A. 气力输送装置的气力输送装置设计计算
①原始资料收集
②设计程序
③计算和确定有关参数
④系统压力损失的计算
a.主要参数
悬浮速内度:悬浮速度集中反映了被容输送物料的主要物理特性,是在气力输送计算中具有实用意义的原始数据。悬浮速度常通过试验测定。计算时可查有关设计手册。
气流输送速度:气力输送速度关系到装置运转性能的好坏和经济性。针对不同物料,均存在有一个最适宜的输送气流速度值,即“经济速度”或“安全速度”。
“安全速度”很难用计算求得,一般由试验确定。
B. 低气压的气力输送装置
低压气力吸送装置(也称负压吸送设备)用于负压气流输送散装固体物料的场合,主要在输送距离近和不允许产生粉尘的环境上使用,如收尘输送系统,饲料输送和食品加工行业的干燥输送系统等.
低压气力吸送装置具有设备简单可靠,可输送用压送式难以供料的物料如垃圾,木片,细长纤维等,可实现由数处向单一处集中输送并具有一定的混合功能。低压气力吸送装置由接受罐,过滤装置和风机组成,通过低压风机将物料吸进接受罐,气体经过滤后排出,物料则落入接受斗中,它属于稀相气力输送过程,输送距离近(<30米),气固比低(<1),输送能力小(<5吨/小时)。询价时请注明物料名称,能力,粒度,使用条件(压力和温度)等。
C. 设计一套装置将废旧汽车压扁,减少空间以便于回收
总之,废旧汽车的回收与利用是节约资源,降低成本,...没有一定的规模和适度的利润空间,就无法保证废旧...压扁:用压扁机将废旧汽车压扁,使之便于运输剪切...
D. 一、设计题目:带式运输传动装置设计
带式运输传动装置设计要原创吗,我可为您操作.
E. 设计带式输送机传动装置
下面是解题步骤,将其中的力,速度,直径数值给换一下就行了,其他数据不用变
(1)工作轴需要功率
Pe =F*V=8×1.4=11.2KW
(2)电机所需的工作功率:
P工作=Pe/η0
=11.2/×0.8692
=12.8854KW
选择电动机额定功率 13KW
其中η0=η带×η2轴承×η齿轮×η联轴器×ηw
=0.96×0.992×0.97×0.992×0.96
=0.8962
3、确定电动机转速:
滚筒工作转速:
n筒=60×1000V/πD
=60×1000×1.4/π×400
=66.8451r/min
计算各轴的功率(KW)
P0=P工作=12.8854KW
PI=P0×η1=12.8854×0.96=12.3700KW
PII=PI×η轴承×η齿轮=12.3700×0.99×0.97
=11.8789KW
带式运输机P= PII×η联轴器=11.8789×0.992=11.7839kw
计算各轴转速(r/min)
N0= =970r/min
nI=n0/i带=970/4.8371=200.5334(r/min)
nII=nI/i齿轮=200.5334/3=66.8445(r/min)
运输机轴n= nII=66.8445(r/min)
计算各轴扭矩(N
F. 气力输送,风机,管径等应如何选择和设计
1.你的这种设计难度大,气力输送机械对固体物料的输送是利用高速气流对扬起的固体物内料产生的后推力容来实现的,高速气流在支管处产生的负压只对物料产生拉力,而支管所连接盛装物料容器通常是封闭的,因此在这个物料容器的两端不可能产生压差,从而也就失去了物料输送的动力.
2.即便通用过你的考虑设计出了一种能让这种两头相通的容器,这时动力有了也未必能将固体物料吸推入风管,因为固体物料在进入气力输送系统的过程中必须是流化和离散的.
3.建议你的固体物料从上方导入风管,这时固体物料在重力作用下均匀而离散化的进入风管从而为固体物料的流化输送创造条件,你的固体物料就可以借助风力送至所需要的地方
4.风管的尺寸应根据你风机的风量的大小和输送距离的远近来确定,通常风量越大所送物料量越大,所以风量的大小是根据你输送物料量的大小来确定,至于风管的长度则取决于输送物料的距离.
5.风机的选型应根据风机的全压和风量来确定,通常所送距离越远,压降越大,所需风机的全压越高.风机的材料则取决于所送气体介质的温度和腐蚀性,若用常温下的空气做介质则对材料没有特殊的要求.
答案创立者
G. 设计带式运输机传动装置
目 录一、 传动方案拟定-------------------------二、 电动机的选择-------------------------三、 各轴运动的总传动比并分配各级传动比---四、 运动参数及动力参数计算----------------五、 V带传动设计---------------------------六、 齿轮传动设计-------------------------七、 轴的设计-----------------------------八、 滚动轴承的选择及校核计算-------------九、 键的校核计算--------------------- 十、 联轴器的选择--------------------------十一、 润滑与密封 ---------------------------十二、 减速器附件的选择及简要说明----------------十三、 箱体主要结构尺寸的计算--------------------十四 参考文献一、传动方案拟定第四个数据:设计带式输送机传动装置中的一级圆柱齿轮减速器1、 工作条件:使用年限5年,每年按300天计算,两班制工作,单向运转,载荷平稳。2、 原始数据:滚筒圆周力F=2.5KN;带速V=1.5m/s;滚筒直径D=300mm。 运动简图 二、电动机的选择1、电动机类型和结构型式的选择:按已知的工作要求和 条件,选用 Y系列三相异步电动机。2、确定电动机的功率:(1)传动装置的总效率:η总=η带×η2轴承×η齿轮×η联轴器×η滚筒=0.96×0.992×0.97×0.98×0.96=0.859(2)电机所需的工作功率:Pd=FV/1000η总=2500×1.5/(1000×0.859) =4.37KW(3)选用电动机查JB/T9616 1999选用Y132M2-6三相异步电动机,主要参数如下表1-2: 型 号额定功率KW转速r/min电流A效率%功率因数堵转电流额定电流堵转扭矩额定转矩最大转矩额定转矩Y132M2-6 5.5 960 12.6 85.3 0.78 6.5 2.0 2.2三、各轴运动的总传动比并分配各级传动比1、总传动比:工作机的转速 n筒=60×1000V/(πD)=60×1000×1.5/(4.14×300)=95.49r/mini总=n电动/n筒=960/95.49=10.052、分配各级传动比(1) 取i带=2.5(2) ∵i总=i齿×i 带∴i齿=i总/i带=10.05/2.5=4.02 四、运动参数及动力参数计算1、计算各轴转速(r/min)n电=960(r/min) nI=n电/i带=960/2.5=384(r/min)nII=nI/i齿=384/4.02=95.52(r/min)n筒=nII=95.52 (r/min)2、 计算各轴的功率(KW) P电= Pd=4.37KWPI=Pd×η带=4.73×0.96=4.20KW PII=PI×η轴承×η齿轮=4.2×0.99×0.97=4.03KWP筒=PI×η轴承×η联轴器=4.03×0.99×0.98=3.91KW3、 计算各轴转矩T电=9.55Pd/nm=9550×4.73/960=43.47N·mTI=9.55 PI /n1 =9550×4.2/384=104.45N·mTII =9.55 PII /n2=9550×4.03/95.52=402.92N·m T筒=9.55 P筒/n筒=9550×3.91/95.52=390.92 N·m将上述数据列表如下: 轴名参数 电动机I轴II轴滚筒轴转速n(r/min)96038495.5295.52功率p(kw)4.374.204.033.91转矩T(N·m)43.47104.45402.92390.92传动比i2.54.021.00效率η0.960.960.98 五、V带传动设计1、 选择普通V带截型由课本[1]表15-8得:kA=1.2 P电=4.37KWPC=KAP电=1.2×4.37=5.24KW据PC=5.24KW和n电=960r/min由[1]图15-8得:选用A型V带2、 确定小带轮基准直径由课本[1]表15-8,表15-4,表15-6,取dd1=112mm3、 确定大带轮基准直径 dd2=i带=2.5×112=280 mm4、验算带速带速V:V=πdd1n1/(60×1000)=π×112×960/(60×1000) =5.63m/s在5~25m/s范围内,带速合适5、初定中心距a0 0.7(dd1+ dd2)≤ a0 ≤ 2(dd1+ dd2)得 274.4≤a0≤784取a0=530 mm6、确定带的基准长L0=2a0+π(dd1+dd2)/2+(dd2-dd1)2/4a0=2×530+3.14(112+280)+(280-112)2/(4×530)=1689mm根据课本[1]表15-2选取相近的Ld=1800mm7、确定实际中心距aa≈a0+(Ld-Ld0)/2=530+(1800-1689)/2=585.5mm8、验算小带轮包角α1=180°-57.3° ×(dd2-dd1)/a=180°-57.3°×(280-112)/585.5=163.33°>120°(适用)9、确定带的根数单根V带传递的额定功率.据dd1和n1,查课本[1]表15-7得 P0=1.16KWi≠1时单根V带的额定功率增量.据带型及i查[1]表15-9得 △P0=0.11KW查[1]表15-10,得Kα=0.957;查[1]表15-12得 KL=1.01Z=PC/[(P1+△P1)KαKL]=5.24/[(1.16+0.11) ×0.957×1.01]=4.27 取Z=5根10、计算轴上压力由课本[1]表15-1查得q=0.11kg/m,单根V带的初拉力:F0=500PC/ZV(2.5/Kα-1)+qV2=500x5.24/5x5.63(2.5/0.957-1)+0.11x5.632 =153.55kN则作用在轴承的压力FQFQ=2ZF0sin(α1/2)=2×5×153.55sin(163.55°/2)=1519.7N11、计算带轮的宽度BB=(Z-1)e+2f=(5-1)×15+2×10=80 mm六、齿轮传动设计(1)选择齿轮材料与热处理:所设计齿轮传动属于闭式传动,通常齿轮采用软齿面。选用价格便宜便于制造的材料,小齿轮材料为45钢,调质,齿面硬度229-286HBW;大齿轮材料也为45钢,正火处理,硬度为169-217HBW;精度等级:运输机是一般机器,速度不高,故选8级精度(2)按齿面接触疲劳强度设计该传动为闭式软齿面,主要失效形式为疲劳点蚀,故按齿面接触疲劳强度设计,再按齿根弯曲疲劳强度校核。设计公式为:d1≥ [(2k TI (u+1)(ZhZe)2/(φ[σH]2)]1/3①载荷系数K 查课本[1]表13-8 K=1.2 ②转矩TI TI=104450N·mm ③解除疲劳许用应力[σH] =σHlim ZN/SH按齿面硬度中间值查[1]图13-32 σHlim1=600Mpa σHlim2=550Mpa接触疲劳寿命系数Zn:按一年300个工作日,每天16h计算,由公式N=60njtn 计算N1=60×384×5×300×16=5.53x108N2=N1/i齿=5.53x109 /4.02=1.38×108查[1]课本图13-34中曲线1,得 ZN1=1.05 ZN2=1.1按一般可靠度要求选取安全系数SH=1.0[σH]1=σHlim1ZN1/Shmin=600x1.05/1=630 Mpa[σH]2=σHlim2ZN2/Shmin=550x1.1/1=605Mpa故得:[σH]= 605Mpa④计算小齿轮分度圆直径d1由[1]课本表13-9 按齿轮相对轴承对称布置,取 φd=1.0 ZH=2.5由[1]课本表13-10得ZE=189.8(N/mm2)1/2将上述参数代入下式d1≥ [(2k TI (u+1)(ZHZE)2/φ[σH]2)]1/3=[(2×1.2×104450 × (4.02+1)×(2.5×189.8)2/(1×4.02×6052)]1/3=57.5mm 取d1=60 mm⑤计算圆周速度V= nIπd1/(60×1000)=384×3.14×60/(60×1000)=1.21m/sV<6m/s 故取8级精度合适(3)确定主要参数①齿数 取Z1=24 Z2=Z1×i齿=24×4.02≈96.48=97②模数 m=d1/Z1=60/24=2.5 符合标准模数第一系列③分度圆直径d2=Z2 m=24×2.5=60mm d2=Z2 m=97×2.5=242.5 mm④中心距a=(d1+ d2)/2=(60+242.5)/2=151.25mm⑤齿宽 b=φdd1=1.0×60=60mm 取b2=60mm b1=b2+5 mm=65 mm(4)校核齿根弯曲疲劳强度①齿形因数Yfs 查[1]课本图13-30 Yfs1=4.26 Yfs2=3.97 ②许用弯曲应力[σF] [σF]=σFlim YN/SF 由课本[1]图13-31 按齿面硬度中间值得σFlim1=240Mpa σFlim2 =220Mpa 由课本[1]图13-33 得弯曲疲劳寿命系数YN:YN1=1 YN2=1 按一般可靠性要求,取弯曲疲劳安全系数SF=1 计算得弯曲疲劳许用应力为[σF1]=σFlim1 YN1/SF=240×1/1=240Mpa[σF2]= σFlim2 YN2/SF =220×1/1=220Mpa校核计算 σF1=2kT1YFS1/ (b1md1)=2×1.2×104450×4.26/(60×2.5×60)=118.66Mpa< [σF1]σF2=2kT1YFS2/ (b2md1)=118.66×3.97/4.26=110.58Mpa< [σF2]故轮齿齿根弯曲疲劳强度足够(5)齿轮的几何尺寸计算 齿顶圆直径dada1 =d1+2ha=60+5=65mmda2=d2+ ha=242.5+5=247.5mm 齿全高h h=(2 ha*+c*)m=(2+0.25)×2.5=5.625 mm 齿根高hf=(ha*+c*)m=1.25×2.5=3.125mm 齿顶高ha= ha*m = 1×2.5=2.5mm 齿根圆直径dfdf1=d1-2hf=60-6.25=53.75mmdf2=d2-2hf=242.5-6.25=236.25mm (6)齿轮的结构设计小齿轮采用齿轮轴结构,大齿轮采用锻造毛坯的腹板式结构。大齿轮的有关尺寸计算如下:轴孔直径d=60mm轮毂直径D1=1.6d=60×1.6=96mm轮毂长度L=1.2d=1.2×60=72mm轮缘厚度δ0=(3-4)m=7.5-10mm 取δ0=10mm轮缘内径D2=da2-2h-2δ0=247.5-2×5.625-20=216.25 mm 取D2 =216mm腹板厚度C=(0.2-0.3)b=12-18mm取C=18mm腹板中心孔直径D0=0.5(D1+D2)=0.5(96+216)=156mm腹板孔直径d0=15-25mm 取d0=20mm齿轮倒角取C2七、轴的设计 从动轴设计 1、选择轴的材料 确定许用应力 选轴的材料为45号钢,调质处理。查[1]表19-14可知:σb=600Mpa,查[1]表19-17可知:[σb] -1=55Mpa 2、按扭矩估算轴的最小直径 单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,从结构要求考虑,输出端轴径应最小,最小直径为: d≥A(PⅡ/nⅡ)1/3 查[1]表19-16 A=115 则d≥115×(4.03/95.52)1/3mm=40mm 考虑键槽的影响,故应将轴径增大5%即d=40×1.05=42mm 要选联轴器的转矩Tc Tc=KTⅡ=1.5×402920=6.0438×105N·mm (查[1]表20-1 工况系数K=1.5) 查[2]附录6 选用连轴器型号为YLD10考虑联轴器孔径系列标准 故取d=45mm 3、轴的结构设计 轴结构设计时,需要考虑轴系中相配零件的尺寸以及轴上零件的固定方式,按比例绘制轴系结构草图。 1)联轴器的选择 联轴器的型号为YLD10联轴器:45×112 (2)确定轴上零件的位置与固定方式 单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置。在齿轮两边。轴外伸端安装联轴器,齿轮靠轴环和挡油环实现轴向定位和固定,靠平键和过盈配合实现周向固定,两端轴承靠挡油环和端轴承盖实现轴向定位,靠过盈配合实现周向固定,联轴器靠轴肩平键和过盈配合分别实现轴向定位和周向定位。 (3)确定各段轴的直径将估算轴d=45mm作为外伸端直径d1与联轴器相配(如图),考虑联轴器用轴肩实现轴向定位,取第二段直径为d2=50mm,齿轮和右端轴承从右侧装入,考虑装拆方便以及零件固定的要求,装轴处d3应大于d2,取d3=55mm,为便于齿轮装拆与齿轮配合处轴径d4应大于d3,取d4=60mm。齿轮左端用轴环固定,右端用挡油环定位,轴环直径d5满足齿轮定位的同时,还应满足左侧轴承的安装要求,d5=68mm,根据选定轴承型号确定.左端轴承型号与左端轴承相同,取d6=55mm. (4)选择轴承型号由[2]附表5-1初选深沟球轴承,代号为6211,轴承宽度B=21。 (5)确定轴各段直径和长度由草绘图得Ⅰ段:d1=45mm 长度L1=110mmII段:d2=50mm 长度L2=60mmIII段:d3=55mm 长度L3=43mmⅣ段:d4=60mm 长度L4=70mmⅤ段:d5=68mm 长度L5=6mmⅦ段:d4=55mm 长度L6=35mm由上述轴各段长度可算得轴支承跨距L=133mm4、按弯矩复合强度校核(1)齿轮上作用力的计算 齿轮所受的转矩:T=TⅡ=402.92N·m 齿轮作用力: 圆周力:Ft=2000T/d=2000×402.92/242.5=3323.1N 径向力:Fr=Fttan200=3323.1×tan200=1209.5N(2)因为该轴两轴承对称,所以:LA=LB=66.5mm(3)绘制轴受力简图(如图a)(4)计算支承反力 FHA=FHB=Fr/2=1209.5/2=604.8NFVA=FVB=Ft/2=3323.1/2=1661.5N (5)绘制弯矩图由两边对称,知截面C的弯矩也对称。截面C在水平面弯矩(如图b)为MHC=FHAL/2=604.8×133÷2000=40.22N?m截面C在竖直面上弯矩(如图c)为:MVC=FVAL/2=1661.5×133÷2000=110.49N?m(6)绘制合弯矩图(如图d)MC=(MHC 2+ MVC 2)1/2=(40.222+110.492)1/2=117.58N?m(7)绘制扭矩图(如图e)转矩:T=TⅡ=402.92N·m(8)校核轴的强度转矩产生的扭剪可认为按脉动循环变化,取α=0.6,截面C处的当量弯矩:Mec=[MC2+(αT)2]1/2=[117.582+(0.6×402.92)2]1/2=268.8N·m(9)校核危险截面C所需的直径de=[Me /(0.1[σb] -1)]1/3=[268.8 /(0.1×55)]1/3=36.6mm考虑键槽的影响,故应将轴径增大5%de=36.6×1.05=38.4mm<60mm结论:该轴强度足够。
H. 气流输送流程有几种方式请比较它们的优缺点
分类主要分为:正压和负压
正压:主要利用空压机或罗茨风机作为气源,按物料浓度分为密相输送和稀相输送
负压:利用真空泵进行真空吸附
粉料气力输送系统的优点:
1) 输送效率高;
2) 物料在整个输送过程中完全封闭, 因而极大的改善了工作条件, 而且可避免物料在整个输送过程中吸湿、 被污损或混入其他杂质, 从而保证了被输送物料的质量, 使物料输送过程免受外界环境干扰;
3) 设备简单, 结构紧凑, 工艺布置灵活, 占地面积较小, 选择布置输送线路容易;
4) 整个系统易于实现自动化控制;
5) 综合成本低, 经济效益好;
6) 可极大的减少工人劳动强度。
粉料气力输送系统的缺点:
1) 与其他散状固体物料输送设备相比气力输送系统的动力消耗费较高(系指机械输送系统输送每吨物料所需的垃高功率);
2) 气力输送系统仅能输送较干燥、 粒度小、 粘度小的物料。 一般, 如果最终产品不允许破碎, 则易于碎裂的产品不适合采用气力输送。 除非是特殊设计的设备, 否则易吸湿及易结块的物料也不适宜用气力输送系统输送。 易氧化的物料不适宜用空气输送, 但可采用惰性气体来代替空气进行输送;
3) 管道、 通风机及其他元件与物料接触极易磨蚀、 损坏;
4) 输送距离受限制。 至目前为止, 气力输送系统只能输送较短的距离, 一般水平距离小于 3000 米;
5) 物料特性的微小变化(如堆积密度, 颗粒大小分布、 硬度、 休止角、 磨琢性都能引起爆炸的潜在危险)都能引起操作上的困难。
I. 设计一带式运输机的传动装置,两班制,使用年限10年,连续单向运转,载荷平稳,小批量生产。
电机带减速机传动啊~可以调速,还节能,速度要求稳定的话可以采用闭环控制