A. 测量核辐射的方法、仪器及仪器图片
方法:
半衰期:放射性核素数目衰减到原来数目一半所需要的时间的期望值。
放射性活度:表征放射性核素特征的物理量,单位时间内处于特定能态的一定量的核素发生自发核转变数的期望值。A=dN/dt。
射气系数:在某一时间间隔内,岩石或矿石析出的射气量N1与同一时间间隔内该岩石或矿石中由衰变产生的全部射气量N2的比值,即η*= N1/N2×100%。
原子核基态:处于最低能量状态的原子核,这种核的能级状态叫基态。
核衰变:放射性核素的原子核自发的从一个核素的原子核变成另一种核素的原子核,并伴随放出射线的现象。
α衰变:放射性核素的原子核自发的放出α粒子而变成另一种核素的原子核的过程成为α衰变
衰变率:放射性核素单位时间内衰变的几率。
轨道电子俘获:原子核俘获了一个轨道电子,使原子核内的质子转变成中子并放出中微子的过程。
衰变常数:衰变常数是描述放射性核素衰变速度的物理量,指原子核在某一特定状态下,经历核自发跃迁的概率。
线衰减系数:射线在物质中穿行单位距离时被吸收的几率。
质量衰减系数:射线穿过单位质量介质时被吸收的几率或衰减的强度,也是线衰减系数除以密度。
铀镭平衡常数:表示矿(岩)石中铀镭质量比值与平衡状态时铀镭质量比值之比。
吸收剂量:电力辐射授予某一点处单位质量物质的能量的期望值。D=dE/dm,吸收剂量单位为戈瑞(Gy)。
平均电离能:在物质中产生一个离子对所需要的平均能量。
碰撞阻止本领:带电粒子通过物质时,在所经过的单位路程上,由于电离和激发而损失的平均能量。
核素:具有特定质量数,原子序数和核能态,而且其平均寿命长的足以已被观察的一类原子
粒子注量:进入单位立体球截面积的粒子数目。
粒子注量率:表示在单位时间内粒子注量的增量
能注量:在空间某一点处,射入以该点为中心的小球体内的所有的粒子能量总和除以该球的截面积
能注量率:单位时间内进入单位立体球截面积的粒子能量总和
比释动能:不带电电离粒子在质量为dm的某一物质内释放出的全部带电粒子的初始动能总和
剂量当量:某点处的吸收剂量与辐射权重因子加权求和
同位素:具有相同的原子序数,但质量数不同,亦即中子数不同的一组核素
照射量:X=dq/dm,以X射线或γ射线产出电离本领而做出的一种量度
照射量率:单位质量单位时间内γ射线在空间一体积元中产生的电荷。
剂量当量指数:全身均匀照射的年剂量的极限值
同质异能素:具有相同质量数和相同原子序数而半衰期有明显差别的核素
平均寿命:放射性原子核平均生存的时间.与衰变常熟互为倒数。
电离能量损耗率:带电粒子通过物质时,所经过的单位路程上,由于电离和激发而损失的平均能量
平衡含量铀:达到放射性平衡时的铀含量
分辨时间: 两个相邻脉冲之间最短时间间隔
康普顿边:发生康普顿散射时,当康普顿散射角为一百八十度时所形成的边
康普顿坪:当康普顿散射角为零到一百八十度时所形成的平台
累计效应:指y光子在介质中通过多次相互作用所引起的y光子能量吸收
边缘效应: 次级电子产生靠近晶体边缘,他可能益处晶体以致部分动能损失在晶体外,所引起的脉冲幅度减小
和峰效应: 两哥y光子同时被探测器晶体吸收产生幅度更大的脉冲,其对应能量为两个光子能量之和
双逃逸峰:指两个湮没光子不再进行相互作用就从探测器逃出去
响应函数: 探测器输出的脉冲幅度与入射γ射线能量之间的关系的数学表达式
能量分辨率: 表征γ射线谱仪对能量相近的γ射线分辨本领的参数
探测效率:表征γ射线照射量率与探测器输出脉冲1. 峰总比:全能峰的脉冲数与全谱下的脉冲数之比
峰康比:全能峰中心道最大计数与康普顿坪内平均计数之比
峰总比:全能峰内的脉冲数与全谱下的脉冲数之比
入射本征效率:指全谱下总脉冲数与射到晶体上的y光子数之比
本征峰效率:全能峰内脉冲数与射到晶体上y光子数之比
源探测效率:全谱下总计数率与放射源的y光子发射率之比
源峰探测效率:全能峰内脉冲数与放射源y光子发射率之比
光电吸收系数:光子发生光电效应吸收几率
光电截面:一个入射光子单位面积上的一个靶原子发生光电效应的几率
原子核基态:原子核最低能量状态
轫致辐射:高速带电粒子通过物质时与库仑场作用而减速或加速时伴生的电磁辐射。
俄歇电子:在原子壳层中产生电子空穴后处于高能级的电子和跃迁到这一层,同时释放能量,当释放的能量传递到另一层的一个电子,这个嗲你脱离原子而发射出来,发射出来的电子称为俄歇电子。
B. 我想问一下,像环保局的检测核辐射的设备 本身会有辐射吗 长期对身体的影响大吗
首先要明确的是你指的辐射是电离辐射,而非其他电磁波之类的辐射,回其次这东西有答没有放射性,我们先分析放射性来源。1、天然放射源。 2、机器源也就射线机,加速器一类的。3、反应堆,你所说的环保局检测辐射的设备,显然不属于这三类之中,另外放射性从单体而言要么它是放射源,要么它有感生放射性。上述排除放射源的可能,那么接下来我们分析它会不会有感生放射性呢,具有感生放射性有三种情况:1、中子活化,具体定义自己查,中子辐射只能由元素的衰变、核反应和高能反应(例如宇宙簇射或粒子加速器中的碰撞),假如环保局有反应堆,恩,那好吧,这个局在哪,我要去那上班。2、光致蜕变,定义自己查,哪里来的高能γ光子呢,假如有,这个局在哪,我也要去上班。3、本底辐射,宇宙射线之类的,环境中子几乎为零存在,不然别人也不会买那么贵的锎源点火了,综上,有还是没有道友自己觉得呢,考虑这个还不如平常少玩些手机、电脑之类的
PS:电磁炉正上方可是辐射很强的存在哦
C. 核辐射应急监测设备包括哪些
一个拉箱,里面有铅衣、防护衣等一套防护用品,设备就是空气吸收剂量率仪,中子剂量率仪,表面沾污,丢源的话还有寻源的枪,寻源背包,还有车载的远距离的,还有便携核素识别仪,有的环保还有要气溶胶,有些部门还有带碘片,太多了,小东西也很多,比如警示标示,发电机,手表式的个人剂量报警仪,对讲机。
D. 自制核辐射检测器
盖革管串联电流表和10M电阻然后接上电源就可以了
E. 盖格管核辐射检测仪哪里好做表面污染用的,就是检测α、β粒子流用的
这个核辐射检查仪的盖格管里充的是特殊气体,在使用的过程中,会损耗的,气体用完了,就得换管子了
α、β粒子流在放射性物体表面20CM内的范围中存在,原因是只能射这么远了,超过这个距离的话,一般影响就比较小了。
推荐你使用德国柯雷公司的多探头核辐射仪R700,R700采用清晰大屏幕显示器,显示单位可以显示单位可以在在μSv/h、mR/h、CPS、CPM之间切换,同时显示多种测量参数:射线强度、时域波形图、最大值。探头内置校验日期提醒功能,每次插入探头的时候,主机可提醒用户下一次校验的时间,以保证仪器的精度,产品有欧洲CE认证和ISO9001质量认证.
1.
彩色显示屏
2.
探头与主机可相距100米以上,防止人体受到伤害
3.
显示单位Gy/h、Sv/h、R/h、Bq、Bq/cm2、cps、cpm
4.
可以显示时域波形图
5.
有最大值显示功能
6.
带探头校验日期提醒功能
7.
带声光报警功能
8.
主机可插多路探头同时监测
9.
主机可以配不同类型的探头
10.可选无线传输2KM距离,或有线RS485传输1.2KM距离
11.可选GPS选件,软件自动画出经过路径的核辐射地图。
12.附带立体上位机电脑显示软件,可显示核射线值的立体图
13.rs485接口、USB软件接口可选
并且你可以选配探头,可供选配的探头有:闪烁体探头(NaI),表面污染探头(ZnS)、双盖格管探头、中子探头(6LiI)、电离室探头、X光检测专用探头,咨询:0755-33177045
至于你说的半导体和闪烁体类型的:
闪烁探测器。主要由闪烁体、光的收集部件和光电转换器件组成的辐射探测器。当粒子进入闪烁体时,闪烁体的原子或分子受激而产生荧光。利用光导和反射体等光的收集部件使荧光尽量多地射到光电转换器件的光敏层上并打出光电子。这些光电子可直接或经过倍增后,由输出级收集而形成电脉冲。早在1903年就有人发现
α粒子照射在硫化锌粉末上可产生荧光的现象。但是,直到
1947年,将光电倍增管与闪烁体结合起来后才制成现代的闪烁探测器。很多物质都可以在粒子入射后而受激发光,因此闪烁体的种类很多,可以是固体、液体或气体。
半导体探测器的前身可以认为是晶体计数器。早在1926年就有人发现某些固体电介质在核辐射下产生电导现象。后来,相继出现了氯化银、金刚石等晶体计数器。但是,由于无法克服晶体的极化效应问题,迄今为止只有金刚石探测器可以达到实用水平。半导体探测器发现较晚,1949年开始有人用α
粒子照射锗半导体点接触型二极管时发现有电脉冲输出。到1958年才出现第一个金硅面垒型探测器。直至60年代初,锂漂移型探测器研制成功后,半导体探测器才得到迅速的发展和广泛应用。
F. 家居什么核辐射检测仪好
核辐射检测仪又名辐射检测仪。市场上有辐射报警仪,辐射仪是不带剂量显示的仪器,只能提示佩戴人员当前所在场地射线是不是超标,至于辐射剂量具体是多少,不好确定。辐射剂量检测仪,这种仪器不仅可以报警,也可以清晰显示当前所在场地的辐射剂量值。
核辐射检测仪主要元器件是盖革计数管,这就决定了核辐射检测仪不仅可以检测核辐射,也可以检测X \Y \B射线等。所以有些厂家也叫X射线剂量报警仪,或X\Y射线剂量报警仪。
一般来说购买核辐射检测仪的客户可大概分为4类:
1.安全组织, 譬如警察局和消防队、紧急反应组织、环保组织、危险物料处置、金属回收公司、矿山等,他们接触到各种放射性的机率较高。
2.港口、码头、机场等,这些地方因为人员及各类进出口货物流量大,特别涉及到出入境人员受放射线污染的机率较高。
3.五金厂、陶瓷厂、医院、研究机构、实验室、药监局、大学等,他们接触到各种低强度或泄漏放射线的机率较高。
4.关注居住环境质量及个人安全的私人个体, 比如某人想在家,食物、水中等寻找周围的环境污染(各种突发事故或恐怖分子攻击等)。
G. 核辐射检测仪什么品牌比较好像GM管核辐射检测仪多少钱用于表面污染检测的
coliy的,型号有R500,RM600,R700,R800,R900+等。辐射仪价格吗,一般的1万左右,好一点的3万左右,再好些的过10万。用得比较多的是GM管核辐射检测仪,高级一些的是闪烁体核辐射检测仪,最高级的是半导体核辐射检测仪、不过一般是用不起的。
H. 请问 核辐射检测器 的工作原理
能够指示、记录和测量核辐射的材料或装置。辐射和核辐射探测器内的物质相互作用而产生某种信息(如电、光脉冲或材料结构的变化),经放大后被记录、分析,以确定粒子的数目、位置、能量、动量、飞行时间、速度、质量等物理量。核辐射探测器是核物理、粒子物理研究及辐射应用中不可缺少的工具和手段。按照记录方式,核辐射探测器大体上分为计数器和径迹室两大类。
计数器 以电脉冲的形式记录、分析辐射产生的某种信息。计数器的种类有气体电离探测器、多丝室和漂移室、半导体探测器、闪烁计数器和切伦科夫计数器等。
气体电离探测器 通过收集射线在气体中产生的电离电荷来测量核辐射。主要类型有电离室、正比计数器和盖革计数器。它们的结构相似,一般都是具有两个电极的圆筒状容器,充有某种气体,电极间加电压,差别是工作电压范围不同。电离室工作电压较低,直接收集射线在气体中原始产生的离子对。其输出脉冲幅度较小,上升时间较快,可用于辐射剂量测量和能谱测量。正比计数器的工作电压较高,能使在电场中高速运动的原始离子产生更多的离子对,在电极上收集到比原始离子对要多得多的离子对(即气体放大作用),从而得到较高的输出脉冲。脉冲幅度正比于入射粒子损失的能量,适于作能谱测量。盖革计数器又称盖革-弥勒计数器或G-M计数器,它的工作电压更高,出现多次电离过程,因此输出脉冲的幅度很高,已不再正比于原始电离的离子对数,可以不经放大直接被记录。它只能测量粒子数目而不能测量能量,完成一次脉冲计数的时间较长。
多丝室和漂移室 这是正比计数器的变型。既有计数功能,还可以分辨带电粒子经过的区域。多丝室有许多平行的电极丝,处于正比计数器的工作状态。每一根丝及其邻近空间相当于一个探测器,后面与一个记录仪器连接。因此只有当被探测的粒子进入该丝邻近的空间,与此相关的记录仪器才记录一次事件。为了减少电极丝的数目,可从测量离子漂移到丝的时间来确定离子产生的部位,这就要有另一探测器给出一起始信号并大致规定了事件发生的部位,根据这种原理制成的计数装置称为漂移室,它具有更好的位置分辨率(达50微米),但允许的计数率不如多丝室高。
半导体探测器 辐射在半导体中产生的载流子(电子和空穴),在反向偏压电场下被收集,由产生的电脉冲信号来测量核辐射。常用硅、锗做半导体材料,主要有三种类型:①在n型单晶上喷涂一层金膜的面垒型;②在电阻率较高的 p型硅片上扩散进一层能提供电子的杂质的扩散结型;③在p型锗(或硅)的表面喷涂一薄层金属锂后并进行漂移的锂漂移型。高纯锗探测器有较高的能量分辨率,对γ辐射探测效率高,可在室温下保存,应用广泛。砷化镓、碲化镉、碘化汞等材料也有应用。
闪烁计数器 通过带电粒子打在闪烁体上,使原子(分子)电离、激发,在退激过程中发光,经过光电器件(如光电倍增管)将光信号变成可测的电信号来测量核辐射。闪烁计数器分辨时间短、效率高,还可根据电信号的大小测定粒子的能量。闪烁体可分三大类:①无机闪烁体,常见的有用铊(Tl)激活的碘化钠NaI(Tl)和碘化铯CsI(Tl)晶体,它们对电子、γ辐射灵敏,发光效率高,有较好的能量分辨率,但光衰减时间较长;锗酸铋晶体密度大,发光效率高,因而对高能电子、γ辐射探测十分有效。其他如用银 (Ag)激活的硫化锌ZnS(Ag)主要用来探测α粒子;玻璃闪烁体可以测量α粒子、低能X辐射,加入载体后可测量中子;氟化钡 (BaF2)密度大,有荧光成分,既适合于能量测量,又适合于时间测量。②有机闪烁体,包括塑料、液体和晶体(如蒽、茋等),前两种使用普遍。由于它们的光衰减时间短(2~3纳秒,快塑料闪烁体可小于1纳秒),常用在时间测量中。它们对带电粒子的探测效率将近百分之百。③气体闪烁体,包括氙、氦等惰性气体,发光效率不高,但光衰减时间较短(<10纳秒)。
切伦科夫计数器 高速带电粒子在透明介质中的运动速度超过光在该介质中的运动速度时,则会产生切伦科夫辐射,其辐射角与粒子速度有关,因此提供了一种测量带电粒子速度的探测器。此类探测器常和光电倍增管配合使用;可分为阈式(只记录大于某一速度的粒子)和微分式(只选择某一确定速度的粒子)两种。
除上述常用的几种计数器外,还有气体正比闪烁室、自猝灭流光计数器,都是近期出现的气体探测器,输出脉冲幅度大,时间特性好。电磁量能器(或簇射计数器)及强子量能器可分别测量高能电子、γ辐射或强子(见基本粒子)的能量。穿越辐射计数器为极高能带电粒子的鉴别提供了途径。
径迹室 通过记录、分析辐射产生的径迹图象测量核辐射。主要种类有核乳胶、云室和泡室、火花室和流光室、固体径迹探测器。
核乳胶 能记录带电粒子单个径迹的照相乳胶。入射粒子在乳胶中形成潜影中心,经过化学处理后记录下粒子径迹,可在显微镜下观察。它有极佳的位置分辨本领(1微米),阻止本领大,功用连续而灵敏。
云室和泡室 使入射粒子产生的离子集团在过饱和蒸气中形成冷凝中心而结成液滴(云室),在过热液体中形成气化中心而变成气泡(泡室),用照相方法记录,使带电粒子的径迹可见。泡室有较好的位置分辨率(好的可达10微米),本身又是靶,目前常以泡室为顶点探测器配合计数器一起使用。
火花室和流光室 这些装置都需要较高的电压,当粒子进入装置产生电离时,离子在强电场下运动,形成多次电离,增殖很快,多次电离过程中先产生流光,后产生火花,使带电粒子的径迹成为可见。流光室具有较好的时间特性。它们都具有较好的空间分辨率(约 200微米)。除了可用照相记录粒子径迹外,还可记录电脉冲信号,作为计数器用。
固体径迹探测器 重带电粒子打在诸如云母、塑料一类材料上,沿路径产生损伤,经过化学处理(蚀刻)后,将损伤扩大成可在显微镜下观察的空洞,适于探测重核。
由许多类型的探测器、磁铁、电子仪器、计算机等组成的辐射谱仪,可获得多种物理信息,是近代核物理及粒子探测的发展趋势。
I. 核辐射探测器的工作原理
辐射探测器的工作原理基于粒子与物质的相互作用。当粒子通过某种物质时,这种物质就吸收其全部或部分能量而产生电离或激发作用。
如果粒子是带电的,其电磁场与物质中原子的轨道电子直接相互作用。
如果是γ射线或X射线,则先经过一些中间过程,发生光电效应、康普顿效应或产生电子对,把部分或全部能量传给物质的轨道电子,再产生电离或激发。
对于不带电的中性粒子,例如中子,则是通过核反应产生带电粒子,然后造成电离或激发。
辐射探测器就是用适当的探测介质作为与粒子作用的物质,将粒子在探测介质中产生的电离或激发,转变为各种形式的直接或间接可为人们感官所能接受的信息。
J. 正规的核辐射检测仪要多少钱
正规检测的最早是广东核辐院的产品,后来改制为中电检测,现在家家户户都重视健康了,当然这个产品也要选好质量,要不然检测不出效果。