导航:首页 > 装置知识 > 红外通信装置软件程序的设计

红外通信装置软件程序的设计

发布时间:2022-01-03 19:35:10

Ⅰ 基于红外技术的多点集中通信的设计

我来试试。
采用现在电视机用的940nm红外发光管,接收也用这个频率的接收管,这样有发也有接了。接收管如果用TSOP1738之类的红外一体接收器,就不带38K解调了。这样,一个发射管,一个TSOP1738就构成了一对发射/接收。主机和各个终端都要有这样的一对才行。
接下来就是通讯协议了。类似于I2C,发送有地址,有指令(数据)。接收方都要有解析才行。是自己的地址,就应答,不是自己的地址,就不回答。
发射管的发射控制:用CPU定时器产生的38KH方波,与串口输出数据信号“与”一下。程序里编一下也行。就不能用串口输出数据了,就得用口线仿真了。
38K的调制,允许的通讯波特率不能太高,在2400bps左右。
从TSOP1738出来的TTL电平,直接接到RXD上即可。

再高速的通讯,就要用手机上或电脑上用的红外发射接收专用“对管”了,可以支持更高的频率。如HSL7001等器件,它可以实现115K的UART,但调制频率不用我们管。只需连到串口就可以通讯。

Ⅱ 红外报警系统设计图及程序急用!

这个很简单啊,不就一个单片机,一个红外探头,一个报警的玩意(例如蜂鸣器),单片机检测到红外信号,就让蜂鸣器响不久OK了,不用单片机都可以,检测到了,直接驱动让蜂鸣器响,或者让灯闪,那就自己搭建一个多谐振荡出来。

Ⅲ 简易红外线通信电路的设计制作

简易红外线通信电路的设计,首先将需要发射的语音信号调制到载波信号中,然后以红外反射管发射出去。另一端用光敏电阻或二极管接收,并解调。可以使用555实现调制和解调。

Ⅳ 基于单片机的红外通信装置

红外发射器:可以用单片机产生38K的载波,也可以用555振荡产生,也可以用红外遥控器

红外接收头:HS0038,SM0038,T4148,都是一体化红外接收头电路十分简单

设计过程:发射红外信号,单片机接收,识别红外信号,9ms低电平,4.5ms高电平,通信的话最好用遥控器,最好有遥控器的编码方式,遥控器有两种编码方式,最常用的是NEC的

看个例子:

#include <reg51.h>

#define c(x) (x*120000/120000)

sbit Ir_Pin=P3^6;
sbit beep=P3^7;
//sbit RELAY=P2^0;
unsigned char code Led_Tab[]={0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,
0xf8,0x80,0x90,0x88,0x83,0xC6,0xA1,0x86,0x8E}; //共阳极数码显示码0-F.
unsigned char code Led_Sel[]={0x7f,0xbf,0xdf,0xef};

unsigned char Led_Buf[4]; //显示缓冲区
char Led_Index; //位选

unsigned char Ir_Buf[4]; //用于保存解码结果
void delay_50ms(unsigned int t)
{
unsigned int j;
for(;t>0;t--)
for(j=6245;j>0;j--)
{;}
}

//==============================================================
//数码管扫描
timer0() interrupt 1 using 1
{
TL0=65536-1000;
TH0=(65536-1000)/256; //定时器0设定约1000us中断一次,用于数码管扫描
P0=0xff;
P1=Led_Sel[Led_Index]; //位选
P0=Led_Tab[Led_Buf[Led_Index]]; //段选

if(++Led_Index>3) Led_Index=0; //四个扫描完了,到第一个数码管
}
//==============================================================
unsigned int Ir_Get_Low()
{
TL1=0;
TH1=0;
TR1=1;
while(!Ir_Pin && (TH1&0x80)==0);
TR1=0;
return TH1*256+TL1;
}
//=============================================================
unsigned int Ir_Get_High()
{
TL1=0;
TH1=0;
TR1=1;
while(Ir_Pin && (TH1&0x80)==0);
TR1=0;
return TH1*256+TL1;
}
//==============================================================
main()
{
unsigned int temp;
char i,j;
Led_Index=1;

TMOD=0x11;
TL0=65536-1000;
TH0=(65536-1000)/256; //定时器0设定约1000us中断一次,用于数码管扫描
EA=1;
ET0=1;
TR0=1;

Led_Buf[0]=0;
Led_Buf[1]=0;
Led_Buf[2]=0;
Led_Buf[3]=0; //显示区设成0
do{
restart:
while(Ir_Pin);
temp=Ir_Get_Low();
if(temp<c(8500) || temp>c(9500)) continue;//引导脉冲低电平9000
temp=Ir_Get_High();
if(temp<c(4000) || temp>c(5000)) continue;//引导脉冲高电平4500
for(i=0;i<4;i++) //4个字节
for(j=0;j<8;j++) //每个字节8位
{
temp=Ir_Get_Low();
if(temp<c(200) || temp>c(800)) goto restart;
temp=Ir_Get_High();
if(temp<c(200) || temp>c(2000)) goto restart;
Ir_Buf[i]>>=1;
if(temp>c(1120)) Ir_Buf[i]|=0x80;
}
Led_Buf[0]=Ir_Buf[2]&0xf;
Led_Buf[1]=(Ir_Buf[2]/16)&0xf;
Led_Buf[2]=Ir_Buf[3]&0xf;
Led_Buf[3]=(Ir_Buf[3]/16)&0xf; //显示结果
P1=Ir_Buf[2];
beep=0;
delay_50ms(2);
beep=1;
//RELAY=0;
//delay_50ms(50);
//RELAY=1;
}
while(1);

}

Ⅳ 任务:设计并制作一个红外通信装置(求大神指点,不能直接用用红外发收模块)

在2m的时候,红外的传输效果可能已经比较差了。
首先你要搞清楚一点,红外,只是一种通信专媒属介,并非通信手段。
所以,你可以考虑采用红外加串口的模式来进行通信。
在发送端,先采集语音信号,然后通过串口进行发送
传统的串口发送需要有线连接,你现在只需把待发信号连接到红外发射管上即可。
在接收端,将红外接受管的信号作为输出。
这样一个最大的好处就是免去了通讯协议的设置。
2和3是属于信号调理和测量部分了,选一个好一点的运放和AD采样芯片即可满足要求
如常见的AD7324+OP177A运放即可。

Ⅵ 基于单片机的红外通信的设计与实现

买51开发板干嘛?毕业设计不可能交个开发板吧,你要做的是先找齐资料,然后购买元器件来拼电路,然后再用单片机控制,当然如果没有开发条件还是先凑齐吧

Ⅶ 设计一个简易红外通信系统

其实作为简易系统,你的要求就是个设计大纲了。对于实现细节可根据实际情况丰富。内不敢说设计,提几点容建议。
1.关于技术上的指标,必须参考国际标准做。我想你不可能自己研发个红外的接收装置吧。而且这种新硬件高与国际标准不同。现在的电子产品根据标准来做,其目的起码有三:1.不用制定新标准,减少投资成本。2.保证兼容性。3.采用通用元器件,节省生产成本。既然是大家都使用通用标准,你去查查标准就行了,最起码要选若干产品,筛选出符合要求的硬件。
2.对于程序上的设计,必须要得到厂家的接口说明,参考国际标准。这种属于程序开发范畴,不在赘述。
3.你给出的图不完全吧?试想什么系统都是有终端组成呢!
4.对于你的提问我看无人给出确定的答案,因为这种系统具有非通用性。和你选择的硬件,软件有直接关系。在不确定硬件和软件的基础上无人能做出完整的设计。
希望我的回答给你些帮助。找标准请访问IRDA官方网站,www.irda.org

Ⅷ 基于单片机的红外遥控收发系统的设计与实现

低频信号发生器的设计
摘 要:
直接数字合成(DDS)是一种重要的频率合成技术,具有分辨率高、频率变换快优点,在雷达及通信等领域有着广泛的应用前景。文中介绍了一种高性能DDS芯片AD9850的基本原理和工作特点,阐述了如何利用此芯片设计一种频率在0—50
kHz内变化、相位正交的信号源,给出了AD9850芯片和MCS51单片机的硬件接口和软件流程。

关键词:直接数字频率合成 信号源 AD9850芯片
概述:
随着数字技术的飞速发展,高精度大动态范围数字/模拟(D,A)转换器的出现和广泛应用,用数字控制方法从一个标准参考频率源产生多个频率信号的技术,即直接数字合成(DDS)异军突起。其主要优点有:(1)频率转换快:DDS频率转换时间短,一般在纳秒级;(2)分辨率高:大多数DDS可提供的频率分辨率在1 Hz数量级,许多可达0.001 Hz;(3)频率合成范围宽;(4)相位噪声低,信号纯度高;(5)可控制相位:DDS可方便地控制输出信号的相位,在频率变换时也能保持相位联系;(6)生成的正弦/余弦信号正交特性好等。因此,利用DDS技术特别容易产生频率快速转换、分辨率高、相位可控的信号,这在电子测量、雷达系统、
调频通信、电子对抗等领域具有十分广泛的应用前景。
1. 低频信号发生器的组成
图2.7为低频信号发生器组成框图。它主要包括主振器、电压放大器、输出衰减器、功率放大器、阻抗变换器和指示电压表等。

(1)主振器
RC文氏桥式振荡器具有输出波形失真小、振幅稳定、频率调节方便和频率可调范围宽等特点,故被普遍应用于低频信号发生器主振器中。主振器产生与低频信号发生器频率一致的低频正弦信号。
文氏桥式振荡器每个波段的频率覆盖系数(即最高频率与最低频率之比)为10,因此,要覆盖1Hz~1MHz的频率范围,至少需要五个波段。为了在不分波段的情况下得到很宽的频率覆盖范围,有时采用差频式低频振荡器,图2.8为其组成框图。假设f2=3.4MHz,f1可调范围为3.3997MHz~5.1MHz,则振荡器输出差频信号频率范围为300Hz (3.4MHz-3.3997MHz)~1.7MHz(5.1 MHz-3.4 MHz)。

差频式振荡器的缺点是对两个振荡器的频率稳定性要求很高,两个振荡器应远离整流管、功率管等发热元件,彼此分开,并良好屏蔽。
(2)电压放大器
电压放大器兼有缓冲与电压放大的作用。缓冲是为了使后级电路不影响主振器的工作,一般采用射极跟随器或运放组成的电压跟随器。放大是为了使信号发生器的输出电压达到预定技术指标。为了使主振输出调节电位器的阻值变化不影响电压放大倍数,要求电压放大器的输入阻抗较高。为了在调节输出衰减器时,不影响电压放大器,要求电压放大器的输出阻抗低,有一定的带负载能力。为了适应信号发生器宽频带等的要求,电压放大器应具有宽的频带、小的谐波失真和稳定的工作性能。
(3)输出衰减器
输出衰减器用于改变信号发生器的输出电压或功率,分为连续调节和步进调节。连续调节由电位器实现,步进调节由步进衰减器实现。图2.9为常用输出衰减器原理图,图中电位器RP为连续调节器(细调),电阻R1~R8与开关S构成步进衰减器,开关S为步进调节器(粗调)。调节RP或变换开关S的挡
(4) 功率放大器及阻抗变换器功率放大器用来对衰减器输出的电压信号进行功率放大,使信号发生器达到额定功率输出。为了能实现与不同负载匹配,功率放大器之后与阻抗变换器相接,这样可以得到失真小的波形和最大的功率输出。
阻抗变换器只有在要求功率输出时才使用,电压输出时只需衰减器。阻抗变换器即匹配输出变压器,输出频率为5Hz~5kHz时使用低频匹配变压器,以减少低频损耗,输出频率为5kHz~1MHz时使用高频匹配变压器。输出阻抗利用波段开关改变输出变压器次级圈数来改变。
2. 工作原理及结构
函数信号发生器产生信号的方法有三种:一种是由施密特电路产生方波,然后经变换得到三角波和正弦波形;第二种是先产生正弦波再得到方波和三角波;第三种是先产生三角波再变换为方波和正弦波。在此主要介绍第一种方法,即脉冲式函数信号发生器

3. 低频信号发生器的主要工作特性
目前,低频信号发生器的主要工作特性如下:
①频率范围 一般为20Hz~1MHz,且连续可调。
②频率准确度 ±(1~3)%。
③频率稳定度 一般为(0.1~0.4)%/小时。
④输出电压 0~10V连续可调。
⑤输出功率 0.5~5W连续可调。
⑥非线性失真范围 (0.1~1)%。
⑦输出阻抗 50Ω、75Ω、150Ω、600Ω、5kΩ等几种。
⑧输出形式 平衡输出与不平衡输出。
4. 低频信号发生器的使用
低频信号发生器型号很多,但它们的使用方法基本类似
(1)了解面板结构
使用仪器之前,应结合面板文字符号及技术说明书对各开关旋钮的功能及使用方法进行耐心细致的分析了解,切忌盲目猜测。信号发生器面板上有关部分通常按其功能分区布置,一般包括:波形选择开关、输出频率调谐部分(包括波段、粗调、微调等)、幅度调节旋钮(包括粗调、细调)、阻抗变换开关、指示电压表及其量程选择、电源开关及电源指示、输出接线柱等。
5. AD9850 芯片介绍
AD9850是AD公司生产的最高时钟为125 MHz、采用先进的CMOS技术的直接频率合成器,主要由可编程DDS系统、高性能模数变换器(DAC)和高速比较器3部分构成,能实现全数字编程控制的频率合成,并具有时钟产生功能。AD9850的DDS系统包括相位累加器和正弦查找表,其中相位累加器由一个加法器和一个32位相位寄存器组成,相位寄存器的输出与外部相位控制字(5位)相加后作为正弦查找表的地址。正弦查找表实际上是一个相位/幅度转换表,它包含一个正弦波周期的数字幅度信息,每一个地址对应正弦波中0。一360。范围的一个相位点。查找表把输入地址的相位信息映射成正弦波幅度信号,然后驱动10bit的DA变换器,输出2个互补的电流,其幅度可通过外接电阻进行调节。AD9850还包括—个高速比较器,将DA变换器的输出经外部低通滤波器后接到此比较器上即可产生一个抖动很小的方波,这使得AD9850可以方便地用作时钟发生器。AD9850包含40位频率/相位控制字,可通过并行或串行方式送人器件:并行方式指连续输入5次,每次同时输入8位(1个字节);串行方式则是在—个管脚完成40位串行数据流的输入。这40位控制字中有32位用于频率控制,5位用于相位控制,1位用于掉电(powerdown)控制,2位用于选择工作方式。在并行输入方式下,通过8位总线D0一D7将外部控制字输入到寄存器,在W—CLK(字输入时钟)的上升沿装入第一个字节,并把指针指向下一个输入寄存器,连续5个W—CLK的上升沿读入5个字节数据到输入寄存器后,W—CLK的边沿就不再起作用。然后在rQ—UD(频率更新时钟)上升沿到来时将这40位数据从输入寄存器装入到频率/相位寄存器,这时DDS输出频率和相位更新一次,同时把地址指针复位到第一个输入寄存器以等待下一次的频率/相位控制字输入。
6 硬件设计
要产生两路相位正交、频率可由外部控制的正弦信号,必须通过单片机编程来完成外部输入的频率数据(3个字节)与DDS38芯片(AD9850)内部频率相位控制字(5个字节)间的转换。单片机8051与AD9850芯片的接口既可采用并行方式,也可采用串行方式,本设计采用的是8位并行接口方式。由于需要产生VQ两路正弦信号,因此使用了2片AD9850芯片,这两路的频率相同,相位差90。。单片机8051的P1口(P1.0一P1.7脚)用作外部控制字输入,通过中断1和中断0读入外部频率数据,连续读3次,对应频率值的二进制数;单片机的P0口(P0.0一P0.7脚)用作频率/相位控制字输出,通过8位缓冲器74LS244作数据缓冲后加到2片AD9850芯片的8位控制字输入端(DO—D7脚),同时产生相应的DDS时序控制信号(一路复位reset1、二路复位reset2、一路字输入时钟W1、二路字输入时钟W2、一路频率更新时钟FU1、二路频率更新时钟FU2)加到AD9850芯片的对应管脚。AD9850的外部参考时钟信号(dk4Om)频率为40 MHz,由晶体振荡器产生。单片机8051的复位信号(reset)、中断0和中断1控制信号(intO、int1)由外部控制系统给出,从而实现两路相位正交、频率可控的正弦信号。该DDS信号源的硬件接口电路如图1所
图1 DDS信号源硬件接口电路
7. 软件控制
此程序的功能就是要将外部输入的频率数据按照一定协议和算法变换成DDS芯片(AD9850)所能接受的格式,并送出相应的频率相位控制信号,从而使AD9850能产生两路相位正交、频率可控的正弦信号。下面给出程序设计输入、输出、变换算法。
(1) 输入
数据同步:上升沿时读人1个字节的频率数据,作为intl中断输入;
数据写入:上升沿时频率更新1次,作为intO中断输入;
8位数据:输入的频率字节。分3次输入,如图2所示。

(2)输出
单片机控制程序将产生下述输出信号加到DDS芯片(AD9850)的对应脚:
reset1:一路DDS复位(一路AD9850第22脚);
reset7.:二路DDS复位(-路AD9850第22脚);
w1:一路数据同步(一路AD9850第7脚);
w2:二路数据同步(二路AD9850第7脚);
ful:一路数据写入(一路AD9850第8脚);
fu2:二路数据写入(二路AD9850第8脚);
P0口(P0.0一P0.7):8位频率/相位数据输出(AD9850的DO—D7脚)。
(3)算法:程序中单片机输入频率数据F(3个字节)与输出频
率数据△P(4个字节)间的变换算法见式(2)
其中CLKIN为外部参考时钟(40 M Hz)。
(4)程序流程:整个程序由主程序、中断0子程序、中断1子
程序三部分构成。流程图略。
8 结论
对设计的信号源在不同频率下的输出波形进行了测试,结果完全能达到所要求的性能指标。而且AD9850工作可靠,对参考时钟波形要求不高,输出信号稳定且信噪比高,是一种性价比很高的芯片,正广泛应用于电子测量、跳频通信、雷达系统等领域。
9 致谢
通过对低频信号发生器的设计,我深刻认识到了“理论联系实际”的这句话的重要性与真实性。而且通过对此课程的设计,我不但知道了以前不知道的理论知识,而且也巩固了以前知道的知识。最重要的是在实践中理解了书本上的知识,明白了学以致用的真谛。也明白老师为什么要求我们做好这个课程设计的原因。他是为了教会我们如何运用所学的知识去解决实际的问题,提高我们的动手能力。在整个设计到电路的焊接以及调试过程中,我个人感觉调试部分是最难的,因为你理论计算的值在实际当中并不一定是最佳参数,我们必须通过观察效果来改变参数的数值以期达到最好。而参数的调试是一个经验的积累过程,没有经验是不可能在短时间内将其完成的,而这个可能也是老师要求我们加以提高的一个重要方面吧
参考文献:
【1】高卫东.等.AD9850 DDS芯片信号源的研制【J】.实验室研究与探
索,2000,(5).
【2】石雄.等.DDS芯片AD9850的工作原理及其与单片机的接口【J】.国
外电子元器件,2001。(5).
(上

Ⅸ 求at89s51的基于单片机的红外通信程序

我之前卖的学习板上有个红外通信的程序,我加了大量的注释,你参考一下吧。

;遥控器读码程序(晶振为11.0592),该程序能读出遥控器的控制码,并通过LED显示出来
;***************************************************************
A_BIT EQU 20H ;数码管个位数存放内存位置
B_BIT EQU 21H ;数码管十位数存放内存位置
NO_OUT EQU 24H ;最终控制号码存放单元
A_NO EQU 25H ;数码管个位数对应代码存放内存位置
B_NO EQU 26H ;数码管十位数对应代码存放内存位置
;22H,23H为控制码及其反码的存放单元

;*******************<<主程序>>***********************************
ORG 0000H
AJMP 0030H
ORG 0003H ;外部中断P3.2脚INT0入口地址
AJMP INT ;转入外部中断服务子程序(解码程序)
ORG 0030H
AJMP MAIN ;转入主程序
;***************************************************************
MAIN: MOV NO_OUT,#0H
SETB EA ;打开CPU总中断请求
SETB IT0 ;设定INT0的触发方式为脉冲负边沿触发
SETB EX0 ;打开INT0中断请求
LOOP: MOV A,NO_OUT;将按键的键值通过P1口的8个LED显示出来!
CPL A ;由于P1发光二极管显示的是电平的反状态,所以取反
MOV P1,A ;发光二极管显示输出
LCALL DISPLAY;LED数码管显示输出
AJMP LOOP;循环
;********************<<中断接受遥控程序>>************************
;以下为进入P3.2脚外部中断子程序,也就是解码程序
INT:
PUSH ACC
PUSH PSW ;将PSW和ACC推入堆栈保护
CLR EA ;暂时关闭CPU的所有中断请求
MOV R6,#10
SB: LCALL DL865;调用865微秒延时子程序
JB P3.2,EXIT;延时865微秒后判断P3.2脚是否出现高电平如果有就退出解码程序
DJNZ R6, SB;重复10次,目的是检测在8650微秒内如果出现高电平就退出解码程序
;以上完成对遥控信号的9000微秒的初始低电平信号的识别。
JNB P3.2, $ ;等待高电平避开9毫秒低电平引导脉冲
LCALL DL4737 ;延时4.74毫秒避开4.5毫秒的结果码
MOV R7,#16;忽略前26位系统识别码

JJJJA:JNB P3.2,$;等待地址码第一位的高电平信号
LCALL DL865;高电平开始后用865微秒的时间尺去判断信号此时的高低电平状态
MOV C,P3.2;将P3.2引脚此时的电平状态0或1存入C中
JNC UUUA;如果为0就跳转到UUUA
LCALL DL1000;检测到高电平1的话延时1毫秒等待脉冲高电平结束
UUUA: DJNZ R7,JJJJA
MOV R1,#22H ;设定22H为起始RAM区
MOV R2,#2;接收从22H到23H的2个内存,用于存放操作码和操作反码
PP: MOV R3,#8;每组数据为8位
JJJJ: JNB P3.2,$;等待地址码第一位的高电平信号
LCALL DL865;高电平开始后用865微秒的时间尺去判断信号此时的高低电平状态
MOV C,P3.2;将P3.2引脚此时的电平状态0或1存入C中
JNC UUU;如果为0就跳转到UUU
LCALL DL1000;检测到高电平1的话延时1毫秒等待脉冲高电平结束
UUU: MOV A,@R1;将R1中地址的给A
RRC A;将C中的值0或1移入A中的最低位
MOV @R1,A;将A中的数暂时存放在R1数值的内存中
DJNZ R3,JJJJ;接收满8位换一个内存
INC R1;对R1中的值加1,换下一个RAM
DJNZ R2,PP ;接收完8位数据码和8位数据反码,存放在22H/23H中
MOV A,22H
CPL A;对22H取反后和23H比较
CJNE A,23H,EXIT;如果不等表示接收数据发生错误,放弃
MOV A,22H
MOV NO_OUT,A
;LCALL EEPROM_C ;清除以前的保存的码
;LCALL DL4737
;LCALL EEPROM_W ;把码存在单片机内部的EEPROM里
;LCALL DL4737
CLR P3.6;蜂鸣器鸣响-嘀嘀嘀-的声音,表示解码成功
LCALL DL4737
LCALL DL4737
LCALL DL4737
SETB P3.6;蜂鸣器停止
lcall DL4737
EXIT: SETB EA ;允许中断
POP PSW
POP ACC ;将PSW和ACC推入堆栈保护
RETI ;退出解码子程序

;*******************<<LED数码管显示子程序>>**********************
DISPLAY:
MOV A,NO_OUT ;将NO_OUT分成个位和16位
ANL A,#0FH ;取低四位放在a_bit
MOV A_BIT,A ;个位
MOV A,NO_OUT ;
RR A
RR A
RR A
RR A ;四次移动,把高四位移到低四位
ANL A,#0FH;取高四位放在B_bit
MOV B_BIT,A ;个位在b
MOV DPTR,#NUMTAB ;指定查表启始地址
MOV A,A_BIT ;取个位数
MOVC A,@A+DPTR ;查个位数的7段代码
MOV A_NO,A
MOV A,B_BIT ;取十位数
MOVC A,@A+DPTR ;查十位数的7段代码
MOV B_NO,A
DPLOP:MOV A,A_NO
MOV P0,A ;送出个位的7段代码
;SETB P2.1;关闭十位显示,防止鬼影
CLR P2.0 ;开个位显示
LCALL DL40 ;显示4737微秒
SETB P2.0;关闭个位显示,防止鬼影
MOV A,B_NO
MOV P0,A ;送出十位的7段代码
CLR P2.1 ;开十位显示
LCALL DL40 ;显示4737微秒
SETB P2.1;关闭十位显示,防止鬼影
RET
;**********************<<延时程序>>******************************
DL865: MOV R4,#12 ; 1.09*(2R5+4)*R4+2延时子程序1,精确延时865微秒
D1: MOV R5,#31
DJNZ R5,$
DJNZ R4,D1
RET
DL4737: MOV R4,#12 ;延时子程序2,精确延时4737微秒
D2: MOV R5,#179
DJNZ R5,$
DJNZ R4,D2
RET
DL1000: MOV R4,#17;延时程序3,精确延时1000微秒
D3: MOV R5,#25
DJNZ R5,$
DJNZ R4,D3
RET
DL40: MOV R4,#1;延时程序4,精确延时40/17微秒
D4: MOV R5,#1
DJNZ R5,$
DJNZ R4,D4
RET

;****************************************************************
;如果是共阳数码管的显示代码 1-F 16个代码
NUMTAB: DB 0C0H,0F9H,0A4H,0B0H,99H,92H,82H,0F8H,80H,90H,88H,83H,0C6H,0A1H,86H,8EH ;STC新板的
END

阅读全文

与红外通信装置软件程序的设计相关的资料

热点内容
牛身上哪个部位绑定设备 浏览:636
加气阀门紧 浏览:660
移动通讯器材包括哪些 浏览:157
地暖气片5阀门 浏览:211
电工电子综合实验装置能做什么实验 浏览:886
水电自动装置检修工txt下载 浏览:875
自动灭火装置组件 浏览:145
超声波清洗机还可以洗什么 浏览:928
平台印刷机传动装置的设计 浏览:809
万向传动装置一般由什么和什么组成 浏览:549
清洗光学镜片设备有哪些 浏览:978
如何知道电动车电机轴承 浏览:396
内7外26高8什么轴承 浏览:812
迷你小冷藏柜不制冷怎么修 浏览:555
如何在路由器上查看上网设备 浏览:611
练声音的器材有哪些 浏览:718
肇庆车床五金件 浏览:645
阀门气缸是什么原因 浏览:277
飞机传动装置包括发动机吗 浏览:809
圆柱轴承安装后如何调整 浏览:565