『壹』 什么时候用小电阻接地,什么时候消弧线圈
1-消弧线圈装置:压系统中性点接地方式选用技术导则1适用范围本导则规定了10kV、20kV和35kV三个电压等级的中压系统中性点接地方式的选用技术原则,并给出了消弧线圈和小电阻装置及其配套接地变、电流互感器等设备的推荐配置原则。本导则适用于江苏电网中压系统中性点接地方式的选用。2规范性引用文件本导则引用了下列标准的有关条文,当这些标准修订后,使用本导则者应引用下列标准最新版本的有关条文。DL/T620交流电气装置的过电压保护和绝缘配合DL/T621交流电气装置的接地DL/T780配电系统中性点接地电阻器DL/T1057自动跟踪补偿消弧线圈成套装置技术条件国家电网公司国家电网生[2004]634号10kV~66kV消弧线圈装置技术标准3术语和定义下列术语和定义适用于本导则。3.1中性点有效接地方式系统在各种条件下应该使零序与正序电抗之比(X0/X1)为正值并且小于3,且零序电阻对正序电抗(R0/X1)之比为正值并且不大于1。中性点直接接地、中性点经小电抗接地和中性点经小电阻接地均属于该类系统。3.2中性点非有效接地方式系统在各种条件下应该使零序与正序电抗之比(X0/X1)大于3。中性点不接地、中性点经消弧线圈接地和中性点经高电阻接地均属于该类系统。3.3高电阻接地系统系统中性点经过一定阻值的电阻接地,一般限制单相接地故障电流小于10A。高电阻接地系统的设计应符合R0≤XC0(R0是系统等值零序电阻,XC0是系统每相的对地分布容抗)的准则,以限制由于间隙性电弧接地故障产生的瞬态过电压。3.4小电阻接地系统系统中性点经过一定阻值的电阻接地,小电阻的选择应使系统发生接地故障时,有足够电流满足继电保护快速性和选择性的要求,一般限制单相接地故障电流为100A~1000A。对于一般系统,限制瞬态过电压的准则是(R0/X0)≥2。其中X0是系统等值零序感抗。3.5故障点金属性接地系统中某一相直接与地连接。此时对于中性点非有效接地系统,中性点对地电压有效值达到系统相电压;中性点有效接地系统中,中性点对地电压有效值接近系统相电压。3.6故障点阻抗接地系统中某一相经过一定的阻抗与地连接。此时系统中性点对地电压受接地点阻抗影响,通常小于系统相电压。故障点阻抗值越高,中性点对地电压越小。3.7系统电容电流三相系统总的电容电流为(3Un/Xco),Un为系统标称相电压,Xco为每相对地容抗。3.8单相接地故障电容电流系统中性点不接地时,发生系统单相金属性接地而流过故障点的故障电流,它在数值上等于系统的电容电流(3Un/Xco)。3.9残流中性点经消弧线圈接地系统发生单相接地故障时,经消弧线圈补偿装置补偿后流过接地点的全电流。3.10中性点不对称电压中性点不对称电压是指电力系统在中性点悬空的情况下,发电机或变压器的中性点与大地之间的电位差,该电位差主要因系统三相对地电容的不对称所致。3.11中性点位移电压当中性点接地装置投入电网后,中性点与大地之间的电位差称为中性点位移电压。中性点经消弧线圈接地时,因系统对地电容和消弧线圈电感串联的关系,中性点电位会出现显著升高;中性点经小电阻接地时,中性点电位将比中性点不对称电压有所降低;中性点不接地系统的中性点位移电压就等于中性点不对称电压。4中性点接地方式选用技术原则4.1不直接连接发电机的10kV、20kV和35kV架空线路系统(一般变电站出线电缆总长度小于1公里,其余均为架空线路的线路),当单相接地故障电容电流不超过下列数值时,应采用不接地方式;当超过下列数值,又需在接地故障条件下运行时,宜采用消弧线圈接地方式:a)10kV、20kV和35kV钢筋混凝土或金属杆塔的架空线路构成的系统,10A。b)10kV和20kV非钢筋混凝土或非金属杆塔的架空线路构成的系统,20A。4.210kV、20kV和35kV全电缆线路构成的中压配电系统,宜采用中性点经小电阻接地方式,此时不宜投入线路重合闸功能;全电缆线路构成但规模固定的系统也可以采用消弧线圈接地系统。4.310kV、20kV和35kV由电缆和架空线路构成的混合配电系统,规定如下:a)变电站每段母线单相接地故障电容电流大于100A(35kV系统为50A)时,宜采用小电阻接地方式。注:当单根电缆电容电流较大时,小电阻接地系统也可以采用加装适当补偿的方法提高继电保护灵敏度。b)当变电站单相接地故障电流中的谐波分量超过4%,且每段母线单相接地故障电容电流大于75A时宜采用小电阻接地方式。c)变电站每段母线单相接地故障电容电流小于100A(35kV系统为50A)时,宜采用消弧线圈接地系统,运行中应投入保护装置中的重合闸功能。d)系统变化不确定性较大、电容电流增长较快的主城区,无论是否全电缆系统都可以采用小电阻接地系统。4.4对于10kV、20kV纯架空线路构成的配电系统,单相接地故障电容电流小于10A时,一般应采用不接地方式;对于频繁发生断线谐振的该类配电系统,也可采用高电阻接地方式,一般中压系统中不推荐采用高电阻接地方式。4.5采用小电阻接地方式的10kV、20kV和35kV系统,杆塔接地电阻安全性校核(接触电压、跨步电压)的故障持续时间应按照后备保护动作时间考虑,一般为1.3~1.5s。4.6小电阻接地系统中架空线路应采用绝缘导线,以减少瞬时性接地故障,并应采取相应的防雷击断线措施,如装设带外间隙的避雷器、防弧线夹或架设架空屏蔽线等措施。4.7采用消弧线圈接地和电阻接地方式时,系统设备的绝缘水平宜按照中性点不接地系统的绝缘水平选择。5中性点接地装置选择和应用原则5.1消弧线圈装置的选择和应用户外安装的消弧线圈装置,应选用油浸式铜绕组,户外预装式或组合式消弧线圈装置,可选用油浸式铜绕组或干式铜绕组;户内安装的消弧线圈装置,选用干式铜绕组。消弧线圈装置应能自动跟踪系统电容电流并进行调节。自动跟踪的消弧线圈宜并联中电阻(小电阻)和相应的故障选线装置,以提高故障选线的正确性,及时隔离故障线路。消弧线圈的容量应根据系统5-10年的发展规划确定,一般按下式计算:式中:W—消弧线圈的容量,kVA;k—发展系数,取值范围1.35~1.6;Ic—当前系统单相接地电容电流,A;Un—系统标称电压,kV。自动跟踪的消弧线圈装置应满足DL/T1057《自动跟踪补偿消弧装置技术条件》的要求,另外,运行中还应满足:a)正常运行情况下,中性点位移电压不应超过系统标称相电压的15%。b)消弧线圈宜采用过补偿运行方式,经消弧线圈装置补偿后接地点残流不超过5A。c)安装消弧线圈装置的系统在接地故障消失后,故障相电压应迅速恢复至正常电压,不应发生任何线性或非线性谐振。d)调匝式消弧线圈装置的阻尼电阻值应有一定的调节范围,以适应系统对称度发生变化时,不应误发系统接地信号或发生线性串联谐振。阻尼电阻的投入和退出应采用不需要分合闸信号和电源的电力电子设备,禁止使用需要分合闸电源的接触器等设备。阻尼电阻的投入和退出不应人为的设置动作时延。e)消弧线圈装置本身不应产生谐波或放大系统的谐波,影响接地电弧的熄灭。在某些运行方式下,调容式消弧线圈会放大系统的谐波电流,一般不推荐采用(调容和调匝相结合的消弧线圈除外)。f)消弧线圈装置的控制设备应具有良好的抗电磁干扰水平,一般应达到3级。消弧线圈装置的控制系统允许瞬时出现死机现象,但应能迅速自行恢复。g)消弧线圈装置应采用带录波系统和通用网络接口,以便于故障分析和远方调用消弧线圈装置的动作信息。5.2中性点电阻装置的选择和应用接地电阻装置电阻值的选择应综合考虑继电保护技术要求、故障电流对电气设备和通信的影响,以及对系统供电可靠性、人身安全的影响等。电阻值的选择应限制金属性单相接地短路电流为300-600A。中性点电阻值选择范围如下:10kV系统,10-20欧姆;20kV系统,20-40欧姆;35kV系统,35-70欧姆。中性点接地电阻装置应满足DL/T780《配电系统中性点接地电阻器》的要求,另外,在选择和运行中还应满足:a)电阻装置应采用不锈合金钢型电阻器,电阻器的热容量应考虑继电保护后备保护的动作时间以及断路器的动作时间并留有一定的裕度。一般选择热稳定时间10秒钟,温升应不超过760K;计算电阻器长期通流值的电压取值按照中性点位移电压不超过系统标称相电压的10%选取,电阻器的长时间运行温升应不超过380K。电阻器中固定电阻用的夹件和支撑件均应能耐受相应的温度。b)电阻器材料的温度系数应不超过/℃,接地故障发生时电阻器的阻值升高应保证重合闸时,继电保护仍有足够的灵敏度。10秒温升试验中,达到温升限值时电阻器电流衰减值不应超过初始电流的20%。c)接地电阻装置绝缘水平应按照相应电压等级的要求选择。d)接地电阻回路中宜增加中性点电流监测或接地电阻温升检测装置。5.3接地变压器的选用对于无中性点引出的10kV、20kV和35kV系统,应安装接地变压器,接地变压器应采用Z型接线变压器。其容量按配电变压器容量(kVA)优先数选取,一般为30,50,80,100,125,160,200,250,315,400,500,630,…。接地变压器三相零序阻抗不宜大于表1数据,消弧线圈装置在测量系统电容电流时应计及该阻抗。表1不同电压等级接地变零序阻抗数值10kV20kV35kV零序阻抗(Ω)510305.3.1消弧线圈系统用接地变压器消弧线圈用接地变压器一般通过断路器接入母线,应采用三相同时分合的开关设备,不应采用隔离开关-单相熔丝组合作为接地变压器投切和保护设备。消弧线圈用的接地变压器,不兼做所用变压器时,其容量按消弧线圈的容量选取;兼做所用变压器时,接地变压器容量按照以下公式计算:其中S1为系统电容电流对应的容量;S2变电所用电负荷容量。5.3.2电阻接地系统用接地变压器5.3.2.1中性点电阻接地系统用接地变压器安装位置a)接地变压器通过隔离开关接至主变压器次级首端,与主变同时投入或退出运行,不应兼做所用变压器。接地变压器全回路处于主变压器的差动保护范围内,线路和母线发生接地故障时,主变压器回路和接地变压器回路的CT均有零序电流流过,主变压器差动保护应剔除或躲过该部分的零序电流。由于接地变压器为Z型接线,其高压侧电流互感器的二次回路的接线方式应与之相配合。一般,小电阻接地系统推荐接地变压器通过隔离开关接至主变压器次级首端。b)接地变压器通过断路器接至母线,可以兼做所用变压器。线路和母线发生接地故障时,主变压器回路的CT无零序电流流过,只有接地变压器、小电阻和线路CT(线路故障时)有零序电流流过,接地变压器零序保护可以作线路故障后备保护。开关、母线等裸露的带电部分应采用热塑材料加以封闭以尽量减少这部分设备的故障可能性。5.3.2.2电阻接地系统接地变压器容量的选取小电阻接地系统用接地变压器不兼作所用变压器时,容量按接地故障时流过接地变压器电流对应容量的1/10选取;接地变压器兼作所用变压器时,其容量还应加上所用负荷容量。5.4电流互感器的选用消弧线圈接地系统的电流互感器一般应接在消弧线圈和地之间;小电阻接地系统的电流互感器,可以根据需要,接在电阻器和地之间或者接在中性点和电阻器之间。a)消弧线圈接地系统的电流互感器按照常规配置,采用带并联中电阻的消弧线圈系统宜在每路出线安装零序电流互感器。额定电流和变比按照电阻投入时线路发生金属性接地的电流选取,并留有一定的裕度。b)小电阻接地系统宜在每路出线安装伏安特性良好的零序电流互感器。c)消弧线圈装置和电阻装置用电流互感器的绝缘水平视安装位置的不同而不同,直接接在固定的接地点端的可以选用低压电流互感器;通过其他设备接到固定接地端的应采用与消弧线圈或电阻装置相同电压等级的电流互感器。2-小电流接地选线参考:国家电网企业标准Q/GDW-369-2009
『贰』 小电阻+Z型接地变成套装置能达到什么功能有什么
小电阻+接地变成套装置,也称接地变及接地电阻成套装置,将零散的DKSC干式接地变、ENR-NGR电阻器版、隔离开关、ENR-DZK智能权监控。电流互感器等电气设备整体组合在一个封闭的金属柜内,成套供货,安全可靠性高,便于操作维护。其中干式接地变绕组材料采用铜导体,电阻器采用优质不锈钢电热合金材质,通流能力强,耐高温,耐腐蚀,韧性好不变形,可靠性高。成套装置适用于系统中性点采用小电阻接地场合,当电网出现单相接地时,接地电阻向接地点注入阻性电流,使接地电流呈阻容性质,从而保证产生的过电压不超过2.6倍的相电压,防止过电压损坏主设备,同时对铁磁谐振过电压有显著作用。
『叁』 间隙接地到底算什么接地算直接接地还是小电阻接地
作为一个单独的间隙接地是不接地系统,在正常运行期间实际上间隙时无法达到接地目的的。间隙仅仅是对电源中心点绝缘的过电压保护措施,一旦中心点出现高电压,首先间隙被击穿,从而使电源中心点得到保护。而实际运行中,根据电网的需要,往往要求将中心点直接接地的110、220kV的电源变压器,在其中心点设置直接接地装置的同时,再并联一个由避雷器和放电间隙组成的不接地装置,根据电网调度对于系统零序电流控制的需要,确定此中心点是直接接地,还是间隙接地。此种情况下,使用了间隙接地的系统仍然时中心点直接接地系统,因为这种系统的其他电源中心点都是接地的
『肆』 接地电阻测试仪的作用是什么
最初人们对接地电阻的测量是用伏安法,这种实验是非常原始的。用安培计、伏特计的测量方法,在测定电阻时须先估计电流的大小,选出适当截面的绝缘导线,在预备实验时可利用可变电阻R调整电流,当正式测定时,则将可变电阻短路,由安培计和伏特计所得的数值可以算出接地电阻。
伏安法测量地阻有明显不足之处,烦琐、工作量大。试验时,接地棒距离地极为20~50m,而辅助接地距离接地至少40~100m。另外受外界干扰影响极大,在强电压区域内有时简直无法测量。
20世纪五六十年代前苏联的E型摇表代替了伏安法,携带方便,又是手摇发电机,因此工作量比伏安法简单。
20世纪70年代国产接地电阻仪问世,如:ZC-28,ZC-29,无论在结构、体积、重量、测量范围、分度值、准确性,都要胜于“E”型摇表。因此,相当一段时间内接地电阻仪都以上海六表厂生产的ZC系列为典型代表。上述仪器由于手摇发电机的关系,精度也不高。
20世纪80年代数字接地电阻仪的投入使用给接地电阻测试带来了生机,虽然测试的接线方式同ZC系列没什么两样,但是其稳定性远比摇表指针式高得多。
而真正接地电阻仪的一个创举是在20世纪90年代钳口式地阻仪的诞生,它打破了传统式测试方法。如福禄克公司生产的GEO30钳式接地电阻测试,其最大特点是不必辅助地棒,只要钳住接地线或接地棒就能测出其接地电阻。上述地阻测试仪属单钳口形式,具有的快速测试、操作简单等优点,但也存在精度不高的缺点,特别是接地电阻在小于0.7Ω以下,无法分辨。单钳口式地阻仪主要用于检查在地面上相连的多电极接地网络,通过环路地阻查询各接地电阻测量。华天电力的ETCR2000双钳口接地电阻仪测量范围和精度相比GEO30均有所提高,比较完善地结合了传统伏安法测量的特点与钳口法新技术原理,再运用先进的计算机控制技术,从而成为当代首屈一指的智能型接地电阻测量仪。它具有精度高,功能齐全,操作简便的特点,可广泛应用于电力电信系统、建筑大楼、机场、铁路、油槽、避雷装置、高压铁塔等接地电阻测量。目前在国内邮电、电力、航空等行业都进行了配置。
回复者:华天电力
『伍』 接地电阻的作用及工作原理是什么
接地电阻的作用是防止电力或电子等设备遭雷击而采取的保护性措施。工作原理是电流由接地装置流入大地再经大地流向另一接地体或向远处扩散所遇到的电阻,把雷电产生的雷击电流通过避雷针引入到大地。
接地也是保护人身安全的一种有效手段,当某种原因引起的相线(如电线绝缘不良,线路老化等)和设备外壳碰触时,设备的外壳就会有危险电压产生,由此生成的电流就会经保护地线到大地,从而起到人身安全保护作用。
接地电阻就是用来衡量接地状态是否良好的一个重要参数,是电流由接地装置流入大地再经大地流向另一接地体或向远处扩散所遇到的电阻,它包括接地线和接地体本身的电阻、接地体与大地的电阻之间的接触电阻,以及两接地体之间大地的电阻或接地体到无限远处的大地电阻。
接地电阻大小直接体现了电气装置与“地”接触的良好程度,也反映了接地网的规模。
接地电阻的概念只适用于小型接地网;随着接地网占地面积的加大以及土壤电阻率的降低,接地阻抗中感性分量的作用越来越大,大型地网应采用接地阻抗设计。
(5)小电阻接地装置作用扩展阅读
影响接地电阻的因素很多:接地极的大小(长度、粗细)、形状、数量、埋设深度、周围地理环境(如平地、沟渠、坡地是不同的)、土壤湿度、质地等等。为了保证设备的良好接地,利用仪表对接地电阻进行测量是必不可少的。
接地电阻的测量方法可分为:电压电流表法、比率计法和电桥法。按具体测量仪器及布极数可分为:手摇式地阻表法、钳形地阻表法、电压电流表法、三极法和四极法。
在测接地电阻时,有些因素造成接地电阻不准确:
(1)地网周边土壤构成不一致,地质不一,紧密、干湿程度不一样,具有分散性,地表面杂散电流、特别是架空地线、地下水管、电缆外皮等等,对测试影响特别大。解决的方法:取不同的点进行测量,取平均值。
(2)测试线方向不对,距离不够长。解决的方法:找准测试方向和距离。
(3)辅助接地极电阻过大。解决的方法:在地桩处泼水或使用降阻剂降低电流极的接地电阻。
『陆』 为什么接地装置接地电阻越小越好,越小的话
接地电阻越小,说明与与大地连接可靠,如果接地电阻无限大,那就起不到接地的作用。
『柒』 变压器中性点直接接地与经小电阻接地的区别
区别是:
1、接地方式不同。
(1)中性点经电阻接地就是在电网中性点与地之间串联接入某一电阻器。
(2)中性点直接接地系统,也称大接地电流系统。直接与大地接触。
2、接地方式不同。单相接的时候,对设备的绝缘要求会更低。
(1)采用中性点经直接接地的方式,在系统故障时,利用消弧线圈的电感电流对接地电容电流进行补偿,使流过接地点电流减小到自行熄灭的范围,可带故障运行2小时。
(2)在中性点经电阻接地方式中,电阻值一般较小,在系统单相接地时,控制流过接地点的电流在500A左右,可有的控制在100A左右,通过接地电流来启动零序保护动作,切出故障线路。
(7)小电阻接地装置作用扩展阅读:
中性点接地方式涉及电网的安全可靠性、经济性;同时直接影响系统设备绝缘水平的选择、过电压水平及继电保护方式、通讯干扰等。
一般来说,电网中性点接地方式也就是变电所中变压器的各级电压中性点接地方式。
适当选择所接电阻器的阻值,不仅可以泄放单相接地电弧后半波的能量,从而减少电弧重燃的可能性,抑制电网过电压的辐值。
还可以提高继电保护装置的灵敏度以作用于跳闸,从而有效保护系统正常运行。
中性点接地方式有:中性点直接接地、中性点不接地、中性点经消弧线圈接地(谐振接地)、中性点经电阻接地这四种方式。
参考来源:
网络-中性点接地
网络-中性点接地电阻柜
『捌』 中性点经小电阻接地和经消弧线圈接地的区别
小电流接地系统中发生单相接地故障时,接地点将通过接地故障线路对应电压等级电网的全部对地电容电流。如果此电容电流相当大,就会在接地点产生间歇性电弧,引起过电压,使非故障相对地电压有较大增加。在电弧接地过电压的作用下,可能导致绝缘损坏,造成两点或多点的接地短路,使事故扩大。
『玖』 中性点经小电阻接地的好处是什么什么场合采用小电阻接地小电阻接地成套装置由哪些部件组成
三个问题,如下详细回答。
『拾』 中性点小电阻接地和直接接地的本质区别是什么用小电阻接地方式的能不能改用直接接地方式
准确讲,是中性点阻抗接地改为直接接地。
对于直接接地而言,被接地点与地之间的阻抗越小越好。与直接接地不同的是,阻抗接地系统中一个或多个被接地点通过具有一定阻抗(通常较大)的装置(如电感)接地,限制接地电流。
采用阻抗接地的系统,不宜改为直接接地。