㈠ 高中化学实验室事故的预防和处理越全面越好,包括防倒吸装置的图和原理
1、.药剂取用
(1)使用仪器:
固(块状)镊子(粉状)角匙, 液 量筒,滴管,滴定管
取用方法:固 一横二放三慢竖 ,液 倾倒 口对口标签对手心,滴加 滴管洁净,吸液不太多,竖直悬滴
(2)定量取用仪器:用 天平量筒,不定量用最少量为 液1-2ml 固铺满试管底
(3)取完后 盖上盖子,放回原处 用剩药品 不可放回原处(白磷、金属钠钾除外)
(4)特殊试剂取用
白磷:用镊子夹住白磷,用在小刀水下切割
金属钠钾:用镊子取出后,用滤纸吸去煤油,放在玻璃片上用小刀切割黄豆或绿豆大小
取用试剂不能 用手接触药品 不能 直闻气味 不能 尝味道
2、仪器洗涤
基本方法:先注入少量水,振荡倒掉,冲洗外壁,若仍有污迹,刷洗或用洗涤液处理。最后用蒸馏水冲洗。
洗净的标准:内壁均匀附着一层水膜,不聚成水滴,不凝成股
仪器洗涤的方法:根据仪器沾有污痕的性质,选择适当的试剂溶解而除去。常用的有:酸洗、碱洗、氧化剂洗、溶剂洗等。
特殊污迹的洗涤举例:
(1)内有油脂的试管 NaOH溶液 或洗衣粉或汽油
(2)附有银镜的试管 HNO3溶液
(3)还原CuO后的试管 硝酸
(4)粘有硫磺、白磷、碘的试管 CS2
(5)久置KMnO4溶液的试剂瓶 浓盐酸
(6)熔化硫的试管 NaOH溶液或CS2
(7)久置石灰水的试剂瓶 盐酸
(8)熔化苯酚的试管 酒精或NaOH溶液
(9)盛放乙酸乙酯的试管 NaOH溶液 酒精
(10)做过Cl—,Br—检验的试管 氨水
3、试纸的使用
常用试纸及用途:
红色石蕊试纸 测试碱性试剂或气体
蓝色石蕊试纸 测试酸性试剂或气体
KI淀粉试纸 测试氧化性气体
PH试纸 测试溶液酸碱性
使用方法:检验溶液 取试纸放在表面皿上,玻棒蘸取液体,沾在试纸中心,观察颜色的变化,判断溶液的性质。
检验气体 用镊子夹取或粘在玻璃棒的一端,先用水湿润,再放在气体中,观察试纸的颜色变化情况来判断气体的性质。
试纸的种类很多。常用的有红色石蕊试纸、蓝色石蕊试纸、PH试纸、淀粉碘化钾试纸和品红试纸等。
注意:使用PH试纸不能用蒸馏水润湿。
4、溶液的配制
(l)配制溶质质量分数一定的溶液
计算:
称量:
溶解:
(2)配制一定物质的量浓度的溶液
计算:
称量
溶解:将固体或液体溶质倒入烧杯中,加入适量的蒸馏水(约为所配溶液体积的1/6),用玻璃棒搅拌使之溶解,冷却到室温后,将溶液引流注入容量瓶里。
洗涤(转移):用适量蒸馏水将烧杯及玻璃棒洗涤2-3次,将洗涤液注入容量瓶。振荡,使溶液混合均匀。
定容:继续往容量瓶中小心地加水,直到液面接近刻度2-3m处,改用胶头滴管加水,使溶液凹面恰
好与刻度相切。把容量瓶盖紧,再振荡摇匀。
5.过滤 过滤是除去溶液里混有不溶于溶剂的杂质的方法。
(1)仪器 漏斗 烧杯 铁架台 玻棒 (滤纸)
(2)过滤时应注意:
a、一贴二低三靠
①一贴:将滤纸折叠好放入漏斗,加少量蒸馏水润湿,使滤纸紧贴漏斗内壁。
②二低:滤纸边缘应略低于漏斗边缘,加入漏斗中液体的液面应略低于滤纸的边缘。
③三靠:向漏斗中倾倒液体时,烧杯的夹嘴应与玻璃棒接触;玻璃棒的底端应和过滤器有三层滤纸处轻轻接触;漏斗颈的末端应与接受器的内壁相接触,例如用过滤法除去粗食盐中少量的泥沙。
b、若要得到纯净的沉淀或需称量沉淀的质量,则需对沉淀进行洗涤:洗涤的原因是洗去沉淀表面的可溶性物质;洗涤的方法是:用蒸馏水浸洗滤纸上的固体,待流完后,重复若干次,直至洗净。
c、沉淀是否洗净的检查:(检验溶液中含量较多且易检验的离子,以含较多的SO42-为例)取新得到的洗出液少许,滴入用盐酸酸化的BaCl2 溶液 ,若没有白色浑浊出现,则说明沉淀已洗净,若有白色浑浊出现,则说明沉淀没有洗净。
d、反应时是否沉淀完全的检查:取沉淀上层清液,加入沉淀剂,若不再有沉淀产生,说明沉淀完全。
6.蒸发和结晶 蒸发是将溶液浓缩、溶剂气化或溶质以晶体析出的方法。结晶是溶质从溶液中析出晶体的过程,可以用来分离和提纯几种可溶性固体的混合物。结晶的原理是根据混合物中各成分在某种溶剂里的溶解度的不同,通过蒸发减少溶剂或降低温度使溶解度变小,从而使晶体析出。加热蒸发皿使溶液蒸发时、要用玻璃棒不断搅动溶液,防止由于局部温度过高,造成液滴飞溅。当蒸发皿中出现较多的固体时,即停止加热,
7.蒸馏 蒸馏是提纯或分离沸点不同的液体混合物的方法。用蒸馏原理进行多种混合液体的分离,叫分馏。
操作时要注意:
①在蒸馏烧瓶中放少量碎瓷片,防止液体暴沸。
②温度计水银球的位置应与支管底口下缘位于同一水平线上。
③蒸馏烧瓶中所盛放液体不能超过其容积的2/3,也不能少于l/3。
④冷凝管中冷却水从下口进,从上口出。
⑤加热温度不能超过混合物中沸点最高物质的沸点,例如用分馏的方法进行石油的分馏。
8.分液和萃取 分液是把两种互不相溶、密度也不相同的液体分离开的方法。萃取是利用溶质在互不相溶的溶剂里的溶解度不同,用一种溶剂把溶质从它与另一种溶剂所组成的溶液中提取出来的方法。选择的萃取剂应符合下列要求:和原溶液中的溶剂互不相溶;对溶质的溶解度要远大于原溶剂,并且溶剂易挥发。
(1)仪器
分液漏斗
烧杯
(2)萃取操作
在分液漏斗中加溶液和萃取剂,右手堵住漏斗上口塞,左手握活塞,倒转用力振荡,放气,正立放铁圈上静置
萃取剂选择:1与原溶剂互不相溶、互不反应2溶质在其中溶解度比原溶剂大得多
(3)分液操作 让分液漏斗下端紧靠烧杯内壁,打开分液漏斗上口玻璃塞,打开活塞,让下层液体从下面流出到分界面,再关闭活塞,上层液体由上口倒入另一烧杯
在萃取过程中要注意:
①将要萃取的溶液和萃取溶剂依次从上口倒入分液漏斗,其量不能超过漏斗容积的2/3,塞好塞子进行振荡。
②振荡时右手捏住漏斗上口的颈部,并用食指根部压紧塞子,以左手握住旋塞,同时用手指控制活塞,将漏斗倒转过来用力振荡。
③然后将分液漏斗静置,待液体分层后进行分液,分液时下层液体从漏斗口放出,上层液体从上口倒出。例如用四氯化碳萃取溴水里的溴。
9.升华 升华是指固态物质吸热后不经过液态直接变成气态的过程。利用某些物质具有升华的特性,将这种物质和其它受热不升华的物质分离开来,
10.渗析 利用半透膜(如膀胱膜、羊皮纸、玻璃纸等),使胶体跟混在其中的分子、离子分离的方法。常用渗析的方法来提纯、精制胶体溶液。渗析的原理是扩散,要不断更换烧杯中的蒸馏水或改为流水,以提高渗析的效果。
仪器 半透膜袋(如膀胱膜、羊皮纸、玻璃纸等)、烧杯、玻璃棒
盐析 掌握蛋白质的盐析和皂化反应中高级脂肪酸钠盐的盐析
11各种装置的气密性检查方法归纳
一、基本方法:
①受热法:将装置只留下1个出口,并先将该出口的导管插入水中,后采用微热(手捂、热毛巾捂、酒精灯微热等),使装置内的气体膨胀。观察插入水中的导管是否有气泡。停止微热后,导管是否出现水柱。
②压水法:如启普发生器气密性检查
③吹气法
二、基本步骤:
①形成封闭出口
②采用加热法、水压法、吹气法等进行检查
③观察气泡、水柱等现象得出结论。
注:若连接的仪器很多,应分段检查。
方法2:向导管口吹气,漏斗颈端是否有水柱上升 用橡皮管夹夹紧橡皮管,静置片刻,观察长颈漏斗颈端的水柱是否下落若吹气时有水柱上升,夹紧橡皮管后水柱不下落,说明气密性良好。
化学实验复习系列三:物质的提纯分离、除杂和鉴别
知识再现:
对混合物分离、提纯的基本要求:原理正确,操作简便,少用试剂(主要成分)量不减少(或减少很少), 保护环境。
Ⅰ.混合物分离、提纯常用的方法:
酸、碱处理法:此法是利用混合物中各种组分酸碱性不同,用酸或碱处理,从而分离提纯物质,
正盐和与酸式盐相互转化法
沉淀法:
氧化还原法:此法是利用混合物中某种组分能被氧化(被还原)的性质来分离提纯物质,
电解法:此法是利用电解原理来分离提纯物质,如电解冶炼铝;
吸附法:混合物中的某种组分易被某种吸附剂吸附,如用木炭使蔗糖溶液脱去有机色素
Ⅱ.常见物质除杂方法序号 原物 所含杂质 除杂质试剂 主要操作方法
1 N2 O2 灼热的铜丝网 用固体转化气体
2 CO2 H2S CuSO4溶液 洗气
3 CO CO2 NaOH溶液 洗气
4 CO2 CO 灼热CuO 用固体转化气体
5 CO2 HCI 饱和的NaHCO3 洗气
6 H2S HCI 饱和的NaHS 洗气
7 SO2 HCI 饱和的NaHSO3 洗气
8 CI2 HCI 饱和的食盐水 洗气
9 CO2 SO2 饱和的NaHCO3 洗气
10 炭粉 MnO2 浓盐酸(需加热) 过滤
11 MnO2 C -------- 加热灼烧
12 炭粉 CuO 稀酸(如稀盐酸) 过滤
序号 原物 所含杂质 除杂质试剂 主要操作方法
13 AI2O3 Fe2O3 NaOH(过量),CO2 过滤
14 Fe2O3 AI2O3 NaOH溶液 过滤
15 AI2O3 SiO2 盐酸`氨水 过滤
16 SiO2 ZnO HCI溶液 过滤,
17 BaSO4 BaCO3 HCI或稀H2SO4 过滤
18 NaHCO3溶液 Na2CO3 CO2 加酸转化法
19 NaCI溶液 NaHCO3 HCI 加酸转化法
20 FeCI3溶液 FeCI2 CI2 加氧化剂转化法
21 FeCI3溶液 CuCI2 Fe 、CI2 过滤
22 FeCI2溶液 FeCI3 Fe 加还原剂转化法
23 CuO Fe (磁铁) 吸附
24 Fe(OH)3胶体 FeCI3 蒸馏水 渗析
25 CuS FeS 稀盐酸 过滤
26 I2晶体 NaCI -------- 加热升华
27 NaCI晶体 NH4CL -------- 加热分解
28 KNO3晶体 NaCI 蒸馏水 重结晶.
29 乙烯 SO2、H20 碱石灰 加固体转化法
30 乙烷 C2H4 溴的四氯化碳溶液 洗气
31 溴苯 Br2 NaOH稀溶液 分液
32 甲苯 苯酚 NaOH溶液 分液
33 己醛 乙酸 饱和Na2CO3 蒸馏
34 乙醇 水(少量) 新制CaO 蒸馏
35 苯酚 苯 NaOH溶液、CO2 分液
Ⅲ.物质的鉴别专题总结
1.物理方法
观察法:主要是通过观察被鉴别物质的状态、颜色等进行,如鉴别相同浓度氯化铁和氯化亚铁溶液溶液;
嗅试法:主要通过判断有挥发性气体物质的不同气味来进行,如鉴别氨气和氢气;
水溶法:主要通过观察鉴别物质在水中的溶解情况来进行,如鉴别碳酸钠和碳酸钙;
加热法:主要适用于易升华的物质鉴别,如单质碘、萘的鉴别;(此方法在化学方法中也用到)
热效应法:常用于某些物质溶于水后溶液温度有明显变化的物质,如铵盐、浓硫酸、烧碱的鉴别;
焰色法:常用于某些金属或金属离子的鉴别,如钾盐、钠盐的鉴别。
2.化学方法
加热法:如碳酸氢盐、硝酸盐、铵盐等盐类及难溶性碱等受热易分解、结晶水合物的受热失水等等;
水溶性(或加水)法:如无水硫酸铜遇水呈蓝色,或其水溶液呈蓝色,电石遇水有气体放出等等;
指示剂测试法:常用石蕊、酚酞及pH试纸等来检验待鉴别溶液或液体的酸、碱性,如等物质的量浓度的醋酸铵、氯化铝、小苏打、苏打(用pH试纸);
点燃法:主要用于检验待鉴别气体物质的助燃性或可燃性的有无,以及可燃物的燃烧现象、燃烧产物的特点等等,如乙炔燃烧产生大量黑烟,氢气在氯气中燃烧火焰呈苍白色;
指示剂法:主要是利用待鉴别物质性质的差异性,选择适合的试剂进行,如鉴别硫酸铵、硫酸钠、氯化铵、氯化钠四种溶液,可选用氢氧化钡溶液;鉴别甲酸、甲醛、葡萄糖、甘油四种溶液,可选用新制氢氧化铜悬浊液,然后分别与其共热;
分组法:当被鉴别的物质较多时,常选择适合的试剂将被鉴别物质分成若干小组,然后再对各小组进行鉴别,如鉴别纯碱、烧碱、水、氯化钡、硫酸、盐酸六种无色溶液(液体)时,可选用石蕊试液将上述六种溶液分成三个组(酸性、碱性、中性),然后再对各组进行鉴别。
3.其他方法
只用一种试剂法:如只有蒸馏水和试管,鉴别以下几种白色固体粉末,氢氧化钡、无水硫酸铜、硫酸钠、氯化铝、氯化钠时,先检验出硫酸铜,然后再依次鉴别出氢氧化钡、硫酸钠、氯化铝、氯化钠;
不同试剂两两混合法:如不用任何试剂鉴别下列四种无色溶液,纯碱、烧碱、硫酸铝、氯化钡,分别取少量,任取一种与其余三种溶液混合,记录实验现象;
两种溶液自我鉴别法:如两瓶失去标签,外观无任何区别的无色溶液,只知一瓶是盐酸,一瓶是碳酸盐,不用其他试剂进行鉴别。
化学实验复习:气体的制备
接口的连接
一般应遵循装置的排列顺序。对于吸收装置,若为洗气瓶则应“长”进(利于杂质的充分吸收)“短”出(利于气体导出),若为盛有碱石灰的干燥管吸收水分和CO2,则应“大”进(同样利用CO2和水蒸气的充分吸收)“小”出(利于余气的导出),若为排水量气时应“短”进“长”出,排出水的体积即为生成气体的体积。
1、气体实验装置的设计
(1)装置顺序:制气装置→净化装置→反应或收集装置→除尾气装置
(2)安装顺序:由下向上,由左向右
(3)操作顺序:装配仪器→检验气密性→加入药品→进行实验
2、气体发生装置的类型
(1)设计原则:根据反应原理、反应物状态和反应所需条件等因素来选择反应装置。
(2)装置基本类型:
(4)装置气密性的检验
3、净化、干燥与反应装置
(1)杂质产生原因:①反应过程中有挥发性物质,如用盐酸制取的气体中一般有HCl;从溶液中冒出的气体中含有水气。②副反应或杂质参加反就引起,如制乙烯时含SO2;乙炔中的H2S等。
(2)装置基本类型:根据净化药品的状态及条件来设计
(3)气体的净化剂的选择
选择气体吸收剂的依据:气体的性质和杂质的性质的差异。主要考虑的是吸收效果,而不是现象。选择一种与杂质反应快而且反应完全的除杂剂。
一般情况下:①易溶于水的气体杂质可用水来吸收;②酸性杂质可用碱性物质吸收;③碱性杂质可用酸性物质吸收;④水分可用干燥剂来吸收;⑤能与杂质反应生成沉淀(或可溶物)的物质也可作为吸收剂。
选用吸收剂的原则:①只能吸收气体中的杂质,而不能与被提纯的气体反应。②不能引入新的杂质。在密闭装置中进行,要保持装置气体畅通。
(4)气体干燥剂的类型及选择
常用的气体干燥剂按酸碱性可分为三类:
①酸性干燥剂,如浓硫酸、五氧化二磷、硅胶。酸性干燥剂能够干燥显酸性或中性的气体,如CO2、SO2、NO2、HCI、H2、Cl2 、O2、CH4等气体。
②碱性干燥剂,如生石灰、碱石灰、固体NaOH。碱性干燥剂可以用来干燥显碱性或中性的气体,如NH3、H2、O2、CH4等气体。
③中性干燥剂,如无水氯化钙等,可以干燥中性、酸性气体,如O2、H2、CH4等。
在选用干燥剂时,显碱性的气体不能选用酸性干燥剂,显酸性的气体不能选用碱性干燥剂。有还原性的气体不能选用有氧化性的干燥剂。能与气体反应的物质不能选作干燥剂,如不能用CaCI2来干燥NH3(因生成 CaCl2·8NH3),不能用浓 H2SO4干燥 NH3、H2S、HBr、HI等。
(5)气体净化与干燥装置连接次序
洗气装置总是进气管插入接近瓶底,出气管口略出瓶塞。干燥管总是大口进,小口出气。
一般情况下,若采用溶液作除杂试剂,则是先除杂后干燥;若采用加热除去杂质,则是先干燥后加热。对于有毒、有害的气体尾气必须用适当的溶液加以吸收(或点燃),使它们变为无毒、无害、无污染的物质。如尾气Cl2、SO2、Br2(蒸气)等可用NaOH溶液吸收;尾气H2S可用CuSO4或NaOH溶液吸收;尾气CO可用点燃法,将它转化为CO2气体。
4、收集装置
1、设计原则:根据气体的溶解性或密度
(1)易溶或与水反应的气体:用向上(或下)排空气法
(2)与空气成分反应或与空气密度相近的气体:排水(液)法
(3)可溶性气体考虑用排液法
(4)两种方法皆可用时,排水法收集的气体较纯。若欲制取的气体要求干燥,用排空气法或排非水溶剂法。
2、装置基本类型:
5、尾气处理装置-安全装置
尾气的处理方法:直接排放、直接吸收、防倒吸吸收、燃烧处理
处理装置
(1)直接吸收
(2)防止倒吸装置的设计
在某些实验中,由于吸收液的倒吸,会对实验产生不良的影响,如玻璃仪器的炸裂,反应试剂的污染等,因此,在有关实验中必须采取一定的措施防止吸收液的倒吸。防止倒吸一般采用下列措施:
a切断装置:将有可能产生液体倒吸的密闭装置系统切断,以防止液体倒吸,如实验室中制取氧气、甲烷时,通常用排水法收集气体,当实验结束时,必须先从水槽中将导管拿出来,然后熄灭酒精灯。
b设置防护装置:①倒立漏斗式:这种装置可以增大气体与吸收液的接触面积,有利于吸收液对气体的吸收。当易溶性气体被吸收液吸收时,导管内压强减少,吸收液上升到漏斗中,由于漏斗容积较大,导致烧杯中液面下降,使漏斗口脱离液面,漏斗中的吸收液受自身重力的作用又流回烧瓶内,从而防止吸收液的倒吸。下一个装置所示,对于易溶于水难溶于有机溶剂的气体,气体在有机溶剂不会倒吸。②肚容式:当易溶于吸收液的气体由干燥管末端进入吸收液被吸收后,导气管内压强减少,使吸收液倒吸进入干燥管的吸收液本身质量大于干燥管内外压强差,吸收液受自身重量的作用又流回烧杯内,从而防止吸收液的倒吸。这种装置与倒置漏斗很类似。③蓄液式:当吸收液发生倒吸时,倒吸进来的吸收液被预先设置的蓄液装置贮存起来,以防止吸收液进入受热仪器或反应容器。这种装置又称安全瓶。④平衡压强式:为防止分液漏斗中的液体不能顺利流出,用橡皮管连接成连通装置(见恒压式);⑤防堵塞安全装置式:为防止反应体系中压强减少,引起吸收液的倒吸,可以在密闭装置系统中连接一个能与外界相通的装置,起着自动调节系统内外压强差的作用,防止溶液的倒吸。⑥为防止粉末或糊状物堵塞导气管,可将棉花团置于导管口处。⑦液封装置:为防止气体从长颈漏斗中逸出,可在发生装置中的漏斗末端套住一只小试管
3)防污染安全装置:燃烧处理或袋装
判断原则
①有毒、污染环境的气体不能直接排放。
②尾气吸收要选择合适的吸收剂和吸收装置。
直接吸收:Cl2、H2S、NO2 防倒吸:HCl、NH3、SO2
常用吸收剂:水,NaOH溶液,硫酸铜溶液
③可燃性气体且难用吸收剂吸收:燃烧处理或袋装。如CO。
离子的检验
离子 试剂 现象 注意
沉淀法 Cl-、Br-、I-、 AgNO3+HNO3 AgCl↓白、AgBr↓淡黄、AgI↓黄
SO42- 稀HCl和BaCl2 白色沉淀 须先用HCl酸化
Fe2+ NaOH溶液 白色沉淀→灰绿色→红褐色沉淀
Fe3+ NaOH溶液 红褐色沉淀
Al3+ NaOH溶液 白色沉淀→溶解 不一定是Al3+
气体法 NH4+ 浓NaOH溶液和湿润的红色石蕊试纸 产生刺激性气体,使试纸变蓝 要加热
CO32- 稀盐酸+石灰水 石灰水变浑浊 SO32-也有此现象
SO32- 稀H2SO4和品红溶液 品红溶液褪色
显色法 I- Cl2水(少量),CCl4 下层为紫色
Fe2+ KSCN溶液,再滴Cl2水 先是无变化,滴Cl2水后变红色
Fe3+ ①KSCN溶液 红色
②苯酚溶液 紫色
Na+、K+ Pt丝+HCl 火焰为黄色、浅紫色 K+要透过蓝色钴玻璃片
几种重要有机物的检验
(1)苯 能与纯溴、铁屑反应,产生HBr白雾。能与浓硫酸、浓硝酸的混合物反应,生成黄色的苦杏仁气味的油状(密度大于1)难溶于水的硝基苯。
(2)乙醇 能够与灼热的螺旋状铜丝反应,使其表面上黑色CuO变为光亮的铜,并产生有刺激性气味的乙醛。乙醇与乙酸、浓硫酸混合物加热反应,将生成的气体通入饱和Na2CO3溶液,有透明油状、水果香味的乙酸乙酯液体浮在水面上。
(3)苯酚 能与浓溴水反应生成白色的三溴苯酚沉淀。能与FeCl3溶液反应,生成紫色溶液。
(4)乙醛 能发生银镜反应,或能与新制的蓝色Cu(OH)2加热反应,生成红色的 Cu2O沉淀。
5.用一种试剂或不用试剂鉴别物质
用一种试剂来鉴别多种物质时,所选用的试剂必须能和被鉴别的物质大多数能发生反应,而且能产生不同的实验现象。常用的鉴别试剂有FeCl3溶液、NaOH溶液、Na2CO3溶液、稀H2SO4、Cu(OH)2悬浊液等。
不用其他试剂来鉴别一组物质,一般情况从两个方面考虑:
①利用某些物质的特殊性质(如颜色、气味、溶解性等),首先鉴别出来,然后再用该试剂去鉴别其他物质。
②采用一种试剂与其他物质相互反应的现象不同,进行综合分析鉴别。
引申发散:在推断混合溶液中肯定存在或肯定不存在的离子时,要注意以下几点:
(1)溶液是否有颜色。某些离子在溶液中具有特殊的颜色:Fe3+——棕黄色,Fe2+——淡绿色,Cu2+——蓝色(CuCl2浓溶液呈绿色)
(2)溶液的酸碱性。从溶液的酸碱性情况可以初步判断某些离子是否存在。
在强酸性溶液中不能大量存在离子有:S2-、SO32-、CO32-、SiO32-、AlO2-等;在强碱性溶液中不能大量存在离子有:NH4+、Mg2+、Al3+、Fe3+、Fe2+、Cu2+、HCO3-、Ag+等。
(3)在判断出肯定存在的离子后,再排除跟该离子在溶液中不可能共存的离子。例如,在已肯定存在SO42-时,就应排除Ba2+的存在。
化学实验复习系列五:化学实验中的安全问题
考纲要求:了解实验室一般事故的预防和处理方法。
化学实验安全须做到以下“十防”:
1.防爆炸。
①可燃性气体(如H2、CO、CH4、C2H4、C2H2等)在空气中达到爆炸极限点燃时都会发生爆炸,因此点燃这些气体前均须检验纯度,进行这些气体实验时应保持实验室空气流通;
②H2还原CuO,CO还原Fe2O3等实验,在加热之前应先通气,将实验装置内的空气排出后再加热,防止与装置内空气混合受热发生爆炸。
③活泼金属与水或酸反应要注意用量不能过大;
④银氨溶液应现配现用,并且配制时氨水不能过量。
2.防仪器炸裂。
①给烧瓶、烧杯等加热时要垫石棉网;在试管中加热固体时(如制氧气、制氨气、制甲烷、氢气还原氧化铜等),管口要略向下倾斜;
②在集气瓶中点燃金属时,瓶中要加少量水或铺一层细沙;
③玻璃仪器加热前外壁要干燥,在加热过程中不能逐及焰芯;
④热仪器不能立即用水刷洗。
3.防液体飞溅。
①浓硫酸与水、浓硝酸、乙醇等混合时,应将浓硫酸小心沿容器壁慢慢加入另一液体中,边加边振荡。而不能将液体注入浓硫酸中,更不要将浓硫酸与碳酸钠溶液混合;
②加热沸点较低的液体混合物时,要加细瓷片以防暴沸;加热试管中的液体,管口不能对人;
③蒸发溶液要用玻璃棒搅拌。
4.防液体倒吸。
①氯化氢和氨气等易溶性气体溶于水要连接防倒吸的装置;
②加热氯酸钾制氧气等实验并用排水法收集后,停止加热前应先将导气管从水中取出;
③实验室制乙酸乙酯,因装置内气压不稳定,也要防倒吸。
5.防导管堵塞。
①制气装置若发生导管堵塞,将导致装置内压强增大,液体喷出。因此,制氧气和乙炔时,发生装置的导管口附近要塞一团疏松的棉花,以防导管被固体或浆状物堵塞。(你还见过哪些分堵塞的装置?)
6.防中毒。
①不能用手直接接触化学药品;
②不能用嘴品尝药品的味道;
③闻气味时,应用手轻轻扇动,使少量气体进入鼻孔;
④制备或使用有毒气体的实验,应在通风厨内进行,尾气应用适当试剂吸收,防止污染空气。
7.防烫伤。
①不能用手握试管加热;
②蒸发皿和坩埚加热后要用坩埚钳取放(石棉网上)。
8.防割伤。
刷洗、夹持或使用试管等玻璃仪器时,要注意进行正确操作,以防被割伤。
9.防火灾。
①易燃物要妥善保管,用剩的钠或白磷要立即放回煤油或水中(其它药品能放回原试剂瓶吗?)
②酒精灯内的酒精量不能多于容积的2/3,不得少于容积的1/4,不能用燃着的酒精灯去点燃另一只酒精灯,不能用嘴吹灭酒精灯。
③万一发生火灾,应选用合适的灭火剂扑灭,如少量酒精着火,可用湿抹布盖灭或用水浇灭,活泼金属着火可用砂土埋灭。
10.防环境污染。
①实验剩余的药品既不能放回原瓶,也不要随意丢弃,更不要拿出实验室,要放人指定的容器或废液缸内。所有实验废弃物应集中处理,不能随意丢弃或倾倒,;
②能相互反应生成有毒气体的废液(如硫化钠溶液和废酸等)不能倒入同一废液缸中;涉及有毒气体的实验要有尾气处理装置(如实验室制氯气时用氢氧化钠溶液吸收多余的氯气,一氧化碳还原氧化铁的实验中可用气球将多余的一氧化碳收集起来或使其通过碱液后点燃除去)。
③汞洒落地面应及时用硫黄粉覆盖,防止汞蒸气中毒。
常见事故的处理
事故 处理方法
酒精及其它易燃
因字数限制,只发一部分.如需要可留下邮箱地址
㈡ 怎样清理除磷剂罐
①将正磷去除剂溶解成10%的溶液
②将除磷絮凝剂溶解成0.1%的溶液。
③正磷处理剂的用量为磷的10-15倍。比如,废水含磷100ppm,每吨水用量为1-1.5kg(固体)。除磷絮凝剂用量为10g/吨水。
④取500ml废水,调PH=4.5-5.5,根据磷含量加入去除剂,搅拌10分钟。再加入2滴除磷絮凝剂,慢速搅拌3分钟。
⑤ 沉淀半小时,取清液过滤测磷。
⑥此方法除磷优点:污泥量少,PH
低,有一定除COD能力。磷去除率可达99.7% 以上。
㈢ 氢碘酸+红磷的还原实验,三口烧杯与冷凝回流装置等如何组装
红磷主要呈现还原性,在另反应物中能被还原的只有碘元素。
所以,磷被氧化专,碘被还原。
磷的常见价态属为-3、0、+3、+5,碘的常见价态为-1、0、+1、+3、+5、+7。
根据归中反应原理,氧化还原时,化合价只靠拢不交叉。
由此可以推断,磷降为-3价,碘的化合价上升。
所以反应方程式为:12HI+P4=6I2+4PH3。
如图所示,三口中最左侧的可以滴加氢碘酸,中间搅拌器让其充分反映,右侧将反应的碘蒸汽冷凝成碘。还有一种做法,采取直流冷凝管,竖直放到三口烧瓶中间的口,滴加氢碘酸至过量,则可以得到固体产物碘。
(3)磷变质剂反应处理装置设计图扩展阅读
氧化还原反应前后,元素的氧化数发生变化。根据氧化数的升高或降低,可以将氧化还原反应拆分成两个半反应:氧化数升高的半反应,称为氧化反应; 氧化数降低的反应,称为还原反应。氧化反应与还原反应是相互依存的,不能独立存在,它们共同组成氧化还原反应。
反应中,发生氧化反应的物质,称为还原剂,生成氧化产物;发生还原反应的物质,称为氧化剂,生成还原产物。氧化产物具有氧化性,但弱于氧化剂;还原产物具有还原性,但弱于还原剂。
㈣ 磷化废水处理,用哪种药剂
化学法除磷就是用的药剂法去除的。
化学法除锌有硫化物法和碱法混凝沉淀等。该工艺采用碱法混凝沉淀除锌,因为Zn(OH)2溶度积常数Ksp=7.1×10-18,根据氢氧化物M(OH)n的沉淀-溶解平衡及水的离子积Kw=[H+][OH-],可以计算出使氢氧化物沉淀的pH值,即pH值=14-1/n×(log[Mn+]-logKsp)。投加NaOH调节pH值,控制混凝沉淀的最佳pH值为8.5~9.0,在此条件下,Zn2+与NaOH反应生成Zn(OH)2沉淀,而完全除去。
2、石灰法化学沉淀除磷
投加石灰乳澄清液,调整pH值在10~11,废水中的绝大部分磷酸盐得以沉淀除去,石灰乳在除磷的同时还起到了中和作用。
3、混凝气浮除磷、除油
加人絮凝剂使废水中的残磷和其他污染物质发生混凝反应,产生的絮体与气浮法产生大量微细气泡础附在一起,利用气泡浮力将其带出水面。除磷的同时,还可以吸附去除油滴,气泡上浮速度快,运行安全可靠,是一种经济实用的除油技术。
4、活性炭吸附除磷
活性炭是水处理中最常用的吸附剂,具有良好的吸附性能和化学稳定性,不易破碎,气流阻力小,常用的有粉末状和粒状,该工艺利用活性炭巨大的比表面积,充分吸附废水中的微量残磷和其他污染成分。
5、搅拌混匀装置
一级、二级反应器都配有搅拌装置,采用皮带轮或减速器使槽中搅拌速度依次递减,以满足整个反应过程中不同阶段的搅拌混匀需要,使得反应更彻底,更利于后面的沉淀工序。工艺中的管道混合器使投加H2SO4时中和反应更易进行,可使出水pH值完全达标。
6、重力或水压作用排泥
系统中一级、二级反应器和气浮池中产生的污泥或浮渣都靠重力或水压作用定期排人污泥浓缩池浓缩,再经自然干化后外运填埋,浓缩池的上清液回流至调节池进行物化处理。
7、反冲洗和脱附
系统中硅砂过滤器和活性炭吸附器都需要定期进行反冲洗,以防堵塞,其产生的废水回流至调节池。另外,为使活性炭再生,采用高温加热再生法活化,利用水蒸气来对活性炭过滤器中的颗粒炭进行脱附以保证正常的吸附效果。
㈤ 铝合金变质剂分类及原理举例说明。
铸造铝合金中的共晶硅相在自然生长条件下会长成片状。这种形状的脆性相严重地割裂了基体,降低了合金的强度和塑性,因而需要使之改变成有利的形态。变质处理是改善共晶硅形态的有效途径。
变质处理
1.钠变质处理
(1)金属钠变质 直接将金属钠加入铝液中,将使共晶硅变质。国内钠的加入量为0.1%(质量分数)左右,将其压入靠近坩埚底部, 1 ~ 2min反应完毕。因钠的沸点低、活泼,处理时将引起铝液沸腾和飞溅。钠极易与水反应,生成氧化钠和[H],造成不良影响。钠的密度小,容易产生密度偏析,结果坩埚的上部铝液中钠量过多,造成过变质现象;而下部的铝液,因钠量过低而变质不足,因此,要注意搅拌。目前该工艺应用较少。
(2)钠盐变质 目前在生产中应用广泛的钠变质剂是含氟化物的钠盐和钾盐,起变质作用的主要是NaF。
钠变质处理过程中,要注意防止过变质组织的出现,否则会对性能产生不利影响。出现过变质组织是钠在局部区域含量过高所致。其主要原因是:没有采取细化初晶α的处理,变质剂易分解,且处理温度偏高或变质元素在铝液中产生偏析,从而使初晶α相集聚,于是造成初晶α间隙中钠含量过高,致使过变质带出现。
如果变质温度低,则反应速度慢,变质反应时间长。一般操作为:撒上变质剂,覆盖10~15min后,搅拌2min;或覆盖10~15min后,将已结壳的变质剂压入铝液内2~3min。其变质效果可维持30~4Omin。
钠盐变质的缺点为:加入量较大,能耗大,变质反应时间较长,对坩埚有一定的腐蚀作用。
近年来发展了双色质块。它分为上下两层,以颜色区分,上层熔点高,在铝液保温停留时,以一定速度向铝液提供钠,使之不衰退;下层熔点低,反应速度快,使铝液在15min之内达到变质。这样,可维持变质时间2~3h,加入的质量分数为1.2% -1.3%,可满足低压铸造和金属型小件铸造的工艺要求。
(3)无毒变质剂 为了减少公害,应尽量少用或不用氟盐做变质剂。国内相继出现了几种无毒变质剂,其中一种是在750℃时发生反应而生成钠,使合金液变质:
Na2C03 = Na20 + CO2
Na20 + Mg = MgO + 2Na
CO2 + 2Mg = 2MgO + C
Na2C03 + 3Mg = 3MgO + 2Na + C
无毒变质剂是否对铝液有氧化作用,有待深入研究。
2.锶变质处理
近十年来,锶变质剂获得了广泛应用,似具有取代钠变质剂的趋势。
锶变质剂与钠盐变质剂具有同等效果。但锶变质具有以下主要优点:氧化少,易于加入和控制,过变质问题少;锶不易挥发,故可延长变质的有效时间;处理方便,无蒸气析出;变质剂易于保存;处理后,合金流动性好,对铸件壁厚的敏感性小。
由于锶的密度比铝液大,故呈悬浮状态沉淀,与铝液接触时间长,利用率可达60%~90%。通常较为合理的含量是0.01%~0.02%(质量分数)。若质量分数超过0.03%,则在共晶区内以初晶析出Al4SrSi4;若质量分数超过0.08%,则对伸长率影响很大。锶吸收氢气倾向大,处理后应脱气。因与氯气的反应激烈,所以应选用氮气除氢。为了变质处理更有效,必须有一定的保持时间,这取决于中间合金中的Al4Sr的含量。日本开发了一种含Sr90%、Al10%(质量分数)的Ohromasco新型中间合金,用于生产效果极好。经锶变质剂处理后的铝合金,在重熔处理后,变质效果不会有明显的损失,可以获得永久性变质处理的效果。
Faderal.Mogul公司用锶做变质剂,每月生产24000只活塞。采用容量27t的熔炼炉熔化的铝液经过和含氮87%、含氯13%(体积分数)的混合气体,在容量为900kg的浇包中脱气,然后转入保温炉,加入Al-Si-Sr(质量分数
为14%Si,10%Sr)中间合金,在676℃加入时,流动性提高17%,而在665℃加入时,流动性可提高32.5%。因此,锶变质可降低铝液浇注温度。
俄罗斯使用长效变质剂处理AJI4合金液,其中以Al-Sr中间合金的方式最合理、方便,变质效果最好,主要表现为提高了铸件力学性能,延长了有效变质时间。工艺如下:经氮气精炼后在720 ~ 740℃用钟罩压入,Al-Sr中间合金块度5 ~ 15mm,加入含Sr30%(质量分数)的Al-Sr中间合金,经20 ~ 25min浇注,铝液保持6h,每隔1h取样一次。Al-Sr30%中间合金加入量为金属液质量的0.05%~ 0.07%,Al-Sr54%的中间合金加入量以0.06% ~0.08%最佳。铸件经T6处理,抗拉强度250 ~ 280MPa;伸长率4% ~6%;硬度70 ~ 90HBS。
国内的生产经验表明,加入ωSr=0.02% ~ 0.03%可获得良好的变质效果。生产上多用Al-Sr(ωSr=10%)或Al-Si-Sr(ωSr=10%)合金形式加入。变质温度为720 ~ 730℃。
锶是长效变质剂,变质有效时间达6-8h,重熔后仍有变质效果,无过变质现象。变质后,铝液流动性有所下降,故浇注温度要适当提高。锶变质的铝液针孔倾向较大,当铝液中存在氯、氟和磷时,与锶起反应,使变质作用消失,故不能用氯盐和氟盐精炼,不能用含磷的回炉料。
3.稀土变质处理
加入0.03% - 0.05%(质量分数)的La、Eu、Ce或混合稀土金属,可使Al-Si合金的共晶硅变质,其变质寿命较长。生产中多以混合稀土合金的中间合金形式加入,加入量为0.2%-0.3%(质量分数),这些合金同时兼有净化铝液作用。变质和精炼需要30~40min的孕育期。可以将稀土变质剂同炉料一起投入。变质温度720~740℃。使用回炉料时,要考虑其中的稀土含量。稀土变质剂对坩埚无腐蚀作用,能改善铝液的流动性。
4.锑变质处理
向合金中加入ωSb=0.1% ~0.5%的锑,使共晶硅细化,习惯上称为锑变质。变质温度720 ~ 740℃,变质处理存在约15 ~ 20min的孕育期,生产上多以Al-Sb(ωSb=5%~8%)合金加入。
锑是长效变质剂,变质寿命约100h,重熔后,仍有变质效果,对坩埚无腐蚀作用,铝液氧化吸气倾向小,不影响铝液的流动性。
应注意防止密度偏析。此外,钠能中和锑的变质作用:
Sh+3Na=Na3Sb
所以不能将钠与锑复合使用。
锑变质对冷却速度敏感,冷却速度快时,变质效果显著,故锑变质适用于金属型铸造。
除上述几种元素外,钡、铋等也有变质作用,这里不作叙述。
变质机理
变质的机理是多年来国内外学者致力研究的一个理论问题。深入了解变质过程中硅相的生长方式以及变质处理如何使这种生长方式得以改变,对于发展变质处理技术,无疑具有重要的作用。早期的变质处理理论常常是根据变质处理过程的一些现象来分析和臆断,难免与真实不符或片面。近年来由于晶体学理论的发展和电子显微镜等近代实验技术的应用,才有可能建立科学的变质理论。
1.早期的变质机理学说
早期的学说认为变质是由于Na增大合金结晶过冷度的作用。在通常的Al-Si合金中常含有微量的P,在未经变质前以AlP化合物形式存在。这种化合物的晶格结构与硅相同,都属于金刚石型,且晶格常数也相近(AlP的晶格常数为0.545μm,而Si为0.542μm,两者的失配度仅为0.5%),因而两者之间存在有共格关系。Si原子在铝液中又有很高的扩散速度,因而在共晶结晶过程中,Si即以AlP为晶核而在其上迅速长大。加Na变质后发生AlP + 3Na→Al + Na3P,生成的Na3P则与Si的晶格不同。因而变质处理的作用是消除了铝液中固有的晶核,从而使合金过冷至更低的温度才开始以均质形核为特征的结晶过程。在大的结晶过冷条件下形成大量的Si的均质晶核,因而使共晶硅细化。结晶过冷学说是从形核的角度来阐述变质的效果,但不能说明变质处理前后硅的共晶晶体形状发生的根本变化。
吸附薄膜学说认为,Na的变质作用是在Si的晶体表面形成一层对Si晶体生长起阻碍作用的Na的吸附薄膜。Na是表面活性元素,当铝液中生成Si晶体后,Na原子即富集在Si晶体与铝液的界面上,形成正吸附。由于表面活性元素的吸附有选择性,使得Si在不同的生长方向受到不同程度的抑制,在Si晶体的主要生长方向受到Na吸附薄膜的阻碍作用比其他方向更大,因而使得共晶硅成长为颗粒状。吸附薄膜学说虽比结晶过冷学说前进了一步,但仍未能正确阐明硅晶体的生长机制以及Na变质对于生长机制的影响。近年来,用深腐蚀方法显示铝硅合金中共晶硅的空间形状,并用扫描电子显微镜进行观察发现,在Na变质的铝硅合金的金相磨面上观察到的大量细小的共晶硅颗粒原来是带有很多细小晶枝的硅晶体的剖面,而不是单独的细小晶粒,因此这一学说也未能反映真实的情况。
2.近期的变质机理学说
近年来国内外有两种具有代表性的变质机理学说,即孪晶凹谷(TPRE)机制学说和界面台阶机制学说。
(1)孪晶凹谷机制学说 孪晶凹谷机制学说的要点如下:
1)硅的晶体结构特性与孪晶凹谷生长机制。硅的晶体属于金刚石立方型晶体结构(如下图)。由于晶体结构的特性使得晶体的生长是各向异性的,其中生长最慢的方向是垂直于最密排的(111)晶面的,即沿[111]晶向,而沿较不密排晶面的[211]系列的晶向则生长得较快。而且在硅晶体生长中易于沿(111)晶面长成孪晶,并且在孪晶的结晶前沿形成141°的凹谷。此凹谷处有较低的能位,容易接钠铝液中的Si原子或由Si原子构成的四面体,这样就更加速了沿[211]晶向的生长速度,从而促使硅晶体长成片状,可能是单片,也可能是出于同一结晶核心而以辐射状向四周伸展的一组硅片。但无论是单片或组片,硅片的面是与晶体的(111)晶面平行的。
a) 硅四面体(剖面线所示面为(111)晶面) b) 金刚石立方晶体中的多层孪晶
然而硅晶体的片状生长并不是一成不变的,在生长过程中会产生分枝和改变生长方向。分枝经常是产生70.5°的方向改变,形成的枝晶仍保持沿[211]晶向的择优生长趋势。至于产生分枝的驱动力则是由于当硅晶体以辐射状向外生长时,硅晶体生长端之间的距离不断增加,造成原子扩散距离变长,而分枝则使其缩短,从而有利于晶体的生长。至于晶体不断改变生长方向则是由于重复产生晶体分枝的结果。
硅晶体产生分枝和改变生长方向的倾向与合金的结晶过冷度及硅晶体生长的孪晶凹谷生长机制是否受到抑制有关。在结晶过冷度极小和孪晶凹谷机制不受阻碍时,硅晶体将一直向前伸展而不产生分枝或变更生长方向;反之则会产生分枝或变更方向,由此就产生两种变质方法,即激冷变质和微量元素变质。用Na或Sr对铝硅合金的变质,即属于微量元素变质。
2)Na的变质作用。用Na进行变质处理后,铝液中含有大量Na原子。由于Na原子的选择性吸附,使硅晶体生长前端的孪晶凹谷处富集有Na的原子,从而降低了硅原子或硅原子四面体长上去的速度,因而使孪晶凹谷生长机制受到抑制。当这种机制被有效地抑制时,硅晶体的生长方向即改变晶向。这样就使得硅晶体由片状变为圆断面的纤维状。孪晶凹谷生长机制的抑制,也促进了硅晶体的分枝,因而Na变质使共晶硅由片状变成高度分枝的、弯曲而具有圆断面的纤维状。
硅晶体生长机制的改变导致了AI-Si共晶体生长方式的变化。在未经变质条件下,硅与铝的共晶结晶属于小晶面/非小晶面共生方式。作为小晶面相的硅具有比铝快得多的生长速率,因而固-液界面是不平滑的,硅晶体总是有一段超前距离。在这种生长条件下,共晶体的形态由主导相硅相所决定。经过Na变质后,由于生长机制的改变,硅晶体的生长速率比在未变质条件下大为降低,国-液界面是平滑的,硅相的超前量为零,硅相由小平面型生长变为非小平面型生长。硅相与铝相伴同生长的结果形成互相协调的共晶组织。
3)激冷变质与微量元素变质的复合作用。采用激冷变质,即通过加大冷却速率,增大硅晶体生长前沿处的过冷度,也能收到一定的变质效果。激冷变质的作用在于改变共晶两相的扩散速率,因而使铝相生长速率的降低程度比硅相小。同时硅相的小晶面结晶倾向随过冷度的增加而减小,因而当达到一定的临界转变温度时,能形成纤维状生长方式。增大结晶过冷度也有利于促进密集分枝。微量元素变质与激冷变质具有复合的作用。如经过同样变质处理的铝液,在薄壁铸件上产生的变质效果比厚壁铸件大。又如金属型铸造时,辅之以Na变质,可使纤维状硅晶体进一步细化,而使合金的力学性能得到进一步的提高。
(2)界面台阶机制学说 界面台阶机制学说的要点如下:
1)界面台阶生长源。这种理论根据试验研究结果指出,在未经变质的铝硅合金中,生长中的硅晶体表面上只是偶然地存在有孪晶,其密度极小。而在晶体生长前沿上,存在很多固有的界面台阶。这些台阶提供了适于接钠铝液中硅原子或硅原子八面体的场所,从而使硅晶体择优生长成为板片状。当通过激冷变质时,可供共晶硅细化,并促进密集分枝,使之呈纤维状生长。由于过冷度增大,硅晶体生长的各向异性受到抑制,因而晶体的横断面近似于圆形。尽管如此,硅晶体的生长机制并未因激冷而发生根本的变化,仍是以界面台阶作为生长源。
2)Na的变质作用。当将铝硅合金用Na(或Sr等)变质剂进行变质处理后,硅晶体的生长动力学发生了根本的变化。其一是Na原子吸附于硅晶体生长前沿的界面台阶处,"毒化"了界面台阶生长源,使之不能再起接钠硅原子的作用;其二是由于Na变质处理的作用,在硅晶体表面上产生了高密度的孪晶(称为诱发孪晶),而由孪晶凹谷代替界面台阶来接纳硅原子,从而构成硅晶体的生长源,即TPRE机制在硅晶体生长过程中起统治作用。
这种理论将诱发孪晶的产生归因于吸附Na原子使相邻晶面上Si原子的排列发生变化。Na原子吸附在硅晶体生长前沿处的密排,由于与Si原子在尺寸上的差别,使得该层原子的排列发生变化,从而在与其相垂直酌面上形成孪晶。根据理论计算,当尺寸因数即r变质剂/rSi = 1.648时,最适于形成孪晶。实际上,尺寸因数与这一理论值相接近的元素(Na为1.58)均有诱发孪晶的条件。
3)变质处理条件下硅晶体的结构。变质处理后,硅晶体按照孪晶凹谷机制生长的结构中,晶体主干沿[100]晶向生长,而分枝则沿[211]晶向(多数情况下有四个对称的晶枝在空间中互成90°)生长。这种理论认为,变质处理并不使硅的小晶面生长方式有所改变。同时,硅晶体的生长仍保留其各向异性的特征,表现在硅晶体(包括主干和晶枝)的横断面仍为片状。
上面介绍的关于共晶硅生长的两种机制理论-孪晶凹谷生长机制和界面台阶生长机制都有大量试验研究作为依据,具有可信性。但两种理论中有一些方面是不一致的,因而关于这一理论问题,还有必要作进一步的研究。
变质效果检验
1.断口检验
用砂型或金属型浇注φ20mm的圆棒,凝固冷却后击断,观察其断口。如果断口呈银白色,晶粒细小,呈丝绒状,无硅相的小亮点,则表明变质良好;若断口呈暗灰色,晶粒粗大,有明显的硅相亮点,则表明变质不足,需要再次变质。
2.热分析法
根据各变质元素对AI-Si合金凝固特性的影响不同,可以通过热分析曲线加以判别。
(1)钠和锶的变质检验 钠变质铝液的冷却曲线特点是:①共晶平台的温度比未变质要低8℃左右;②典型的共晶平台表现为两个阶段,先是伪平台(pseudo-shelf),而后转为真正的平台,约565℃。锶变质的过冷度约4℃。
(2)锑变质的检验 锑变质引起冷却曲线的过冷度较小,约2 ~ 3℃,处于一般热电偶的误差范围之内,因此影响了测报率。可用凝固时间作为锑变质程度的判据。对一定成分的合金和在一定的凝固条件下,存在着一个临界的凝固时间,若共晶凝固时间<临界的凝固时间,则变质;否则变质不良或不变质。
㈥ 液体PAC混在除磷剂里会发生化学反应吗
会发生反应的,除磷剂与液体PAC盐基度不一致,除磷剂的盐基度相对低一些,如果二者混合后会发生中和反应,导致了水解平衡的移动,最终大部分水解使铝和铁形成了氢氧化物胶体,呈果冻状。部分不水解的也会解聚,金属盐形成离子形态,已经失去了原有的聚合作用,不能在废水中继续水解产生混凝效果。因此,深圳市微点环保科技建议,在水处理时,液体PAC不混在除磷剂里一起使用。
㈦ 污水处理厂化学除磷用什么药剂好
来自某公司的除磷产品简介,基本较全面地涵盖了化学除磷的相关知识~
1 现状
由于广泛使用含磷洗涤剂,我国城市污水中普遍含有一定量的磷,一般为5-10mg/L。磷是藻类繁殖所需各种成分中的限制性因素之一,水体中磷含量的高低与水体富营养化程度有密切的关系。同时,对于引发水体富营养化而言,磷的作用远大于氮的作用,水体中磷的浓度达到一定数值时就可以引起水体的富营养化。因此,在污水处理中进行除磷是必要的。我国《城镇污水处理常污染物排放标准》(GB18918-2002)中明确规定,自2006年1月1日起建设的污水处理厂总磷指标的一级A排放标准为0.5mg/L。
污水中的磷可以通过化学和生物两种方法去除。生物除磷是一种相对经济的除磷方法,但由于现阶段生物除磷工艺还无法保证出水总磷稳定达到0.5mg/L标准的要求,所以常需要采用或辅助以化学除磷措施。
2 化学除磷原理
化学除磷主要是通过化学沉析过程完成的,化学沉析是指通过向污水中投加无机金属盐药剂与污水中溶解性的盐类(如磷酸盐)反应生成颗粒状、非溶解性的物质。实际上投加化学药剂后,污水中进行的不仅是沉析反应,同时还发生着化学絮凝作用,即形成的细小的非溶解状的固体物互相粘结成较大形状的絮凝体。
3 化学除磷药剂
为了生成非溶解性的磷酸盐化合物,用于化学除磷的化学药剂主要是金属盐药剂和氢氧化钙。许多高价金属离子药剂投加到污水中后都会与污水中的溶解性磷离子结合生成难溶解性的化合物,但出于经济原因考虑,用于磷沉析的金属盐药剂主要是Fe3+盐、Fe2+盐和Al3+盐,这些药剂是以溶液和悬浮液状态使用的。除金属盐药剂外,氢氧化钙也用作沉析药剂,反应生成不溶于水的磷酸钙。
污水化学除磷中常用的药剂类型详见表1。
表1 污水净化常用药剂
类型
名称
分子式
状态
铝盐
硫酸铝
Al2(SO4)3·18H2O
固体
Al2(SO4)3·14H2O
液体
nAl2(SO4)3·xH2O+mFe2(SO4)3·yH2O
固体
氯化铝
AlCl3
液体
AlCl3+FeCl3
液体
聚合氯化铝
[Al2(OH)nCl6-n]m
液体
二价铁盐
硫酸亚铁
FeSO4·7H2O
固体
FeSO4
液体
三价铁盐
氯化硫酸铁
FeClSO4
液体(约40%)
氯化铁
FeCl3
液体(约40%)
熟石灰
氢氧化钙
Ca(OH)2
约40%的乳液
4 化学除磷工艺
化学除磷工艺可按化学药剂的投加地点来分类,实际中常采用的有:前置除磷、同步除磷和后置除磷。
4.1 前置除磷
前置除磷工艺的特点是化学药剂投加在沉砂池中、初沉池的进水渠(管)中、或者文丘里渠(利用涡流)中。其一般需要设置产生涡流的装置或者供给能量以满足混合的需要。相应产生的沉析产物(大块状的絮凝体)在初沉池中通过沉淀被分离。如果生物段采用的是生物滤池,则不允许使用铁盐药剂,以防止对填料产生危害(产生黄锈)。
前置除磷工艺由于仅在现有工艺前端增加化学除磷措施,比较适合于现有污水处理厂的改建,通过这一工艺步骤不仅可以除磷,而且可以减少生物处理设施的负荷。常用的化学药剂主要是石灰和金属盐药剂。前置除磷后控制剩余磷酸盐的含量为1.5-2.5mg/L,完全能满足后续生物处理对磷的需要。
4.2 同步除磷
同步除磷是目前使用最广泛的化学除磷工艺,在国外约占所有化学除磷工艺的50%。其工艺是将化学药剂投加在曝气池出水或二沉池进水中,个别情况也有将药剂投加在曝气池进水或回流污泥渠(管)中。目前已确定对于活性污泥法工艺和生物转盘工艺可采用同步化学除磷方法,但对于生物滤池工艺能否将药剂投加在二次沉淀池进水中尚值得探讨。
4.3 后置除磷
后置除磷是将沉析、絮凝以及被絮凝物质的分离在一个与生物处理相分离的设施中进行,因此也叫二段法工艺。一般将化学药剂投加到二沉池后的一个混合池中,并在其后设置絮凝池和沉淀池(或气浮池)。
对于要求不严的受纳水体,在后置除磷工艺中可采用石灰乳液药剂,但必须对出水pH值加以控制,如可采用CO2进行中和。
采用气浮池可以比沉淀池更好地去除悬浮物和总磷,但因为需要恒定供应空气因而运行费用较高。
三种除磷工艺的优缺点汇总见表2。
表2 各种化学除磷工艺比较
工艺类型
优点
缺点
前置除磷工艺
1)能降低生物处理构筑物负荷,平衡负荷的波动变化,从而降低能耗;
2)与同步除磷相比,活性污泥中有机成分不会增加;
3)现有污水厂易于实施改造。
1)总污泥产量增加;
2)影响反硝化反应(底物分解过多);
3)对改善污泥指数不利。
同步除磷工艺
1)通过污泥回流可以充分利用除磷药剂;
2)如果将药剂投加到曝气池中,可采用价格较便宜的二价铁盐药剂;
3)金属盐药剂会使活性污泥重量增加,从而可以避免污泥膨胀;
4)同步除磷设施的工程量较小。
1)采用同步除磷工艺会增加污泥产量;
2)采用酸性金属盐药剂会使pH值下降到最佳范围以下,对硝化反应不利;
3)硝酸盐污泥和剩余污泥混合在一起,回收磷酸盐较为困难,此外在厌氧状态下污泥中磷会再释放;
4)回流泵会破坏絮体,但可通过投加高分子絮凝助凝剂减轻这种危害。
后置除磷工艺
1)硝酸盐的沉淀与生物处理过程相分离,互不影响;
2)药剂投加可以按磷负荷的变化进行控制;
3)产生的磷酸盐污泥可以单独排放,并可以加以利用。
后置除磷工艺所需投资大、运行费用高,但当新建污水处理厂时,采用后置除磷工艺可以减小生物处理二沉池的尺寸。
㈧ 变质处理的变质处理
经过系统研究锶盐及其复合变质剂对铝硅合金的变质效果,以及几种处理方法对铝合金中杂质元素镁、锌的影响规律,所得主要结果是:锶盐可以使铝硅合金的硅相由针杆状变为长度尺寸在100μm以下的短杆状或弯曲的纤维状。
锶盐变质剂存在着与锶变质相同的变质潜伏期现象。将锶盐与钠盐或磷盐复合变质能够消除这种现象。所研究的变质剂加入量小,提高合金的力学性能和使用性能;真空蒸发处理能够有效地降低铝合金中的杂质锌量,向铝合金中吹入氟利昂与氮气的混合气体或加入六氯乙烷熔剂都能够非常有效地降低铝合金中的杂质镁量,根据铝合金的含镁量确定氟利昂的吹入量或六氯乙烷的加入量。
㈨ 求污水处理中除磷剂除磷反应方程式
生物除磷和化学除磷.
1、生物除磷通过聚磷菌过量的吸附游离的磷,然后通过排泥(剩余污泥)的方式排出系统,达到除磷的目的。
2、化学除磷就是添加含铁或铝的混凝剂如聚合氯化铝达到除磷的目的。
磷,第15号化学元素,符号P。处于元素周期表的第三周期、第ⅤA族。磷存在于人体所有细胞中,是维持骨骼和牙齿的必要物质,几乎参与所有生理上的化学
反应。磷还是使心脏有规律地跳动、维持肾脏正常机能和传达神经刺激的重要物质。没有磷时,烟酸(又称为维生素B3)不能被吸收;磷的正常机能需要维生素
(维生素食品) D 和钙(钙食品)来维持。
磷被首次发现存在于恒星爆炸后的宇宙残余物里。对超新星残余物仙后座A的最新观测揭示了磷存在的最新证据。它是在深空发现的两大元素之一,或可能给科学家提供有关生命在宇宙里的可能性的线索。
㈩ 用于铝处理的变质剂有毒吗
要看你用什么方法```
采用含氯物质精炼废铝熔体,虽然效果较好,但其副产物 AICI3 、 HCl 和 Cl 等会对人体、环境及设备都造成严重损害。近年来,人们正在力图改进处理工艺,选用无毒、低毒的精炼变质材料来解决环境污染问题,如选用 N2 、 Ar 等作为精炼剂,但效果不尽如人意。市售的所谓“无公害”精炼剂,其基本成分为碳酸盐、硝酸盐及少量的 C2C16 ,因仍有少量氮氧化物、氯气排出,也不能完全消除环境污染。最近几年,新发展起来的用稀土合金对再生铝进行变质、细化和精炼的工艺,有望使废铝回收冶炼业的环境污染问题得到彻底解决。该工艺充分运用稀土元素与铝熔体相互作用的特性,发挥稀士元素对铝熔体的精炼净化和变质功能,能够实现对铝熔体的净化、精炼及变质的一体化处理,不仅简洁高效,而且能够有效地改善再生铝的冶金质量。在处理的全程中均不会产生有害的废气和其他副产品。