㈠ 锅炉烟气脱硫设计(浮阀塔)
硫技术
通过对国内外脱硫技术以及国内电力行业引进脱硫工艺试点厂情况的分析研究,目前脱硫方法一般可划分为燃烧前脱硫、燃烧中脱硫和燃烧后脱硫等3类。
其中燃烧后脱硫,又称烟气脱硫(Flue gas desulfurization,简称FGD),在FGD技术中,按脱硫剂的种类划分,可分为以下五种方法:以CaCO3(石灰石)为基础的钙法,以MgO为基础的镁法,以Na2SO3为基础的钠法,以NH3为基础的氨法,以有机碱为基础的有机碱法。世界上普遍使用的商业化技术是钙法,所占比例在90%以上。按吸收剂及脱硫产物在脱硫过程中的干湿状态又可将脱硫技术分为湿法、干法和半干(半湿)法。湿法FGD技术是用含有吸收剂的溶液或浆液在湿状态下脱硫和处理脱硫产物,该法具有脱硫反应速度快、设备简单、脱硫效率高等优点,但普遍存在腐蚀严重、运行维护费用高及易造成二次污染等问题。干法FGD技术的脱硫吸收和产物处理均在干状态下进行,该法具有无污水废酸排出、设备腐蚀程度较轻,烟气在净化过程中无明显降温、净化后烟温高、利于烟囱排气扩散、二次污染少等优点,但存在脱硫效率低,反应速度较慢、设备庞大等问题。半干法FGD技术是指脱硫剂在干燥状态下脱硫、在湿状态下再生(如水洗活性炭再生流程),或者在湿状态下脱硫、在干状态下处理脱硫产物(如喷雾干燥法)的烟气脱硫技术。特别是在湿状态下脱硫、在干状态下处理脱硫产物的半干法,以其既有湿法脱硫反应速度快、脱硫效率高的优点,又有干法无污水废酸排出、脱硫后产物易于处理的优势而受到人们广泛的关注。按脱硫产物的用途,可分为抛弃法和回收法两种。
1.1脱硫的几种工艺
(1)石灰石——石膏法烟气脱硫工艺
石灰石——石膏法脱硫工艺是世界上应用最广泛的一种脱硫技术,日本、德国、美国的火力发电厂采用的烟气脱硫装置约90%采用此工艺。
它的工作原理是:将石灰石粉加水制成浆液作为吸收剂泵入吸收塔与烟气充分接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及从塔下部鼓入的空气进行氧化反应生成硫酸钙,硫酸钙达到一定饱和度后,结晶形成二水石膏。经吸收塔排出的石膏浆液经浓缩、脱水,使其含水量小于10%,然后用输送机送至石膏贮仓堆放,脱硫后的烟气经过除雾器除去雾滴,再经过换热器加热升温后,由烟囱排入大气。由于吸收塔内吸收剂浆液通过循环泵反复循环与烟气接触,吸收剂利用率很高,钙硫比较低,脱硫效率可大于95% 。
(2)旋转喷雾干燥烟气脱硫工艺
喷雾干燥法脱硫工艺以石灰为脱硫吸收剂,石灰经消化并加水制成消石灰乳,消石灰乳由泵打入位于吸收塔内的雾化装置,在吸收塔内,被雾化成细小液滴的吸收剂与烟气混合接触,与烟气中的SO2发生化学反应生成CaSO3,烟气中的SO2被脱除。与此同时,吸收剂带入的水分迅速被蒸发而干燥,烟气温度随之降低。脱硫反应产物及未被利用的吸收剂以干燥的颗粒物形式随烟气带出吸收塔,进入除尘器被收集下来。脱硫后的烟气经除尘器除尘后排放。为了提高脱硫吸收剂的利用率,一般将部分除尘器收集物加入制浆系统进行循环利用。该工艺有两种不同的雾化形式可供选择,一种为旋转喷雾轮雾化,另一种为气液两相流。
喷雾干燥法脱硫工艺具有技术成熟、工艺流程较为简单、系统可靠性高等特点,脱硫率可达到85%以上。该工艺在美国及西欧一些国家有一定应用范围(8%)。脱硫灰渣可用作制砖、筑路,但多为抛弃至灰场或回填废旧矿坑。
(3) 磷铵肥法烟气脱硫工艺
磷铵肥法烟气脱硫技术属于回收法,以其副产品为磷铵而命名。该工艺过程主要由吸附(活性炭脱硫制酸)、萃取(稀硫酸分解磷矿萃取磷酸)、中和(磷铵中和液制备)、吸收( 磷铵液脱硫制肥)、氧化(亚硫酸铵氧化)、浓缩干燥(固体肥料制备)等单元组成。它分为两个系统:
烟气脱硫系统——烟气经高效除尘器后使含尘量小于200mg/Nm3,用风机将烟压升高到7000Pa,先经文氏管喷水降温调湿,然后进入四塔并列的活性炭脱硫塔组(其中一只塔周期性切换再生),控制一级脱硫率大于或等于70%,并制得30%左右浓度的硫酸,一级脱硫后的烟气进入二级脱硫塔用磷铵浆液洗涤脱硫,净化后的烟气经分离雾沫后排放。
肥料制备系统——在常规单槽多浆萃取槽中,同一级脱硫制得的稀硫酸分解磷矿粉(P2O5 含量大于26%),过滤后获得稀磷酸(其浓度大于10%),加氨中和后制得磷氨,作为二级脱硫剂,二级脱硫后的料浆经浓缩干燥制成磷铵复合肥料。
(4)炉内喷钙尾部增湿烟气脱硫工艺
炉内喷钙加尾部烟气增湿活化脱硫工艺是在炉内喷钙脱硫工艺的基础上在锅炉尾部增设了增湿段,以提高脱硫效率。该工艺多以石灰石粉为吸收剂,石灰石粉由气力喷入炉膛850~1150℃温度区,石灰石受热分解为氧化钙和二氧化碳,氧化钙与烟气中的二氧化硫反应生成亚硫酸钙。由于反应在气固两相之间进行,受到传质过程的影响,反应速度较慢,吸收剂利用率较低。在尾部增湿活化反应器内,增湿水以雾状喷入,与未反应的氧化钙接触生成氢氧化钙进而与烟气中的二氧化硫反应。当钙硫比控制在2.0~2.5时,系统脱硫率可达到65~80%。由于增湿水的加入使烟气温度下降,一般控制出口烟气温度高于露点温度10~15℃,增湿水由于烟温加热被迅速蒸发,未反应的吸收剂、反应产物呈干燥态随烟气排出,被除尘器收集下来。
该脱硫工艺在芬兰、美国、加拿大、法国等国家得到应用,采用这一脱硫技术的最大单机容量已达30万千瓦。
(5)烟气循环流化床脱硫工艺
烟气循环流化床脱硫工艺由吸收剂制备、吸收塔、脱硫灰再循环、除尘器及控制系统等部分组成。该工艺一般采用干态的消石灰粉作为吸收剂,也可采用其它对二氧化硫有吸收反应能力的干粉或浆液作为吸收剂。
由锅炉排出的未经处理的烟气从吸收塔(即流化床)底部进入。吸收塔底部为一个文丘里装置,烟气流经文丘里管后速度加快,并在此与很细的吸收剂粉末互相混合,颗粒之间、气体与颗粒之间剧烈摩擦,形成流化床,在喷入均匀水雾降低烟温的条件下,吸收剂与烟气中的二氧化硫反应生成CaSO3 和CaSO4。脱硫后携带大量固体颗粒的烟气从吸收塔顶部排出,进入再循环除尘器,被分离出来的颗粒经中间灰仓返回吸收塔,由于固体颗粒反复循环达百次之多,故吸收剂利用率较高。
此工艺所产生的副产物呈干粉状,其化学成分与喷雾干燥法脱硫工艺类似,主要由飞灰、CaSO3、CaSO4和未反应完的吸收剂Ca(OH)2等组成,适合作废矿井回填、道路基础等。
典型的烟气循环流化床脱硫工艺,当燃煤含硫量为2%左右,钙硫比不大于1.3时,脱硫率可达90%以上,排烟温度约70℃。此工艺在国外目前应用在10~20万千瓦等级机组。由于其占地面积少,投资较省,尤其适合于老机组烟气脱硫。
(6)海水脱硫工艺
海水脱硫工艺是利用海水的碱度达到脱除烟气中二氧化硫的一种脱硫方法。在脱硫吸收塔内,大量海水喷淋洗涤进入吸收塔内的燃煤烟气,烟气中的二氧化硫被海水吸收而除去,净化后的烟气经除雾器除雾、经烟气换热器加热后排放。吸收二氧化硫后的海水与大量未脱硫的海水混合后,经曝气池曝气处理,使其中的SO32-被氧化成为稳定的SO42-,并使海水的PH值与COD调整达到排放标准后排放大海。海水脱硫工艺一般适用于靠海边、扩散条件较好、用海水作为冷却水、燃用低硫煤的电厂。海水脱硫工艺在挪威比较广泛用于炼铝厂、炼油厂等工业炉窑的烟气脱硫,先后有20多套脱硫装置投入运行。近几年,海水脱硫工艺在电厂的应用取得了较快的进展。此种工艺最大问题是烟气脱硫后可能产生的重金属沉积和对海洋环境的影响需要长时间的观察才能得出结论,因此在环境质量比较敏感和环保要求较高的区域需慎重考虑。
(7) 电子束法脱硫工艺
该工艺流程有排烟预除尘、烟气冷却、氨的充入、电子束照射和副产品捕集等工序所组成。锅炉所排出的烟气,经过除尘器的粗滤处理之后进入冷却塔,在冷却塔内喷射冷却水,将烟气冷却到适合于脱硫、脱硝处理的温度(约70℃)。烟气的露点通常约为50℃,被喷射呈雾状的冷却水在冷却塔内完全得到蒸发,因此,不产生废水。通过冷却塔后的烟气流进反应器,在反应器进口处将一定的氨水、压缩空气和软水混合喷入,加入氨的量取决于SOx浓度和NOx浓度,经过电子束照射后,SOx和NOx在自由基作用下生成中间生成物硫酸(H2SO4)和硝酸(HNO3)。然后硫酸和硝酸与共存的氨进行中和反应,生成粉状微粒(硫酸氨(NH4)2SO4与硝酸氨NH4NO3的混合粉体)。这些粉状微粒一部分沉淀到反应器底部,通过输送机排出,其余被副产品除尘器所分离和捕集,经过造粒处理后被送到副产品仓库储藏。净化后的烟气经脱硫风机由烟囱向大气排放。
(8)氨水洗涤法脱硫工艺
该脱硫工艺以氨水为吸收剂,副产硫酸铵化肥。锅炉排出的烟气经烟气换热器冷却至90~100℃,进入预洗涤器经洗涤后除去HCI和HF,洗涤后的烟气经过液滴分离器除去水滴进入前置洗涤器中。在前置洗涤器中,氨水自塔顶喷淋洗涤烟气,烟气中的SO2被洗涤吸收除去,经洗涤的烟气排出后经液滴分离器除去携带的水滴,进入脱硫洗涤器。在该洗涤器中烟气进一步被洗涤,经洗涤塔顶的除雾器除去雾滴,进入脱硫洗涤器。再经烟气换热器加热后经烟囱排放。洗涤工艺中产生的浓度约30%的硫酸铵溶液排出洗涤塔,可以送到化肥厂进一步处理或直接作为液体氮肥出售,也可以把这种溶液进一步浓缩蒸发干燥加工成颗粒、晶体或块状化肥出售。
1。2燃烧前脱硫
燃烧前脱硫就是在煤燃烧前把煤中的硫分脱除掉,燃烧前脱硫技术主要有物理洗选煤法、化学洗选煤法、煤的气化和液化、水煤浆技术等。洗选煤是采用物理、化学或生物方式对锅炉使用的原煤进行清洗,将煤中的硫部分除掉,使煤得以净化并生产出不同质量、规格的产品。微生物脱硫技术从本质上讲也是一种化学法,它是把煤粉悬浮在含细菌的气泡液中,细菌产生的酶能促进硫氧化成硫酸盐,从而达到脱硫的目的;微生物脱硫技术目前常用的脱硫细菌有:属硫杆菌的氧化亚铁硫杆菌、氧化硫杆菌、古细菌、热硫化叶菌等。煤的气化,是指用水蒸汽、氧气或空气作氧化剂,在高温下与煤发生化学反应,生成H2、CO、CH4等可燃混合气体(称作煤气)的过程。煤炭液化是将煤转化为清洁的液体燃料(汽油、柴油、航空煤油等)或化工原料的一种先进的洁净煤技术。水煤浆(Coal Water Mixture,简称CWM)是将灰份小于10%,硫份小于0.5%、挥发份高的原料煤,研磨成250~300μm的细煤粉,按65%~70%的煤、30%~35%的水和约1%的添加剂的比例配制而成,水煤浆可以像燃料油一样运输、储存和燃烧,燃烧时水煤浆从喷嘴高速喷出,雾化成50~70μm的雾滴,在预热到600~700℃的炉膛内迅速蒸发,并拌有微爆,煤中挥发分析出而着火,其着火温度比干煤粉还低。
燃烧前脱硫技术中物理洗选煤技术已成熟,应用最广泛、最经济,但只能脱无机硫;生物、化学法脱硫不仅能脱无机硫,也能脱除有机硫,但生产成本昂贵,距工业应用尚有较大距离;煤的气化和液化还有待于进一步研究完善;微生物脱硫技术正在开发;水煤浆是一种新型低污染代油燃料,它既保持了煤炭原有的物理特性,又具有石油一样的流动性和稳定性,被称为液态煤炭产品,市场潜力巨大,目前已具备商业化条件。
煤的燃烧前的脱硫技术尽管还存在着种种问题,但其优点是能同时除去灰分,减轻运输量,减轻锅炉的沾污和磨损,减少电厂灰渣处理量,还可回收部分硫资源。
1.3 燃烧中脱硫,又称炉内脱硫
炉内脱硫是在燃烧过程中,向炉内加入固硫剂如CaCO3等,使煤中硫分转化成硫酸盐,随炉渣排除。其基本原理是:
CaCO3→CaO+CO2↑
CaO+SO2→CaSO3
CaSO3+1/2×O2→CaSO4
(1) LIMB炉内喷钙技术
早在本世纪60年代末70年代初,炉内喷固硫剂脱硫技术的研究工作已开展,但由于脱硫效率低于10%~30%,既不能与湿法FGD相比,也难以满足高达90%的脱除率要求。一度被冷落。但在1981年美国国家环保局EPA研究了炉内喷钙多段燃烧降低氮氧化物的脱硫技术,简称LIMB,并取得了一些经验。Ca/S在2以上时,用石灰石或消石灰作吸收剂,脱硫率分别可达40%和60%。对燃用中、低含硫量的煤的脱硫来说,只要能满足环保要求,不一定非要求用投资费用很高的烟气脱硫技术。炉内喷钙脱硫工艺简单,投资费用低,特别适用于老厂的改造。
(2) LIFAC烟气脱硫工艺
LIFAC工艺即在燃煤锅炉内适当温度区喷射石灰石粉,并在锅炉空气预热器后增设活化反应器,用以脱除烟气中的SO2。芬兰Tampella和IVO公司开发的这种脱硫工艺,于1986年首先投入商业运行。LIFAC工艺的脱硫效率一般为60%~85%。
加拿大最先进的燃煤电厂Shand电站采用LIFAC烟气脱硫工艺,8个月的运行结果表明,其脱硫工艺性能良好,脱硫率和设备可用率都达到了一些成熟的SO2控制技术相当的水平。我国下关电厂引进LIFAC脱硫工艺,其工艺投资少、占地面积小、没有废水排放,有利于老电厂改造。
1.4 燃烧后脱硫,又称烟气脱硫(Flue gas desulfurization,简称FGD)
燃煤的烟气脱硫技术是当前应用最广、效率最高的脱硫技术。对燃煤电厂而言,在今后一个相当长的时期内,FGD将是控制SO2排放的主要方法。目前国内外火电厂烟气脱硫技术的主要发展趋势为:脱硫效率高、装机容量大、技术水平先进、投资省、占地少、运行费用低、自动化程度高、可靠性好等。
1.3.1干式烟气脱硫工艺
该工艺用于电厂烟气脱硫始于80年代初,与常规的湿式洗涤工艺相比有以下优点:投资费用较低;脱硫产物呈干态,并和飞灰相混;无需装设除雾器及再热器;设备不易腐蚀,不易发生结垢及堵塞。其缺点是:吸收剂的利用率低于湿式烟气脱硫工艺;用于高硫煤时经济性差;飞灰与脱硫产物相混可能影响综合利用;对干燥过程控制要求很高。
(1) 喷雾干式烟气脱硫工艺:喷雾干式烟气脱硫(简称干法FGD),最先由美国JOY公司和丹麦Niro Atomier公司共同开发的脱硫工艺,70年代中期得到发展,并在电力工业迅速推广应用。该工艺用雾化的石灰浆液在喷雾干燥塔中与烟气接触,石灰浆液与SO2反应后生成一种干燥的固体反应物,最后连同飞灰一起被除尘器收集。我国曾在四川省白马电厂进行了旋转喷雾干法烟气脱硫的中间试验,取得了一些经验,为在200~300MW机组上采用旋转喷雾干法烟气脱硫优化参数的设计提供了依据。
(2) 粉煤灰干式烟气脱硫技术:日本从1985年起,研究利用粉煤灰作为脱硫剂的干式烟气脱硫技术,到1988年底完成工业实用化试验,1991年初投运了首台粉煤灰干式脱硫设备,处理烟气量644000Nm3/h。其特点:脱硫率高达60%以上,性能稳定,达到了一般湿式法脱硫性能水平;脱硫剂成本低;用水量少,无需排水处理和排烟再加热,设备总费用比湿式法脱硫低1/4;煤灰脱硫剂可以复用;没有浆料,维护容易,设备系统简单可靠。
1.3.2 湿法FGD工艺
世界各国的湿法烟气脱硫工艺流程、形式和机理大同小异,主要是使用石灰石(CaCO3)、石灰(CaO)或碳酸钠(Na2CO3)等浆液作洗涤剂,在反应塔中对烟气进行洗涤,从而除去烟气中的SO2。这种工艺已有50年的历史,经过不断地改进和完善后,技术比较成熟,而且具有脱硫效率高(90%~98%),机组容量大,煤种适应性强,运行费用较低和副产品易回收等优点。据美国环保局(EPA)的统计资料,全美火电厂采用湿式脱硫装置中,湿式石灰法占39.6%,石灰石法占47.4%,两法共占87%;双碱法占4.1%,碳酸钠法占3.1%。世界各国(如德国、日本等),在大型火电厂中,90%以上采用湿式石灰/石灰石-石膏法烟气脱硫工艺流程。
石灰或石灰石法主要的化学反应机理为:
石灰法:SO2+CaO+1/2H2O→CaSO3•1/2H2O
石灰石法:SO2+CaCO3+1/2H2O→CaSO3•1/2H2O+CO2
其主要优点是能广泛地进行商品化开发,且其吸收剂的资源丰富,成本低廉,废渣既可抛弃,也可作为商品石膏回收。目前,石灰/石灰石法是世界上应用最多的一种FGD工艺,对高硫煤,脱硫率可在90%以上,对低硫煤,脱硫率可在95%以上。
传统的石灰/石灰石工艺有其潜在的缺陷,主要表现为设备的积垢、堵塞、腐蚀与磨损。为了解决这些问题,各设备制造厂商采用了各种不同的方法,开发出第二代、第三代石灰/石灰石脱硫工艺系统。
湿法FGD工艺较为成熟的还有:氢氧化镁法;氢氧化钠法;美国Davy Mckee公司Wellman-Lord FGD工艺;氨法等。
在湿法工艺中,烟气的再热问题直接影响整个FGD工艺的投资。因为经过湿法工艺脱硫后的烟气一般温度较低(45℃),大都在露点以下,若不经过再加热而直接排入烟囱,则容易形成酸雾,腐蚀烟囱,也不利于烟气的扩散。所以湿法FGD装置一般都配有烟气再热系统。目前,应用较多的是技术上成熟的再生(回转)式烟气热交换器(GGH)。GGH价格较贵,占整个FGD工艺投资的比例较高。近年来,日本三菱公司开发出一种可省去无泄漏型的GGH,较好地解决了烟气泄漏问题,但价格仍然较高。前德国SHU公司开发出一种可省去GGH和烟囱的新工艺,它将整个FGD装置安装在电厂的冷却塔内,利用电厂循环水余热来加热烟气,运行情况良好,是一种十分有前途的方法。
1.5等离子体烟气脱硫技术
等离子体烟气脱硫技术研究始于70年代,目前世界上已较大规模开展研究的方法有2类:
(1) 电子束辐照法(EB)
电子束辐照含有水蒸气的烟气时,会使烟气中的分子如O2、H2O等处于激发态、离子或裂解,产生强氧化性的自由基O、OH、HO2和O3等。这些自由基对烟气中的SO2和NO进行氧化,分别变成SO3和NO2或相应的酸。在有氨存在的情况下,生成较稳定的硫铵和硫硝铵固体,它们被除尘器捕集下来而达到脱硫脱硝的目的。
(2) 脉冲电晕法(PPCP)
脉冲电晕放电脱硫脱硝的基本原理和电子束辐照脱硫脱硝的基本原理基本一致,世界上许多国家进行了大量的实验研究,并且进行了较大规模的中间试验,但仍然有许多问题有待研究解决。
1.6 海水脱硫
海水通常呈碱性,自然碱度大约为1.2~2.5mmol/L,这使得海水具有天然的酸碱缓冲能力及吸收SO2的能力。国外一些脱硫公司利用海水的这种特性,开发并成功地应用海水洗涤烟气中的SO2,达到烟气净化的目的。
海水脱硫工艺主要由烟气系统、供排海水系统、海水恢复系统等组成。
㈡ 脱硫塔工艺水如何确定
关于烟气脱硫新技术 答疑
锅炉烟气湿法脱硫工艺是目前世界上应用最多的工艺且技术最成熟,固硫剂价廉易得,副产物便于利用,煤种适应范围宽,并有较大幅度降低工程造价的可能性。我国目前的中小型锅炉烟气脱硫以简易碱性湿法、半干法为主导技术,410t/h以上级别的大型锅炉烟气脱硫以湿法即石灰石——石膏法为主导技术。国内中小型锅炉采用的烟气简易碱性湿法脱硫工艺都在不同程度上存在缺陷,主要问题表现在设备内部积灰、阻力大、烟气带水和运行成本高等弊端。我司针对这些问题研制出喷雾旋流烟气脱硫除尘技术。
1、喷雾旋流烟气脱硫除尘技术的基本原理
喷雾旋流烟气脱硫除尘装置包括:烟气进口导向通道、烟气预处理装置、脱硫除尘主塔、副塔、中心导流柱、脱水旋流板、除雾器、脱硫剂配置系统、废液再生系统、烟气出口及引风机封设备和部件。
从锅炉出来的烟气先经烟道增湿除尘降温预处理后,由塔底切向进入,旋流上升,通过装有两层高效喷嘴的主吸收段。由于烟气高速旋转的离心力作用,喷嘴喷出的部分液体形成雾化,从而增大了气液间的接触面积。烟气继续旋流上升进入导向旋流板进行气水一级分离,同时带动从塔板流下的部分分离水旋转使其雾化,对烟气中残余的SO2进行二次吸收。由于烟气旋转离心力的作用,液滴被甩到塔壁上沿壁流下,经过溢流装置进入到下一层塔板上,再次被气流雾化从而进行气液接触。随后,烟气继续上升进入第二块旋流板、挡水圈进行气水二级分离。如上所述,液体在与气体充分接触后得到有效分离。为避免雾沫夹带,其气液负荷比常用塔板大一倍以上,又由于塔板上液层薄、开孔率大而使压力降低,比达到同样效果的常用旋流板塔约低50%,因此,综合性能优于常用的旋流板塔。
SO2吸收液为含NaOH的水溶液,吸收SO2后的相对饱和的亚硫酸钠和亚硫酸氢钠废液流入再生水池,通入空气将亚硫酸钠氧化,加入石灰含量为10%的石灰水进行再生,还原出NaOH,同时生成亚硫酸钙和硫酸钙沉淀,含NaOH的清水溶液溢流到循环水池循环使用,亚硫酸钙和硫酸钙作为沉淀而被去除。
2、技术的创新性
在确保达标排放的前提下,既保证了气体流通截面又保持了气体旋转速度,达到了消除积灰、降低阻力和提高烟气脱水效率、有效防止烟气带水的效果。
将传统垂直喷淋方式改为平行喷淋方式。传统喷嘴的安装一般与气流方向垂直,平行喷淋是把喷嘴与气流方向平行安装,即喷嘴喷出的液体与气流方向成平行角度,这样就消除了喷出液体对旋转气体的阻挡作用,减少了气液接触的阻力,气体携带液体旋转的能力大大增强,液体雾化效果也随之提高,气液接触面积得到进一步扩大。
传统简易湿法脱硫除尘塔内所用的塔板全部为钢制品,制作安装容易,但腐蚀严重,使用寿命短,维修工作量大;改装置塔内组件(除喷嘴外)全部用花岗岩制作。花岗岩耐腐蚀,既降低了工程造价和维修费用,又延长了设备的使用寿命,可5~10年不需要维修。(资料原创:松和环保 www.gzsonghe.com ,欢迎转载,请注明出处。)
3、技术特点
(1)各项技术指标完全满足环保要求和用户要求;
(2)脱硫除尘效率高;
(3)防结垢、防堵灰性能好,运行可靠、安全、稳定;
(4)操作弹性大,负荷范围宽;
(5)液气比低,阻力小,电耗省,基本不需要维修,运行成本低;
(6)适用范围广,对煤质适用性强;
(7)防腐性能好,适用寿命长。
国内塔板式简易湿法脱硫工艺由于普遍存在一些技术问题,难以做到达标排放,一般仅适用于小型锅炉;大型锅炉湿法脱硫工艺应用的主要问题是一次性投资较大,而该技术解决了简易湿法脱硫普遍存在的几个技术问题后,已经在某些中大型锅炉上成功实施了配套设计。
如需详细咨询或技术交流,可访问广州松和环保科技有限公司网站。
㈢ 脱硫装置检修总则有哪些
设备的检修内容及质量要求吸收了国内外烟气脱硫设备检修的先进技术和经验,并参照制造厂家的有关技术资料编制而成。 为了减少二氧化硫排放,烟气脱硫装置已成为火力发电厂的重要组成部分。我国自70年代进行烟气脱硫试验研究以来,在设备检修方面积累了大量经验,但未形成较为规范的指导检修的行业标准。为进一步规范脱硫装置的检修工作,提高检修质量,保证装置运行的可靠性,特制订本导则。各火力发电厂应根据本标准的指导原则,结合本厂实际的设备类型,并遵照设备制造厂家的具体要求编制检修规程。本标准检修项目主要是针对湿法和半干法烟气脱硫装置所特有的设备制订的,对其他工艺方法的烟气脱硫装置的设备检修仅作参考。
DL/T 748是一个火力发电厂锅炉机组检修导则系列标准,标准编写的格式,除第1部分外,其他9部分均以表格形式为主,表头分为四栏,即:设备名称、检修内容、工艺要点和质量要求。采用对应的形式,便于检索和应用。DL/T 748系列标准由下列10个部分组成:DL/T 748.1—2001 火力发电厂锅炉机组检修导则第1部分:总则;DL/T 748.2—2001 火力发电厂锅炉机组检修导则第2部分:锅炉本体检修;DL/T 748.3—2001 火力发电厂锅炉机组检修导则第3部分:阀门与汽水系统检修 DL/T 748.4—2001 火力发电厂锅炉机组检修导则第4部分:制粉系统检修 DL/T 748.5—2001 火力发电厂锅炉机组检修导则第5部分:烟风系统检修 DL/T 748.6—2001。
㈣ 有催化烟气脱硫装置使用干渣过滤器的吗
锅炉烟气中所含粉尘(包括飞灰和炭黑)、硫和氮的氧化物都是污染大气的物质,未经净化时其排放指标可能达到环境保护规定指标的几倍到数十倍。控制这些物质排放的措施有燃烧前处理、改进燃烧技术、除尘、脱硫和脱硝等。借助高烟囱只能降低烟囱附近地区大气中污染物的浓度。 烟气除尘所使用的作用力有重力、离心力、惯性力、附着力以及声波、静电等。对粗颗粒一般采用重力沉降和惯性力的分离,在较高容量下常采用离心力分离除尘。 锅炉静电除尘器和布袋过滤器具有较高的除尘效率。湿式和文氏-水膜除尘器中水滴水膜能粘附飞灰,除尘效率很高,还能吸收气态污染物。 烟气脱硫有吸收法和催化氧化法。干法吸收用碱性氧化铝、 半焦炭、活性炭等;湿法吸收用氨、 碳酸钠、石灰浆等。用五氧化二钒等触媒在一定温度下可使大部分二氧化硫氧化为三氧化硫,从而有助于吸收脱硫。由于烟气脱硫设备及运行费用昂贵,大部分企业倾向使用低硫燃料以降低硫氧化物的排放量。 烟气中氮氧化物主要是一氧化氮。烟气脱硝有催化分解法、选择性催化还原法,也有采用高温活性炭吸收脱硝的。 燃煤锅炉在运行中必然要排出大量炉渣和由除尘器收集的飞灰,一般用水力或机械的方法清除送至堆渣场。 锅炉的灰渣还可以...
㈤ 热电厂烟气脱硫设计方案
烟气脱硫系统设计
摘 要
烟气脱硫是目前世界上唯一大规模商业化应用的脱硫方式,是火力发电厂控制酸雨和二氧化硫污染的主要技术手段。烟气脱硫装置的投资要花费巨大的资金,国内火力发电厂烟气脱硫工程绝大多数是从国外进口设备,国内只负责安装。利用国外技术和设备必然使得工程的造价十分昂贵,若实现技术和设备国产化,就可以大大降低烟气脱硫工程造价,从而使得烟气脱硫装置在我国大规模应用成为可能。
本设计针对毕业设计任务书中所给出的烟气含量和脱硫要求,结合我国烟气脱硫的技术现状而设计出的一套较完备的烟气脱硫系统。做此设计的目的是为烟气脱硫技术的国产化积极的作准备。
本设计的主要工作为:
介绍了现有的烟气脱硫的工艺并进行分析之后决定了系统的脱硫方法为湿式石灰石-石膏法。
介绍了一些主要的脱硫装置和类型,比较选择之后确定了吸收塔的类型、流程。
对湿式石灰石-石膏烟气脱硫工艺的各个子系统进行了介绍并大致确定了本工艺中选用各子系统的的处理流程、装置和设备。
设计了系统的管路通风图,包括烟道、装置和烟囱。据此逐段计算了管道的压损、流量、温降等,并根据以上数据对脱硫风机和石灰石浆液再循环泵进行了选型。
对所设计的烟气脱硫工艺进行了技术经济分析。
最后得出总的结论,并提出了工艺中存在的主要问题和几点建议。
关键字: 湿法石灰石-石膏法 烟气脱硫系统的构成 管道计算 技术经济分析
Abstract
FGD(Fume Gas Desulfuration) is only cosmically cmmercial desulfuration type in the world. It is dominating technology measure to control acid rain and sulfur dioxide pollution.FGD equipment cost huge fund. Most equipment of FGD project in fire power plants in our nation are imported. We only take charge installation.Overseas technology and equipment are too costly,If it is made in our country,FGD project's cost will be decreased consumedly,accordingly it will become possible to apply FGD equipment cosmically in our nation.
According to the composition of the Fume Gas and the desurfurization request,combining with existing FGD technical process in our nation,this article designed a set of adequate FGD systems.The purpose of this artical is that do some prepares for the designing process of the FGD of our own country.
This article's main work are:
Analyzed and compared existing FGD technology of domestic and overseas ,chose the Limestone-Gypsum Wet Method Desurfurization Technology for Fume Gas.
Introced main equipment of the desurfurization ,then decided the type and the diagram flow of the absorber.
Designed the arrangment of system's popes ,including chinmney、relevant equipment and so on.
Calculated the pressure loss, the Fume Gas volume and temperature decrease of these draw popes.
Carried out economic and technical analysis of the FGD system designed by writer.
Drawn out the conclusion of the article ,pointed out some questions that existed in practical application and given my own advice.
Key words: Limestone-Gypsum Wet Method Desurfurization Technology Compose of the desurfurization system Calculation of the draw popes Technical and Economic Analysis
目 录
第1章 前言----------------------------------------------1
1.1烟气脱硫技术的现状------------------------------------2
1.1.1烟气脱硫经典工艺------------------------------------2
1.1.2新工艺发展现状------------------------------4
1.2国外烟气脱硫技术简介--------------------------------6
1.3烟气脱硫技术的发展趋势与前景-----------------------6
1.3.1新工艺发展趋势-------------------------------6
1.3.2烟气脱硫技术发展的前景------------------------7
第2章 系统脱硫方案的确定和净化设备的选择----------8
2.1 系统脱硫方案的确定----------------------------8
2.1.1 烟气脱硫技术的各个种类的特点--------------------8
2.1.2 选择工艺方案时所考虑的因素------------------9
2.1.3 FGD工艺的比较与选择----------------------10
2.1.4 吸收塔工艺模式的选择---------------------12
2.1.5 氧化工艺的比较与选择--------------------13
2.2 湿法石灰石-石膏的脱硫工艺原理----------------14
2.2.1 脱硫机理----------------------------------------14
2.2.2 SO2吸收-----------------------------------15
2.2.3 硫酸盐的形成---------------------------15
2.2.4 石膏结晶-----------------------------16
2.2.5 石灰石溶解--------------------------16
2.2.6 小结-------------------------------17
2.3 石灰石-石膏湿法烟气脱硫净化装置的选择-------------17
2.3.1 脱硫塔的类型及选择----------------------17
2.3.2 喷淋吸收塔工艺的进一步确定---------------18
2.3.3 小结--------------------------------19
第3章 石灰石-石膏烟气脱硫系统的构成--------------21
3.1 石灰石浆制备系统----------------------------------21
3.2 烟气再热系统----------------------------------23
3.2.1 蓄热式气-气热交换器(GGH)---------------------24
3.2.2 冷却塔排放烟气------------------------24
3.2.3 旁路烟气法-----------------------------25
3.2.4 再生再热法-------------------------------25
3.2.5 小结-----------------------------------26
3.3 SO2 吸收系统-----------------------------------26
3.4 石膏制备及处置系统---------------------------27
3.5 脱硫风机---------------------------------------29
3.6 废水处理-------------------------------------30
3.7 公共系统-------------------------------------31
3.8 小结----------------------------------------------31
第4章 设计计算和配用设施的选择------------------33
4.1 概述--------------------------------33
4.2 设计计算------------------------------33
4.2.1 基本数据-----------------------------33
4.2.2 确定吸收塔、再热器和烟囱的位置及管道的布置-34
4.2.3 管段计算-----------------------------------35
4.3 风机、电动机和循环泵的选择-----------------43
4.3.1 风机和电动机选择及计算----------------43
4.3.2 吸收塔循环泵的选择--------------------45
第5章 系统的技术经济分析-----------------47
5.1 技术经济分析的目的和意义---------------------47
5.2 系统技术分析-----------------------------------47
5.2.1 系统技术指标及其分析---------------------47
5.2.2 烟气脱硫装置对锅炉和烟气系统的影响---------48
5.2.3 烟气脱硫装置的占地面积--------------------49
5.2.4 烟气脱硫装置的流程复杂程度---------------49
5.2.5 烟气脱硫装置的成熟程度-------------------49
5.3 经济评价------------------------------49
5.4 小结----------------------------------50
第6章 结论与建议-------------------------------------51
6.1 结论----------------------------------------------51
6.2 问题与建议----------------------------------------52
6.2.1 存在的问题-----------------------------------52
6.2.2 几点建议-------------------------------------52
毕业设计结论--------------------------------------54
致谢-----------------------------------------------------55
参考文献------------------------------------------56
第1章 前言
随着我国经济的快速发展,煤炭消耗量不断增加,二氧化硫的排放量也日趋增多,造成二氧化硫污染和酸雨的严重危害。据最新报道[1],1999年我国二氧化硫排放总量为1857万吨,其中工业来源为1460万吨,生活来源为397万吨。酸雨区面积占国土面积的30%,主要分布在长江以南、青藏高原以东的广大地区及四川盆地。对106个城市的降水pH值监测结果统计表明,降水年均pH值低于5.6的有43个城市,占统计城市的40.6%。统计的59个南方城市中,降水年均pH低于5.6的有41个,占69.5%。
酸雨使得森林枯萎,土壤和湖泊酸化,植被破坏,粮食、蔬菜和水果减产,金属和建筑材料被腐蚀[2]。空气中的二氧化硫也严重地影响人们的身心健康[3],它还可形成硫酸酸雾,危害更大。
为防止二氧化硫和酸雨污染,1990年12月,国务院环委会第19次会议通过了《关于控制酸雨发展的意见》。自1992年在贵州、广东两省,重庆、宜宾、等九个城市进行征收二氧化硫排污费的试点工作。1995年8月,全国人大常委会通过了新修订的《大气污染防治法》。1998年2月17日,国家环保局召开了酸雨和二氧化硫污染综合防治工作会议。这都说明我国政府高度重视酸雨和二氧化硫污染的防治。
国家环保局局长解振华指出[4]:“成熟的二氧化硫污染控制技术和设备是实现两控区控制目标的关键因素。”他同时指出:为了实现酸雨和二氧化硫污染控制目标,要加快国产脱硫技术和设备的研究、开发、推广和应用。因此研究开发适合我国国情的烟气脱硫技术和装置,吸收消化国外先进的脱硫是当前的迫切任务。
二氧化硫控制方法多种多样,可以分为三大类:
(1)燃烧前脱硫,如洗煤等[5]。
(2)燃烧中脱硫,如型煤固硫、炉内喷钙[6]等。
(3)燃烧后脱硫,即烟气脱硫(FGD),是目前应用最广、效率最高的脱硫技术。
1.1 烟气脱硫技术的现状
1.1.1 烟气脱硫经典工艺
烟气脱硫(FGD)是目前世界上唯一大规模商业应用的脱硫方式,也是最经济切实可行的方法。迄今为止,世界各国研究开发的FGD技术估计超过了200多种,目前成熟可行的有十多种。通常按照脱硫剂和脱硫产物的干湿状态分为湿法、半干法和干法[7]。
1.1.1.1 湿法脱硫
这是目前较成熟、运行较稳定的方法。由于是气液反应,脱硫反应速率快、效率高、脱硫剂利用率高。但其废水处理量大,运行成本
也较高。
(1)石灰石-石灰法
是以石灰石或石灰的浆液为脱硫剂,在吸收塔内对SO2烟气进行洗涤吸收的方法,其产物为CaSO3和CaSO4。
(2)石灰石-石膏法
是以空气鼓入吸收塔,使得CaSO3氧化为CaSO4(石膏),由于其鼓入气体使料液更为均匀,脱硫率更高,其堵塞和结垢的几率大大降低。
(3)双碱法
此法种类较多,主要是钠碱双碱法。即采用NaCO3或NaOH溶液为第一吸收液,再用石灰石或石灰溶液为第二碱液使之再生,再生后溶液继续循环使用。此法得到的SO2仍以CaSO3 和CaSO4的形式沉淀出来。
(4)钠碱吸收法
本法是用NaOH、Na2CO3和Na2SO3的水溶液为吸收剂,吸收烟气中的SO2。其中使用最多的是威尔曼-洛德(Wellman-Lord)法,是美国和日本应用较多的脱硫方法。此法实际上是采用Na2CO3和NaHSO3混合液为吸收剂。当吸收剂中NaHSO3浓度达到80%-90%时,就要对吸收剂进行再生,可获得较高浓度的SO2和Na2CO3。再生后的Na2CO3可用于循环使用, SO2可用于生产硫酸。对烟气的吸收效率可达到90%以上。
除以上方法外,湿法还包括氧化镁吸收法、氨法、碱式硫酸铝法
等。这些方法由于吸收效率不高,应用范围较窄。
1.1.1.2半干法脱硫
(1)炉内喷钙式活化(LIFAC)法
是在传统炉内喷钙法基础上增加了活化反应器,并促进喷水增湿。脱硫效率可达到75%-80%左右。
(2)旋转喷雾干燥(SDA)法
此法是利用喷雾干燥的原理,将吸收剂(如石灰浆液)雾化喷入吸收塔内,使得吸收剂与烟气中的SO2发生化学反应。得到的固体以废渣形式排出。
1.1.1.3干法脱硫
传统是用石灰苏打(CaO-Na2CO3)干粉来除去烟道内废气所含的SO2。从而得到干粉状钙盐和钠盐及未反应的干燥粉尘的混合产物的方法。
1.1.2 新工艺发展现状
由于传统工艺存在效率低、操作复杂等特点,在科技的发展和环保要求下,许多国家已不局限于传统经典工艺。所以,新工艺不断被研究开发出来。
(1)荷电干式喷射脱硫(CDSI)法。
此法是美国ALANCO公司开发的专利技术。其技术核心是吸收剂以高速通过高压静电电晕充电区,得到强大的静电荷后,被喷射到烟气中,扩散形成均匀的悬浮状态。此法投资及占地仅为传统湿法的10%~27%。但脱硫效率相对较低。
(2)电子束照射(EBA)法
其原理是在烟气进入反应器之前先加入氨气,然后在反应器中用电子加速器产生的电子束照射烟气,使水蒸气与氧等分子激发产生氧化能力强的自由基,这些自由基使烟气中的SO2很快氧化,产生硫酸。再和氨气反应形成硫酸氨。其主要特点是系统简单,操作方便,过程易于控制,副产物可用于生产化肥。脱硫成本低于传统方法。但此法需要大功率、长期温度的电子枪,同时需要防辐射屏蔽。
(3)脉冲电晕等离子体(PPCP)法。
是日本专家增田闪一在EBA法的基础上提出的。它是*脉冲高压电源在普通反应器中形成等离子体,产生高能电子。此法设备简单,操作简便,投资是EBA法的60%。
除以上介绍的以外,近年发展的新工艺还有ABB公司开发的新型集成半干式脱硫(NID)法,适合于海边工厂的海水脱硫工艺、常温精脱硫工艺[8]等。
1.2 国外主要的几种烟气脱硫技术简介
(1) LIFAC脱硫工艺[9]
(1.1.1.2半干法脱硫中已经提到)芬兰IVO公司和Tampella公司开发了LIFAC脱硫工艺,这项技术是改进的石灰石喷射工艺,进一步提高了脱硫率。它的主要优点是,耗电量小,经济效益高,工艺设备简单,投资明显低于湿式和雾化干式脱硫方法,且无废水排放。同时维修较方便,占地面积小。
(2) 尿素法[10]
尿素法净化烟气工艺由俄罗斯门捷列夫化学工艺学院等单位联合开发,可同时去除SO2和NOX,SO2的脱除率可达99%~100%,NOX脱除率大于95%。对设备无腐蚀作用, NOX,SO2的脱除率与烟气中NOX,SO2的浓度无关,尾气可直接排放,吸收液经处理后可回收硫酸铵。
此外还有丹麦开发的SNOX技术[9,11]和微生物烟气脱硫技术。
1.3 烟气脱硫技术的发展趋势与前景
1.3.1 新工艺发展趋势
各项资料显示,国外最新脱硫技术研究主要有以下几个特点。
(1)除尘、脱硫、脱氮一体化
由于硫氧化物、氮氧化物同是国家限制排放的污染物,而分开处理明显增加了设备的投资和空间的占用。
(2)自动化技术更加明显
最新的几个脱硫工艺更多的是向干法脱硫方向发展,而干法脱硫是最容易达到自动化目的。这也是向社会不断发展的电子技术*拢。相应的,其科技含量也将越来越高。
(3)生产成本不断下降
新工艺的脱硫成本相对较低,在这个讲究经济效益的时代要想不被淘汰,其各项成本应越低越好。
1.3.2烟气脱硫技术发展的前景
在未来十几年内,循环流化床烟气脱硫装置在我国电厂脱硫应用中将会有巨大的潜力和应用前景,同时海水烟气脱硫装置在我国沿海电厂,海水资源方便的地区将会有不可替代的优势。
微生物法用于烟气脱硫将具有不需高温、高压、催化剂,均为常温常压下操作,操作费用低、设备要求简单,利用微生物脱硫,营养要求低,无二次污染等特点。因此,微生物烟气脱硫是实用性强、技术新颖的生物工程技术,具有诱人的应用前景,应引起重视,加速开发。
我国FGD技术进展我国烟气脱硫技术基本处于试验阶段。从试验结果看,有几项技术已接近世界水平,如清华大学煤清洁燃烧工程研究中心开发的干式循环流化床烟气脱硫技术、液柱喷射烟气脱硫除尘集成技术已受到广泛重视。
㈥ 脱硫设备上市公司,脱硫概念股有哪些
1. 龙净环保(600388.sh),公司的烟气脱硫技术引进德国LLB公司的干、湿法脱硫技术,其技术水平在国内居领先地位。产品一直受到国内相关厂商的欢迎,公司收到的大订单也是源源不断,加上公司除尘的先进技术,未来在环保领域获得高额收益潜力巨大。
2. 菲达环保(600526.sh),国内烟气脱硫三大巨头之一,是国内唯一一家具备为用户提供除尘——输送——脱硫三大相关系列产品的企业。持股66.44%的控股子公司中电投远达环保有限公司是中国西部地区首屈一指的专业脱硫工程公司。
3. 国电电力(600795.sh),公司全部火电机组均已安装脱硫设施并投入运营,单位二氧化硫排放量达到0.9284克/千瓦时。
4. 凯迪电力(000939.sz),国内脱硫行业的龙头企业,有50%以上的市场占有率,公司拥有世界上第一家30万装机以上干法烟气脱硫技术和60万装机以上湿法烟气脱硫技术。
5. 同方股份(600100.sh),公司投资的同方环境拥有TKC烟气脱硝技术、AEE烟气脱硫技术、鲁奇布袋除尘技术、电袋一体化技术、液柱法脱硫自主技术,目前已服务十多家电厂烟气脱硫、锅炉除尘项目。
6. 紫光股份(0938.hk),环保产业以“提供城市环境综合治理技术”作为基本定位,以目前突出的城市环保问题作为突破口。公司在一体化脱硫除尘方面具有领先技术。公司对外提供烟气脱硫除尘技术服务,自主拥有脱硫除尘一体化设备,并向外承揽 烟气脱硫除尘工程。
7. 莱钢股份(600102.sh),公司利用焦化含氨废水(或其它氨水)脱除锅炉( 75t/h)烟其中的二氧化硫工程技术,实现了莱钢锅炉烟气二氧化硫的零排放, 为实现二氧化硫污染控制目标提出了示范工程。每年可减少二氧化硫排放量1300吨,处理焦化含氨废水4.5万立方米,同时还将烟尘和脱硫产物回炉焚烧处理, 避免二次污染。
8. 长城电工(600192.sh),与中科院兰州近代物理研究所合作承接了山东淄博一家电厂的 烟气脱硫工程,该工程投资7千多万元,采用的是电子束脱硫技术, 该工程是目前国内首家采用国产电子束脱硫技术的烟气脱硫工程,预计收益为投资额的20%以上
9. 九龙电力(600292.sh),投资控股远达集团是以烟气脱硫技术及装置产业化为主, 是集烟气脱硫工程工艺设计、技术引进、成套设备开发制造、施工安装、调试维修、人员培训为一体的企业,拟引进日本三菱重工的FGD技术,分三期逐步实现全部脱硫技术及装置的国产化, 通过国产化,能使300MW火电机组的二氧化硫脱硫装置价格由进口价的3至4 亿元人民币降低到1.4亿元人民币。
10. 众合机电(000925.sz),公司是国内机电一体化专业设计制造烟气脱硫装置等大气污染治理设备的大型研发生产基地,目前是国内可以同时实现海内外EPC 总包及国内BOT 运营双翼发展战略的烟气脱硫类上市公司,已投产运营的脱硫工程容量排名行业第四,上市公司第一。
11. 浙大网新(600797.sh),控股股东浙江浙大网新集团与意大利IDRECO组成联合体与保加利亚马里查东二热电厂、保加利亚环境和水资源部签订烟气脱硫项目合同,浙大网新机电工程公司为本项目具体实施方。
12. 潞安环能(601699.sh),公司主营业务包括洁净煤技术的开发与利用,首创的以烟煤用于高炉喷吹技术,获国家发明专利和中国煤炭工业科技进步特等奖以及国家科技进步二等奖,并成为制定该产品国家标准的基准。
13. 三聚环保(300072.sz),公司主营脱硫催化剂产品、脱氯剂、脱砷剂等,是中石油和中石化一级生产供应商与A类供应商。
㈦ 烟气脱硫的工艺方法
烟气脱硫(FGD)是工业行业大规模应用的、有效的脱硫方法。按照硫化物吸收剂及副产品的形态,脱硫技术可分为干法、半干法和湿法三种。干法脱硫工艺主要是利用固体吸收剂去除烟气中的SO2,一般把石灰石细粉喷入炉膛中,使其受热分解成CaO,吸收烟气中的SO2,生成CaSO3,与飞灰一起在除尘器收集或经烟囱排出。湿法烟气脱硫是采用液体吸收剂在离子条件下的气液反应,进而去除烟气中的SO2,系统所用设备简单,
运行稳定可靠,脱硫效率高。干法脱硫的最大优点是治理中无废水、废酸的排出,减少了二次污染;缺点是脱硫效率低,设备庞大。湿法脱硫采用液体吸收剂洗涤烟气以除去SO2,所用设备比较简单,操作容易,脱硫效率高;但脱硫后烟气温度较低,设备的腐蚀较干法严重。
石灰石(石灰)-石膏湿法烟气脱硫工艺石灰石(石灰)湿法脱硫技术由于吸收剂价廉易得,在湿法FGD领域得到广泛的应用。
以石灰石为吸收剂反应机理为:
吸收:SO2(g)→ SO2(L)+H2O → H++HSO3- → H+ +SO32-
溶解:CaCO3(s)+H+ → Ca2++HCO3-
中和:HCO3- +H+ →CO2(g)+H2O
氧化:HSO3-+1/2O2→SO32-+H+
SO32- +1/2O2→SO42-
结晶:Ca2++SO32- +1/2H2O →CaSO3·1/2H2O(s)
该工艺的特点是脱硫效率高(>95%)、吸收剂利用率高(>90%)、能适应高浓度SO2烟气条件、钙硫比低(一般<1.05)
、脱硫石膏可以综合利用等。缺点是基建投资费用高、水消耗大、脱硫废水具有腐蚀性等。
㈧ 烟气脱硫工艺主要有哪些
烟气脱硫工艺可分为三种:干法、半干法和湿法。目前国内各大脱硫厂家已投运的300MW级组烟气脱硫装置基本上均为石灰石/石膏湿法,湿法脱硫工艺是目前世界上技术最为成熟、应用最为广泛的脱硫工艺。
㈨ 脱硫装置的工作原理是什么
石灰石-石膏湿法脱硫工艺脱硫过程的主要化学反应为:
(1)在脱硫吸版收塔内,权烟气中的SO2首先被浆液中的水吸收,形成亚硫酸,并部分电离:
SO2 + H2O → H2SO3 → H+ +HSO3- → 2H+ +SO32-
(2)与吸收塔浆液中的CaCO3细颗粒反应生成CaSO3•1/2H2O细颗粒:
CaCO3 + 2H+ → Ca2+ + H2O +CO2↑
Ca2+ + SO32- → CaSO3 •1/2H2O↓+ H+
(3) CaSO3 •1/2H2O被鼓入的空气中的氧氧化,最终生成石膏CaSO4•2H2O
HSO3- + 1/2 O2 → H+ +SO42-
Ca2+ + SO42- + 2H2O → CaSO4•2H2O ↓