㈠ X-31A验证机的设计特点
X-31A的设计方案是在美国的HiMAT高机动遥控研究机项目和德国航宇公司TKF-90项目的研究成果基础上提出的,方案设计从1986年底开始,1987年8月完成,共制造了两架飞机(称为1号机和2号机)。其中气动外形及结构设计由美国罗克韦尔国际公司负责,飞行控制系统及进气道的设计则由德国航宇公司(戴姆勒-奔驰航宇公司)负责。
◎X-31A的气动布局设计:
X-31A采用鸭式布局,主翼为双三角形下单翼。我们知道,三角翼的通常具有小展弦比和大后掠角,具有跨音速气动特性良好,随着飞行马赫数变化气动中心的移动小,此外有较好的强度、刚度和重量特性,已被超音速飞机广泛采用;但是,对于X-31A而言,三角翼相对于平直机翼和普通后掠翼最大优势是失速迎角大,在大迎角飞行时能仍能保持较大的升力,因此三角翼的选择对X-31A的超音速飞行和大迎角机动是非常适合的。当然三角翼也有其固有的一些缺点,比如三角翼“升力系数—迎角”曲线斜率低,即在一定迎角范围内,其升力系数随迎角的增大增加得比较缓慢,因此对飞机的亚音速飞行性能和着陆、起飞性能都带来不利影响。此外,在迎角较大时将产生强烈的下洗气流,这将对平尾在大迎角下配平性能得发挥产生不利影响,这是X-31A采用鸭式布局的原因之一。其主翼内外侧后掠角不同,内段1/4弦线后掠角为48°6ˊ,外段机翼1/4弦线后掠角为36°36ˊ,可兼顾高低速飞行性能,比一般的三角翼具有更好的大迎角飞行性能。 此外,X-31A机翼还采用了气动扭转和几何扭转,以防止大后掠角时翼尖失速,而主翼采用下单翼布置则是考虑到主翼与鸭式布局前翼的相互影响。
X-31A的鸭翼为全动式,偏转角范围是-55度(前缘向下)到+20度。当X-31A做大强度的机动动作如上仰、小半径盘旋时,鸭翼和主翼上都会产生强大的涡流,两股涡流能在主翼上相互耦合和增强,产生比常规布局更强的升力。除了提高升力外,鸭翼还用于改善跨音速过程中安定性急剧下降的问题,同时也可减少飞机的配平阻力(有利于超音速空战),此外,鸭翼还可在降落时偏转一个很大的负角,起到减速板的作用。鸭式布局的难点是鸭翼位置的选择以及大迎角俯仰力矩上仰的问题。因鸭翼产生的升力在重心之前,俯仰力矩在大迎角时上仰严重,对于无尾飞机而言,如何保证在大迎角具有足够的低头力矩成为难题,X-31A由于推力矢量技术的应用,使该问题得以解决。
X-31A机翼的平均上反角为0度,翼型采用罗克韦尔国际公司的跨音速翼型,相对厚度为5.5%。机翼上反角具有横向静稳定的作用,而飞机的稳定性与机动性是相互对立的,稳定性好则意味着机动性差,这便是X-31A取0度上反角的理由;翼型相对厚度的选择主要考虑阻力的影响,亚音速状态下对阻力影响不大,但在跨音速时波阻增加大约与相对厚度的平方成正比,因此应尽量选择相对厚度较小的翼型,但不能太小,否则影响结构高度及机翼的可用容量,所以超音速战斗机机翼相对厚度一般在4%~6%之间。可见X-31A的翼型可保证它在低速大迎角机动和超音速飞行时都具有较低的阻力。
X-31A机翼前缘布置有两段前缘襟翼,后缘有两段襟副翼(用于增升和进行滚转控制)。前缘襟翼当X-31A大迎角机动动作时可将其向下偏转,这样大大减小了机翼前端的局部迎角。可对前方来流进行导流,保证机翼前缘气流不分离,防止过早发生失速。此外,飞行员可通过飞行控制计算机操纵直接按钮,同向偏转襟副翼,如果产生附加的俯仰力矩,水平前翼就会在飞行控制计算机的指令下自动作相应的偏转,产生等值、反向的俯仰力矩以保持迎角不变(即自动进行俯仰轴力矩配平),在整个控制过程中,驾驶杆和杆位移都不发生变化,由于这种运动方式飞机无需改变迎角便可上升或下降,所以适用于俯仰姿态的修正。在飞机横向平移过程中,飞行控制计算机还会指令襟副翼偏转,产生适当的偏转力矩和滚转力矩,以保持飞机的机头方向和水平姿态不变。
◎X-31A的动力装置与推力矢量设计:
推力矢量技术是指通过偏转发动机喷流的方向获得额外操纵力矩的技术。普通飞机通常在小迎角下飞行和作战,在这种状态下飞机的机翼和尾翼都能够产生足够的升力,因此其操纵面的效率足以保证飞机机动的需要;当飞机迎角增大时,由于气流分离等因素的影响,飞机升力面将不能产生足够的升力以保持对飞机姿态的控制,此时即使飞机发动机工作正常,也无法使飞机在空中保持平衡。然而当飞机采用
(俯仰)推力矢量技术之后,由于发动机喷管了上下偏转,这样产生的推力可不通过飞机的重心,从而形成可控制飞机俯仰姿态的俯仰力矩,此时推力就发挥了和飞机升降舵相同的作用(它们的本质区别在于前者是一种直接力控制手段)。由于推力的产生只与发动机有关系,所以只要发动机能在超过失速迎角的条件下工作,推力就能够为飞机提供配平力矩(但若要在此状态下保持稳定飞行,则要求机翼此时仍能产生足够升力)。
采用推力矢量技术后,飞机由这种直接力控制方式提供的控制力矩不受飞机本身姿态的影响,可以保证飞机在操纵舵面几近失效的低速、大迎角条件下利用推力矢量提供的额外操纵力矩来控制飞机机动,第四代战斗机基本的4S要求中包括“超机动性”(其它3S为隐身、超音速巡航和短距起降),因此推力矢量技术是第四代战斗机的重要技术特征之一。
目前,推力矢量技术已经发展出现许多不同的形式,主要包括折流瓣式偏折喷口、二元推力矢量喷管和元维推力矢量喷管这三种,其中二元推力矢量喷管无法提供偏航控制力矩,而三元推力矢量喷管可向任意方向推进,提供飞机任意方向的推力矢量,但其喷口设计复杂,目前仍是许多国家的研究重点。
X-31A采用的是折流瓣式偏折喷口,3块碳-碳导流叶片绕发动机圆周对称配置,每枚导流叶片的受高温区都包敷着碳化硅面层,且均由单独的致动装置驱动。1号叶片正好处于垂直尾翼的下面,由于它靠近抗螺旋伞,故仅限于向外偏转7度。2号和3号导流叶片位于机身的下半部中间位置,把它们打开到60度的最大外侧位置时可充当减速板使用。通过偏转导流叶片来提供俯仰和偏航所需的控制力。最大偏转角度为35度,但由于它不像二维和三维推力矢量喷管那样“包覆”住喷流,所以在大多数情况下最大只能将气流方向改变而15度,而在某些低能量状态以及发动机尾喷口面积较小的情况下气流改变还达不到15度。导流叶片的液压驱动器理论上可使叶片达到80度/秒的最大偏转角速度,但是X-31A飞控软件将每枚叶片的偏转角速度上限设置在60度/秒,这是因为大迎角飞行时飞机各个液压操纵面均要产生动作,能分配给导流叶片做偏转的液压动力并不足以达到80度/秒的偏转角速度。X-31A的导流叶片与尾喷流的偏转角速度之比大致为1.5比1,因此其推力矢量的偏转角速度最大可达40度/秒。
X-31A导流叶片偏转角度大小是与可用推力成反比(这是显然的,因为低能量情况下要产生等量的控制力矩,导流叶片就必须偏转更大的角度以使尾喷流方向改变得更多)。在X-31A得飞控系统中,推力由发动机尾喷口面积,油门杆角度(PLA)与发动机增压比来进行估算,这种估算的准确性对推力矢量控制系统的输出—即燃气舵的偏转量是至关重要的,因为如果推力估算过大将使导流叶片的偏转不到位,达不到机动动作的要求,甚至可能使飞机陷入危险;反之就将导致偏转过量,产生不希望的动作。当不需要推力矢量时,飞行控制系统由发动机尾喷口面积与发动机增压比计算出尾喷口羽状气流边界的大小,并据此将导流叶片调整到尾喷流边界处,以确保在必要时燃气舵的偏转能够及时得产生所需的矢量推力。
X-31A的这种推力矢量控制方式的缺点是相当明显的,首先它的导流叶片在同时偏转26度以上可能发生相互碰撞,因而必须在控制软件中做适当的设置,这和尾喷口羽状气流边界的计算一样,导致该机推力矢量的控制律和与飞行控制系统的结合相当复杂(控制律和与飞行控制系统的结合是推力矢量控制能够实用的最关键因素之一),如果采用二元或者三元推力矢量喷口的话这些问题就可以到得到很好的解决;其次是导流叶片本身的使用能力问题,试验发先若在F404-GE-400发动机稳定运转30秒后将燃气舵内偏5度,仅仅10秒后导流叶片就必须外转10度(即转到尾喷口外侧5度)冷却15秒才能再次使用;最后是折流瓣式偏折喷口的固有缺点—推力损失问题,X-31A在导流叶片的偏转角度超过10度时推力开始明显损失,偏转至25度时推力将损失700千克左右(1600磅)。尽管推力矢量控制方式有种种缺点,但它并不妨碍X-31A做出许多匪夷所思的超大迎角机动动作,并在与现役高机动战斗机进行模拟空战时取得极高的获胜率。
X-31A装单发美国通用电气公司双转子加力F404-GE-400涡扇发动机,加力推力71.17千牛(7 255千克) ,设计推重比为1.3。进气道位于腹部,在大迎角飞行时由于前机身促使气流转向,降低了进气道的局部迎角,改善了发动机在大迎角下的工作条件;X-31A的腹部进气道是不可调的,一方面可以减轻重量以提高推重比,另一方面尽管固定式进气道在跨音速时由于总压恢复下降而导致发动机可用推力下降,但这对于超机动飞行影响不大,因为在较大迎角机动时飞机一般在负的单位剩余功率下飞行,阻力比飞机的可用推力本来就要大得多,而且它是是一种瞬时状态,因此发动机推力的下降无甚影响。
◎X-31A飞行控制系统与控制律:
如前所述,推力矢量技术运用的最大难点之一是控制律,X-31A不仅充分证实了推力矢量控制在提高战斗机机动性和战斗力的作用,同时也在控制律设计方面取得了成功,因此可为第四代战斗机的推力矢量设计和现役战斗机的推力矢量改进提供宝贵财富。
X-31A飞机是一架带有鸭式布局的纵向不稳定三角翼飞机。主气动力控制面在纵轴上是对称的后缘襟翼与鸭翼,横航向轴是差动后缘襟翼与方向舵。此外,推力矢量系统可在低速和过失速飞行期间用于补充气动力操纵效能的不足。
X-31A飞行控制系统是一种全权限数字电传操纵系统。它由三台飞行控制计算机(每台有两个CPU)组成,并受一台称为在线断路器的飞行控制计算机支持。它与其它三台控制计算机一样,但只有一个CPU,一旦发现第二个故障时,它能够选择健全的通道,给出四余度系统可靠性。
俯仰操纵杆位置在飞行控制率中标定为-1.0(最大推杆)到+1.5(最大拉杆)。这个位置直接对应于迎角或过载指令。在低动压飞行状态时,飞行控制率处于迎角指令模态。在此模态中-1.0的指令对应-10度的迎角,+1.0对应+30度的迎角,而+1.5则对应于+70度迎角。若过失速被禁止,迎角指令则被限制为+30度。在+1.0时驾驶杆人感系统的力卡销给飞行员提供他是否已拉到过失速区的信息,此外,如果过失速一种或者多种先决条件不再给予满足,或者一旦出现故障,迎角指令自动降低到30度。在大动压情况下,-1.0对应大约-2.4G,而+1.0指令则是7.2G,拉过卡销并不改变7.2G的最大指令(这是飞机的最大载荷极限)。在这两种指令系统之间的转换发生在30度的迎角产生最大7.2G的过载的飞行状态。这大约是380磅/平方英尺。只有飞机处于在迎角指令模态时,过失速飞行才是可能的。
在飞行控制率中滚转杆位置定标是从—1(左侧最大位置)到+1(右侧最大位置)。根据飞行状态不同计算最大风轴滚转角速度,在小迎角和高动压时高达240度/秒。最大滚转速率按飞行状态定标,这种定标应使有效控制效能尽可能多地用于稳态滚转,留出足够的控制效能用于稳定和防止失控过渡。
驾驶员可以接通和断开推力矢量系统,一旦出现故障,推力矢量被自动地断开,飞行控制软件使气动控制面得到附加指令,产生的总力矩与矢量推力产生的相同。只要能得到足够的气动力控制效能,有无推力矢量工作时的力矩没有差别。在过失速时一旦推力失量出现故障,便得不到足够的偏航力矩,在这种情况下应使侧滑尽可能的低。此外,滚转性能也随着推力矢量断开而降低。出于安全的原因,起飞和着陆时推力矢量自动禁止。
◎ 头盔显示器:
X-31在高达70度的大迎角下进行可控飞行给飞行员带来了一些潜在的问题。第一个问题是,由于大迎角偏移有时能使飞行员迷失方向,所以第二个问题就是姿态意识。第二个问题就是武器使用,平视显示器不能显示当今复杂武器系统的完整武器包线,因此飞行员在决定使用何种战术武器时不得不凭经验行事。头盔显示器就是用来缓解这样一些问题的。
㈡ 歼七和歼八那个更厉害
歼八的性能不如歼七
无论是机动性、航程、载弹量、爬升率都比歼七逊色
唯一优势是最大巡航高度。。
㈢ 飞机翅膀是用什么材料做的
机翼材料为铝合金,机翼由表面的蒙皮和内骨架组成,机翼结构的基本作用是构成机翼的流线外形,同时将外载荷传给机身。
机翼结构在外载荷作用下应具有足够的强度、刚度和寿命。足够的刚度既指蒙皮在气动载荷作用下保持翼型形状的能力,也包含机翼抵抗扭转和弯曲变形的能力。
机翼上常用的活动翼面有各种前后缘增升装置、副翼、扰流片、减速板、升降副翼等。机翼内部经常用来放置燃油。在机翼厚度允许的情况下,飞机主起落架也经常是全部或部分地收在机翼内。
机翼的作用是产生升力,以支持飞机在空中飞行,它还起一定的稳定和操纵作用。机翼的平面形状多种多样,常用的有矩形翼、梯形翼、后掠翼、三角翼、双三角翼、箭形翼、边条翼等。
现代飞机都是单翼机,但历史上也曾流行过双翼机(两副机翼上下重叠)、三翼机和多翼机。 根据单翼机的机翼与机身的连接方式,可分为下单翼、中单翼、上单翼和伞式上单翼(即机翼在机身的上方,由一组撑杆将机翼和机身连接在一起)。
㈣ 襟翼有什么作用
一架飞机在高空正常飞行的时候,机翼看起来好像是一个整体。其实不然,机翼前缘、后缘都装有长短、宽度不同的翼片,有的可向下偏转,有的可向前伸出,有的可向后滑退,可谓五花八门。由于这些翼片是机翼的附属物,并且可以偏折,正像我们穿的衣服下襟随风摆动一样,因此科学家给这些翼片起了一个十分形象的名称 ———襟翼。平时飞机停在机场上或在高空飞行时,襟翼都收拢在机翼前缘或后缘上,一旦飞机进入起飞或着陆阶段,它们的原形就显露了出来。
飞机为什么要装襟翼呢?请看下文。
1、襟翼的奥秘在于提高升力
机翼的作用就是产生足够的升力使飞机能飞上天空。如果机翼是一个整体的话,那么在机翼面积、翼型、展弦比确定的情况下,它的最大升力也就是确定不变的了。如果飞机的全部重量是50吨,机翼必须产生490千牛以上的升力才能飞起来。我们知道,机翼面积越大,升力越大;速度越大,升力也越大。换句话说就是:在升力一定的情况下,机翼面积越大,起飞速度可以越小;起飞速度越大,机翼面积可以越小。因此,为了把这50吨的飞机弄上天,我们可以采取这样两个办法:一是选用面积较小的机翼,通过加大起飞速度使升力超过490千牛;二是使起飞速度保持在较低的值上,通过采用大面积机翼以产生490千牛以上的升力。
这两个办法行不行呢?第一个办法机翼面积较小,飞机的结构重量就较轻,这是优点,但起飞速度大是很不利的,一方面要求机场跑道很长,这很不合算,对舰载飞机更是不利;另一方面,高滑跑速度对安全的威胁极大。第二个方法起飞速度低,有利于缩短滑跑距离,但当飞机起飞后速度增加,大面积机翼便成了累赘,不但重量大使载重量大大减少,而且会使阻力剧增,飞机的耗油量因此显著增加。这种低速时升力小、高速时阻力大的问题称为飞机的高低速矛盾。怎样解决这一难题呢?这就要靠襟翼来实现。
襟翼的一个主要作用是协调这个矛盾,既不需要很大、很重的机翼,也能在较低的起飞着陆速度下产生足够的升力,使载重、速度、阻力和油耗达到综合性的最佳化。用整体一块的方式设计机翼不能同时满足大载重量、低起飞和着陆速度、低阻力和低耗油率的要求。由于襟翼具体作用是大大提高飞机起飞和着陆等低速阶段的升力,因而统称增升装置。
襟翼为什么能增加升力呢?在速度一定的情况下,提高升力的办法主要有4种:一是改变机翼剖面形状,增加翼型弯度;二是增加机翼面积;三是尽可能保持层流流动;四是在环绕机翼的气流中,增加一股喷气气流。襟翼就是通过改变翼型弯度、增加机翼面积、保持层流流动而增加升力的。
2、飞机襟翼样式众多
襟翼概念出现得很早。第一次世界大战前,由于飞机速度提高,要求飞机在低速时也能产生足够的升力,于是有人开始了最简单的后缘襟翼的试验探索。
为什么飞机要装襟翼?
简单襟翼就是机翼后缘的一部分。它可以弯曲,这样就会改变机翼弯度,提高升力。不久,又出现了开裂式襟翼。当它放下时,一方面可使翼型变弯,一方面会在机翼后缘形成低压,两方面的效果都是增加了升力。通常,开裂式襟翼可使升力系数提高75%~85%。同时,开裂式襟翼还能增加阻力,对飞机安全、缓慢地着陆有利。
20世纪20年代,英国著名设计师汉德莱·佩奇和德国空气动力学家拉赫曼发明了开缝襟翼。它是一条或几条附着在机翼后缘的可动翼片,平时与机翼合为一体,飞机起飞或着陆时放下。襟翼片能够增加机翼的面积,改变机翼弯度,同时还会形成一条或几条缝隙。增加面积可以提高升力,形成缝隙可使下表面的气流经缝隙流向上表面,使上表面的气流速度提高,可较大范围保持层流,也可使升力增加,并能减少失速现象的发生。开缝襟翼是襟翼中十分重要的一种。它也可以装在飞机前缘上,通常都是一条。目前大型飞机特别是客机都安装了双缝或三缝襟翼,可提高升力系数85%~95%,效果十分显著。
还有两种襟翼也很常见,一种是富勒襟翼,一种是克鲁格襟翼。
富勒襟翼是在机翼后缘安装的活动翼面,平时紧贴在机翼下表面上。使用时,襟翼沿下翼面安装的滑轨后退,同时下偏。使用富勒襟翼可以增加翼剖面的弯度,同时能大大增加机翼面积,增升效果非常明显,升力系数可提高85%~95%,个别大面积富勒襟翼的升力系数可提高110%~140%。这种襟翼结构较复杂,多在大、中型飞机上采用,可大大改善起降性能。
克鲁格襟翼位于机翼前缘。它的外形相当于机翼前缘的一部分。使用时利用液压作动筒将克鲁格襟翼向前下方伸出,既改变了翼型,也增加了翼面积,增升效果也比较好。
3、飞机襟翼在发展中
襟翼的发展并没有完结。上面介绍的襟翼装置发展比较成熟,还有一类襟翼概念提出的也很早,但直到现在仍不完善,这就是喷气襟翼。它的设计方案很多,基本思想都是通过从发动机或高压气瓶引出气体,吸向机翼或襟翼表面,达到增加升力、推迟分离、降低阻力、改善失速特性的目的。由于喷气襟翼十分复杂,目前只有个别飞机,如“鹞”式垂直起降飞机和F-4、米格-21轻型战斗机使用了喷气襟翼。其试验工作仍在进行之中。
㈤ 飞机起飞的原理是什么
在真实且可产生升力的机翼中,气流总是在后缘处交汇,否则在机翼后缘将会产生一个气流速度为无穷大的点。这一条件被称为库塔条件,只有满足该条件,机翼才可能产生升力。在理想气体中或机翼刚开始运动的时候,这一条件并不满足,粘性边界层没有形成。
通常翼型(机翼横截面)都是上方距离比下方长,刚开始在没有环流的情况下上下表面气流流速相同,导致下方气流到达后缘点时上方气流还没到后缘,后驻点位于翼型上方某点,下方气流就必定要绕过尖后缘与上方气流汇合。
由于流体黏性(即康达效应),下方气流绕过后缘时会形成一个低压旋涡,导致后缘存在很大的逆压梯度。随即,这个旋涡就会被来流冲跑,这个涡就叫做起动涡。根据海姆霍兹旋涡守恒定律,对于理想不可压缩流体在有势力的作用下翼型周围也会存在一个与起动涡强度相等方向相反的涡,叫做环流,或是绕翼环量。
环流是从机翼上表面前缘流向下表面前缘的,所以环流加上来流就导致后驻点最终后移到机翼后缘,从而满足库塔条件。由满足库塔条件所产生的绕翼环量导致了机翼上表面气流向后加速,由伯努利定理可推导出压力差并计算出升力。
这一环量最终产生的升力大小亦可由库塔-茹可夫斯基方程计算:L(升力)=ρVΓ(气体密度×流速×环量值)这一方程同样可以计算马格努斯效应的气动力。根据伯努利定理——“流体速度越快,其静压值越小(静压就是流体流动时垂直于流体运动方向所产生的压力)。”
因此上表面的空气施加给机翼的压力F1小于下表面的F2。F1、F2的合力必然向上,这就产生了升力。升力的原理就是因为绕翼环量(附着涡)的存在导致机翼上下表面流速不同压力不同。
(5)翼型高低速性能优化及其对增升装置设计影响扩展阅读:
飞机的动力装置的核心是航空发动机,主要功能是用来产生拉力或推力克服与空气相对运动时产生的阻力使飞机前进。次要功能则是为飞机上的用电设备提供电力,为空调设备等用气设备提供气源等。飞机的动力装置除发动机外,还包括一系列保证发动机正常工作的系统,如引擎燃油系统、引擎控制系统等。
现代飞机的动力装置一般为涡轮引擎(喷射引擎)和往复式引擎两种。应用较广泛的配置方式有四种:航空活塞式发动机加螺旋桨推进器;涡轮喷射引擎;涡轮螺旋桨引擎;涡轮扇引擎。随着航空技术的发展,火箭发动机、冲压引擎、原子能航空发动机、脉冲爆震发动机等,也有可能会逐渐被采用。
㈥ 什么是飞机的增升装置
飞机的升力主要随飞行速度和迎角的变化而变化。如果以小速度飞行,则要求较大的升力系内数和迎角,机翼容才能产生足够的升力来维持飞机飞行。用增加迎角的方法来增大升力系数从而减小迎角,是有限的。因为飞机的迎角最多只能增大到临界迎角。因此,为了保证飞机在起飞和着陆时仍能产生足够的升力,有必要在机翼上装设增大升力系数的装置,即增升装置。目前使用比较广泛的增升装置有前缘缝翼,前缘襟翼,后缘襟翼等。
前缘缝翼位于机翼前缘,打开时使下翼面的高压气流流过缝隙贴近上翼面流动,能延缓大迎角状态下机翼上表面的气流分离,提高了最大升力系数和临界迎角。但是在迎角较小时,打开前缘缝翼反而会使上下翼面压强差减小,从而降低升力系数。
前缘襟翼可以减小大迎角状态下机翼前缘与相对气流之间的夹角,延缓气流分离,又能增大机翼弯度,使最大升力系数和临界迎角增大。
后缘襟翼位于机翼后缘,有分裂襟翼、简单襟翼、开缝襟翼、后退襟翼,后退开缝襟翼几种。放下后缘襟翼,即增大升力系数,同时也增大了阻力系数。
㈦ 飞机有几个机翼
飞机一般有两个机翼。
飞机上用来产生升力的主要部件。一般分为左右两个翼面,对称地布置在机身两边。机翼的一些部位(主要是前缘和后缘)可以活动。驾驶员操纵这些部分可以改变机翼的形状,控制机翼升力或阻力的分布,以达到增加升力或改变飞机姿态的目的。机翼上常用的活动翼面(图1 )有各种前后缘增升装置、副翼、扰流片、减速板、升降副翼等。机翼内部经常用来放置燃油。在机翼厚度允许的情况下,飞机主起落架也经常是全部或部分地收在机翼内。此外,许多飞机的发动机或是直接固定在机翼上,或是吊挂在机翼下面。
机翼的作用是产生升力,以支持飞机在空中飞行。它还起一定的稳定和操纵作用。机翼的平面形状多种多样,常用的有矩形翼、梯形翼、后掠翼、三角翼、双三角翼、箭形翼、边条翼等。现代飞机一般都是单翼机,但历史上也曾流行过双翼机(两副机翼上下重叠)、三翼机和多翼机。 根据单翼机的机翼与机身的连接方式,可分为下单翼、中单翼、上单翼和伞式上单翼(即机翼在机身的上方,由一组撑杆将机翼和机身连接在一起)。
㈧ 飞机增升装置的基本原理是什么
增升装置的原理: 增升装置的目的是增大最大升力系数。
机翼增升装置可以通过改善气回流状况和增加升力答,在飞机起飞、着陆或低速机动飞行时增加机翼剖面之弯曲度及迎角,从而增加升力。用增大迎角的方法来增大升力系数,从而减小速度是有限的,飞机的迎角最多只能增大到临界迎角。
飞机的升力主要随飞行速度和迎角变化,在大速度飞行时,只要求较小迎角,机翼就可以产生足够升力维持飞行。在小速度飞行时,则要求较大的迎角,机翼才能产生足够的升力来维持飞行。
因此,为了保证飞机在起飞和着陆时,仍能产生足够的升力,有必要在机翼上装设增大升力系数的装置。增升装置用于增大飞机的最大升力系数,从而缩短飞机在起飞着陆阶段的地面滑跑距离。常用的增升装置主要有前缘缝翼和前后缘襟翼、吹气襟翼等等。
(8)翼型高低速性能优化及其对增升装置设计影响扩展阅读:
增升装置主要是通过三个方面实现增升:
1、增大翼型的弯度,提高上下翼面压强差。
2、延缓上表面气流分离,提高临界迎角和最大升力系数。
3、增大机翼面积。
㈨ 我想问客机各个机翼的作用
客机机翼
安装在机身上。其最主要作用是产生升力,同时也可以在机翼内布置弹药仓和油箱,在飞行中可以收藏起落架。
机翼的构造
由于飞机是在空中飞行,并且速度十分高,这就要求飞机上的每一个部件都要有很好的强度和刚度,才能够承受巨大的气动载荷,保证飞机的飞行安全。机翼的基本受力构件包括纵向骨架、横向骨架、蒙皮和接头。其中接头的作用是将机翼上的载荷传递到机身上,而有些飞机整个就是一个大的飞翼(如美国的B-2隐形轰炸机),则根本就没有接头。以下是典型的梁式机翼的结构。
一、纵向骨架 机翼的纵向骨架由翼梁、纵樯和桁条等组成,所谓纵向是指沿翼展方向,它们都是沿翼展方向布置的。
* 翼梁是最主要的纵向构件,它承受全部或大部分弯矩和剪力。翼梁一般由凸缘、腹板和支柱构成(如图所示)。凸缘通常由锻造铝合金或高强度合金钢制成,腹板用硬铝合金板材制成,与上下凸缘用螺钉或铆钉相连接。凸缘和腹板组成工字型梁,承受由外载荷转化而成的弯矩和剪力。
* 纵樯与翼梁十分相像,二者的区别在于纵樯的凸缘很弱并且不与机身相连,其长度有时仅为翼展的一部分。纵樯通常布置在机翼的前后缘部分,与上下蒙皮相连,形成封闭盒段,承受扭矩。靠后缘的纵樯还可以悬挂襟翼和副翼。
* 桁条是用铝合金挤压或板材弯制而成,铆接在蒙皮内表面,支持蒙皮以提高其承载能力,并共同将气动力分布载荷传给翼肋。
二、横向骨架 机翼的横向骨架主要是指翼肋,而翼肋又包括普通翼肋和加强翼肋,横向是指垂直于翼展的方向,它们的安装方向一般都垂直于机翼前缘。
* 普通翼肋的作用是将纵向骨架和蒙皮连成一体,把由蒙皮和桁条传来的空气动力载荷传递给翼梁,并保持翼剖面的形状。
* 加强翼肋就是承受有集中载荷的翼肋。
三、蒙皮 蒙皮是包围在机翼骨架外的维形构件,用粘接剂或铆钉固定于骨架上,形成机翼的气动力外形。蒙皮除了形成和维持机翼的气动外形之外,还能够承受局部气动力。早期低速飞机的蒙皮是布质的,而如今飞机的蒙皮多是用硬铝板材制成的金属蒙皮。