟翼之前的可偏转小片。起落架是供飞机在起降滑跑、地面滑行、停放和移动时支持飞机重量、承受相应载荷、吸收和消耗着陆时的撞击能量的装置。
8. 大型飞机机翼上的增升装置通常有哪三种
大型飞机机翼上的增升装置有前缘襟翼、前缘缝翼和后缘襟翼。
9. 飞机的增升装置是什么
后缘襟翼可以增加机翼的弯曲程度,或者增加机翼面积,或者开缝使机翼下表内面气流流到上表面,容机翼的迎角可以增加的更大。
前缘襟翼主要是增加机翼的弯曲程度。
前缘缝翼也是使机翼下表面气流流到上表面。
增升装置一般是以上一种或几种装置的组合,作用是减速增升。缝翼一般只在低速时有增升效果,在高速时反而会减小升力。
好听的假话 对不住啦