导航:首页 > 装置知识 > 电容去离子实验装置

电容去离子实验装置

发布时间:2022-01-02 00:59:42

Ⅰ 纯水,超纯水与双蒸水,六蒸水有什么区别,是同一种水的不同叫法吗

1、纯水,超纯水与双蒸水,六蒸水(蒸馏水)组分不同

纯水和超纯水,又称高纯水,是指电阻率达到18 MΩ*cm(25℃)的水。这种水中除了水分子外,几乎没有什么杂质,更没有细菌、病毒、含氯二恶英等有机物,当然也没有人体所需的矿物质微量元素,也就是几乎去除氧和氢以外所有原子的水。

双蒸水,六蒸水(蒸馏水)通过蒸馏冷凝制得的水,所以里面的无机盐会含的很少。如果只是经过一次蒸馏得到的水,里面虽然那些不挥发的组分(盐类)被除去,但水中挥发的组分(氨、二氧化碳、有机物)还是会进入蒸馏水中。

2、纯水,超纯水与双蒸水,六蒸水(蒸馏水)离子作用不同

纯水和超纯水可以在以下领域使用:电子、电力、电镀、照明电器、实验室、食品、造纸、日化、建材、造漆、蓄电池、化验、生物、制药、石油、化工、钢铁、玻璃等领域。

单晶硅、半导体晶片切割制造、半导体芯片、半导体封装 、引线柜架、集成电路、液晶显示器、导电玻璃、显像管、线路板、光通信、电脑元件 、电容器洁净产品及各种元器件等生产工艺。

双蒸水,六蒸水(蒸馏水)在医药行业,蒸馏水的作用是因为低渗作用。用蒸馏水冲洗手术伤口,使创面可能残留的肿瘤细胞吸水膨胀,破裂,坏死,失去活性,避免肿瘤在创面种植生长。

学校里的化学实验,有些需要用蒸馏水,利用的就是蒸馏水无电解质,没有游离离子,或是没有杂质。你需要具体问题具体分析,看看是利用它不导电的性质,还是低渗作用,还是没有其他离子,不会发生化学反应的作用。


(1)电容去离子实验装置扩展阅读

超纯水制备:

在原子光谱、高效液相色谱、超纯物质分析、痕量物质等的某些实验中,需要用超纯水,超纯水的制备如下:

(1)加入少量高锰酸钾的水源,用玻璃蒸馏装置进行二次蒸馏,再以全石英蒸馏器进行蒸馏,收集于石英容器中,可得超纯水。

(2)使用强酸型阳离子和强碱型阴离子交换树脂柱的混合床或串联柱。可充分除去水中的阳、阴离子,其电阻率达10 Q·cm的水,俗称去离子水,再用全石英蒸馏器进行蒸馏,收集可得超纯水。

Ⅱ 实验室仪器设备的日常维护,保养规则有哪些

实验室设备日常保养与维护方法
实验仪器的保养与维护是实验室管理工作的重要组成部分,搞好仪器的保养与维护,关系到仪器的完好率、使用率和实验教学的开出率,关系到实验成功率。因此,作为实验教师应懂得教学仪器保养与维护的一般知识,掌握保养与维护的基本技能。

仪器一旦吸附灰尘、污垢,不仅影响仪器的性能,缩短使用寿命,直接影响实验效果,而且影响美观和实验者的身心健康。仪器在使用或贮藏中都会沾上灰尘和污垢,做到以防尘防污为主,经常地除尘清洗是搞好仪器保养与维护的重要环节。
(一)除尘

灰尘多为带有微量静电的微小尘粒,常飘浮于空气中,随气流而动,遇物便附着其上,几乎无孔不入。灰尘附着在模型标本上会影响其色泽,运动部件上有灰尘会增大磨损,电器上有灰尘,严重者会造成短路、漏电,贵重精密仪器上有灰尘,严重者会使仪器报废。
清除灰尘的方法很多,主要应依灰尘附着表面的状况及其灰尘附着的程度而定。在干燥的空气中,若灰尘较少或灰尘尚未受潮结成块斑,可用干布拭擦,毛巾掸刷,软毛刷刷等方法,清除一般仪器上的灰尘;对仪器内部的灰尘可用皮唧、洗耳球式打气筒吹气除尘,也可用吸尘器吸尘;对角、缝中的灰尘可将上述几种方法结合起来除尘。不过对贵重精密仪器,如光学仪器、仪表表头等,用上述方法除尘也会损坏仪器,此时应采用特殊除尘工具除尘,如用镜头纸拭擦,沾有酒精的棉球拭擦等。

在空气潮湿,灰尘已结成垢块时,除尘应采用湿布拭擦,对角、缝中的灰垢可先用削尖的软大条剔除,再用湿布试擦,但是对掉色表面、电器不宜用湿布拭擦。若灰垢不易拭擦干净,可用沾有酒精的棉球进行拭擦,或进行清洗。

(二)清洗

仪器在使用中会沾上油腻、胶液、汗渍等污垢,在贮藏保管不慎时会产生锈蚀、霉斑,这些污垢对仪器的寿命、性能会产生极其不良的影响。清洗的目的就在于除去仪器上的污垢。通常仪器的清洗有两类方法,一是机械清洗方法,即用铲、刮、刷等方法清洗;二是化学清洗方法,即用各种化学去污溶剂清洗。具体的清洗方法要依污垢附着表面的状况以及污垢的性质决定。下面介绍几种常见仪器和不同材料部件的清洗方法。

1. 玻璃器皿的清洗

附着玻璃器皿上的污垢大致有两类,一类是用水即可清洗干净的,另一类则是必须使用清洗剂或特殊洗涤剂才能清洗干净的。在实验中,无论附在玻璃器皿上的污垢属哪一类,用过的器皿都应立即清洗。

盛过糖、盐、淀粉、泥砂、酒精等物质的玻璃器皿,用水冲洗即可达到清洗目的。应注意,若附着污物已干硬,可将器皿在水中浸泡一段时间,再用毛刷边冲边刷,直至洗净。

玻璃器皿沾有油污或盛过动植物油,可用洗衣粉、去污粉、洗洁精等与配制成的洗涤剂进行清洗。清洗时要用毛刷刷洗,用此洗涤剂也可清洗附有机油的玻璃器皿。玻璃器皿用洗涤剂清洗后,还应用清水冲净。

对附有焦油、沥青或其他高分子有机物的玻璃器皿,应采用有机溶剂,如汽油、苯等进行清洗。若还难以洗净,可将玻璃器皿放入碱性洗涤剂中浸泡一段时间,再用浓度为5%以上的碳酸钠、碳酸氢钠、氢氧化钠或磷酸钠等溶液清洗,甚至可以加热清洗。

在化学反应中,往往玻璃器皿壁上附有金属、氧化物、酸、碱等污物。清洗时,应根据污垢的特点,用强酸、强碱清洗或动用中和化学反应的方法除垢,然后再用水冲洗干净。使用酸碱清洗时,应特别注意安全,操作者应带橡胶手套防护镜;操作时要使用镊子,夹子等工具,不能用手取放器皿。

此外,洗净的玻璃器皿,最后应用毛巾将其上沾附的水擦干。
2. 光学玻璃的清洗
光学玻璃用于仪器的镜头、镜片、棱镜、玻片等,在制造和使用中容易沾上油污、水湿性污物、指纹等,影响成像及透光率。清洗光学玻璃,应根据污垢的特点、不同结构,选用不同的清洗剂,使用不同的清洗工具,选用不同的清洗方法。

清洗镀有增透膜的镜头,如照相机、幻灯机、显微镜的镜头,可用20%左右的酒精配制清洗剂进行清洗。清洗时应用软毛刷或棉球沾有少量清洗剂,从镜头中心向外作圆运动。切忌把这类镜头浸泡在清洗剂中清洗;清洗镜头不得用力拭擦,否则会划伤增透膜,损坏镜头。

清洗棱镜、平面镜的方法,可依照清洗镜头的方法进行。

光学玻璃表面发霉,是一种常见现象。当光学玻璃生霉后,光线在其表面发生散射,使成像模糊不清,严重者将使仪器报废。光学玻璃生霉的原因多是因其表面附有微生物孢子,在温度、湿度适宜,又有所需″营养物″时,便会快速生长,形成霉斑。对光学玻璃做好防霉防污尤为重要,一旦产生霉斑应立即清洗。

消除霉斑,清洗霉菌可用0.1~0.5%的乙基含氢二氯硅烷与无水酒精配制的清洗剂清洗,或用环氧丙烷、稀氨水等清洗。

使用上述清洗剂也能清洗光学玻璃上的油脂性雾、水湿性雾和油水混合性雾,其清洗方法与清洗镜头的方法相仿。
3. 橡胶件的清洗

实验仪器中用橡胶制成的零部件很多,橡胶作为一种高分子有机物,在沾有油腻或有机溶剂后会老化,使零部件产生形变,发软变粘;用橡胶制成的传动带,若沾有油污会使摩擦系数减小,产生打滑现象。

清洗橡胶件上的油污,可用酒精、四氯化碳等作为清洗剂,而不能使用有机溶剂作为清洗剂。清洗时,先用棉球或丝布蘸清洗剂拭擦,待清洗剂自然挥发干净后即可。应注意,四氯化碳具有毒性,对人体有害,清洗时应在较好通风条件下进行,注意安全。

4. 塑料件的清洗

塑料的种类很多,有聚苯乙烯、聚氯乙烯、尼龙、有机玻璃等。塑料件一般对有机溶剂很敏感,清洗污垢时,不能使用如汽油、甲苯、丙酮等有机溶剂作为清洁剂。清洗塑料件用水、肥皂水或洗衣粉配制的洗涤剂洗擦为宜。

5. 钢铁零部件除锈

钢铁零部件极易锈蚀,为防止锈蚀,教学仪器产品中的钢铁件常涂有油层、油漆等防护层,但即使如此,锈蚀仍常发生。清除钢铁零部件的锈蚀,应根据锈蚀的程度以及零部件的特点采用不同的方法。

对尺寸较大,精密程度不高或用机械方法除锈不易除净钢铁零部件,可采用化学方法除锈,如用浓度为2~25%的磷酸浸泡欲除锈的部件,浸泡时加温至40~80℃为宜,待锈蚀除净后,其表层会形成一层防护膜,再将部件取出浸泡在浓度为0.5~2%的磷酸溶液中约一小时,最后取出烘干即可。

在实验室使用这类化学方法除锈中若操作稍有不当,反会损坏零部件,特别是精密零部件。因此在实验室,除锈不宜多用化学方法,而应采用机械除锈方法,即先用铲、剔、刮等方式将零部件上的锈蚀层块除去,再用砂纸砂磨、打光,最后涂上保护层。

对于有色金属及其合金材料构成的零部件,其除锈方法可参照钢铁零部件的除锈方法进行。但应注意两点,其一,采用化学方法除锈时,应根据零部件材料的化学特性配制和使用不同的化学除锈剂;其二,除去有色金属及其合金构成的零部件的锈蚀,一般采用机械除锈方法为宜。

Ⅲ 正负极都是电沉积物质怎么组装超级电容器

循环伏安法沉积石墨基PbO2电极及其超级电容器应用
发布日期:2012-04-25
二氧化铅作为电极材料具有广泛的工业用途,如能源转换装备、有机合成以及污水处理等,其中二氧化铅作为铅酸蓄电池阳极活性物质被大量使用。铅酸蓄电池的比能量在30~40Wh/kg范围,然而比功率较小(约200~300W /kg),循环寿命差(300~500次)。采用活性碳(AC)为电极材料的超级电容具有比功率高(>1 kW /kg),循环寿命长(>100 000次)等优点[1],因此将两者结合组成复合超级电容,如PbO2/H2SO4/AC体系,成为研究热点[2]。与工业制备铅膏的铅酸电池正极相比,电化学法沉积的二氧化铅能提高阳极活性物质的利用率[3-4],且具有以下优点: (ⅰ)通过调整电化学参数可以准确地控制膜的厚度和表面形貌[5], (ⅱ)能在形状复杂的基体形成相对均一的膜, (ⅲ)有较高的沉积率。
当前文献报道[6-7],在PbO2电沉积过程中,有可溶性的反应中间体的存在,它们有可能是Pb(3价)或Pb(4价)的复杂含氧基团,Velichenko[8]等研究在硝酸溶液中电沉积PbO2发现, PbO2的电沉积过程受电子转移或Pb2+扩散限制,反应机理如下:

第一步形成可被吸附的含氧基团如OH,随后该含氧基团与Pb发生化学反应形成可溶性的反应中间体,可能含有Pb(3价),而后进一步被氧化形成PbO2。
作为复合超级电容体系的正极材料,循环伏安法沉积的石墨基PbO2具有电极厚度薄,石墨集流体在硫酸中抗腐蚀等优点,能够与活性碳负极很好匹配。本文重点研究用循环伏安法在石墨板基底上沉积PbO2薄膜电极,并与活性碳负极组装成混合超级电容器,并运用恒流充放电、循环寿命、交流阻抗等电化学方法来研究其电化学性能。
1·实验部分
1.1正负电极的制备
选用石墨板作为正极PbO2沉积的基体,将厚度为1. 055 mm,面积为1×1 cm2的石墨板用去离子水清洗干净,再在2. 5 mol·L-1NaOH中进行电化学除油(阳极电流300 mA·cm-2,时间为30min),再于1. 5 mol·L-1HNO3中浸泡10 min,去离子水洗净,烘干。采用三电极体系进行循环伏安电沉积石墨基PbO2薄膜电极,所有电化学操作均在德国ZAHNER-IM6型电化学工作站上进行。PbO2电极制备的实验装置为三电极体系(图1),处理后的石墨板作为工作电极,选用铂片电极作为对电极,饱和甘汞电极(SCE)作为参比电极。本文所有电势都是相对饱和甘汞电极而言,实验操作均在(25±1)℃下进行。电镀液的组成为0. 5 mol Pb(NO3)2+1 molHNO3,循环伏安电沉积的电势扫描范围(0. 4~2. 0 )V,扫描速率为20 mV/s,循环周期分别采用50个和100个。

负极活性碳电极的制备工艺如(图2)所示。将活性碳、导电剂(乙炔黑)和添加剂进行均匀混合,添加一定量粘结剂聚四氟乙烯(PVDF),活性炭与乙炔黑、聚四氟乙烯按质量比为0. 85:0. 10:0. 05,加入适量无水乙醇搅拌均匀,进行和浆处理,涂布在钛箔集流体上制成预成型件。然后,真空干燥,在一定压力下进行压制成型,即制得一定尺寸的负极电极片。

1.2电极材料测试
为了考察电极表面PbO2颗粒的表面形貌,用日立公司4800型扫描电子显微镜(SEM)分析了PbO2电极表面的形态和粒径。为了研究实验制备的PbO2电极的材料晶型,采用日本Rigaku D/Max-ШA型X射线衍射仪对所得样品进行XRD分析,使用Cu-Kα射线(λ=1.540 56 A)管压40 kV,管流300MV,扫描速度8°min-1,2θ扫描范围20~70°。
1.3超级电容器的组装与测试
用循环伏安法沉积制备的石墨基PbO2电极作正极,活性碳电极作负极,电解液采用1. 28 g·cm-3H2SO4溶液,多孔碳纤维纸作为隔膜,组装成混合超级电容器。并研究了其恒流充放电、循环寿命、交流阻抗等电化学特性。循环伏安(CV)测试是在德国ZAHNER ELECKTRIC公司的IM6e电化学工作站上进行的。循环寿命测试是在LAND 2000充放电测试仪上测试的。交流阻抗测试是在德国ZAHNER ELECKTRIC公司的IM6e电化学工作站上进行,在工作电极上施加一个小幅值交流信号(5mV)通过检测所得的电流信号得到复数阻抗,分析阻抗图谱可以得到我们需要的体系的信息。
2·结果与讨论
目前应用较多的电化学沉积方法通常有恒电流法、恒电压法、循环伏安法等[5, 9-11]。电化学方法沉积PbO2的过程中电极的表面形貌和结构主要受到传质过程的影响。恒电流沉积可以通过调节沉积电流大小和电镀液中活性物的浓度,减小传质限制,进而达到控制PbO2的结构[12];而恒电压沉积是通过调节沉积电压大小来控制PbO2的结构[5]。在电沉积过程中,电流密度是影响电极表面电化学反应的决定性因素,因此理论上恒电流沉积能更有效地控制沉积过程和沉积速率[13],恒电流法和恒电压法制备的PbO2电极性能进行对比,结果发现恒电流法制备的PbO2电极性能要优于恒电压法[5]。而循环伏安法沉积主要应用于制备导电聚合物,用于合成氧化物的报道非常少,可能是因为氧化物的导电性一般较差,电沉积形成一层膜后表面电阻增大,阻止了电沉积的进一步进行[14];而PbO2具有良好的导电性,能够持续发生电沉积反应,可用循环伏安法进行电沉积;但在循环伏安法制备过程中,由于电流和电压都是变化的,所以过程更为复杂。
2.1PbO2电极的电沉积过程
循环伏安法沉积石墨基PbO2薄膜电极,在三电极体系下,在电镀液中通过恒电流/恒电位仪产生循环伏安电位差,从而使铅化物发生氧化还原变化,沉积在作为工作电极的石墨板基体上。PbO2薄膜电极的循环伏安法制备中,对工作电极来说,根据电镀液中铅化物发生反应的电极电势范围加上循环伏安电压后,在一定电压范围内,对于工作电极来说,电流为负,此时石墨板基体为阴极,电镀液中的铅化物先驱体首先发生阴极电沉积。当电压变化到使电流反向变正时,石墨板基体变为阳极,沉积的铅化物先驱体被阳极氧化到较高的氧化态。当电流再次变为负时,沉积反应又发生,如此循环, PbO2便层层沉积到石墨板基体上。石墨板基底电极在0. 5 molPb(NO3)2+1 molHNO3电镀液中,电势扫描范围为(0. 4~2. 0)V,扫描速率为20 mV/s,循环周期分别采用50个和100个,图3是石墨基底电极在电镀液中的循环伏安电沉积图。由图可知: PbO2的沉积和溶解过程都是很迅速的,在氧化和还原峰时有大的电流突跃,在正向扫描过程中,当电势达到1. 7 V时,PbO2开始凝结成核,随着电势的增加PbO2镀层不断增长,直到反向扫描电势达到1. 55 V结束。在1.5 V左右开始发生还原反应,反向扫描一直到1. 0左右才结束,呈现一个较宽的PbO2还原蜂,说明PbO2完全被还原仍然是个比较慢的过程,所以最终在石墨板基底电极上沉积的PbO2量要大于溶解的PbO2量,经过50个和100个循环周期都能形成比较好的PbO2薄膜电极。

2.2扫描电子显微镜(SEM)分析
采用循环伏安法在石墨基底上沉积PbO2涂层, 50个和100个循环周期所制备的PbO2电极扫描电子显微镜(SEM)测试照片(图4), (a)为50个周期所制备的PbO2电极, (b)为100个周期所制备的PbO2电极。不同周期沉积的膜的形貌是不同的,由图可知:50个循环周期时的沉积物颗粒大小不规则,形貌开裂,易剥落。随沉积周期的增加,到l00个循环后电极表面的裂缝不再可见,表面呈凝胶状。

由凝胶可知电极表面可能既有二氧化铅晶体,又有二氧化铅结构水合物,其分子式为PbO(OH)2,形成1个晶体一凝胶体系。由于

平衡反应的进行,整个体系的凝胶密度能维持在临界值之上,从而电子导电率和质子导电率均较高。在此结构上,质子和电子放电机理为[15]:

即等量的电子和质子进入二氧化铅(包括未水化的晶体及水化的无定形相),因此结构水合物电极的反应速率以及电化学活性由电子和质子在其中的输送速率控制,结构水合物在一定程度上能提高电极的放电性能。
2.3X-射线衍射(XRD)分析
为了进一步确定电极表面的晶相组成,实验还对电极进行了XRD测试,结果(图5)所示。采用循环伏安法制备的电极衍射谱图相对比较复杂。由图可知: 100个循环周期所制备的电极中同时存在PbO2、石墨(graphite)和Pb(NO3)2,谱图中有一个graphite很强的特征衍射峰,这应该是由于石墨板(graphite substrate)作为PbO2电极的集流体, PbO2沉积其上而活性物质之间又有间隙,所以在测试时会出现集流体石墨板的衍射峰;谱图中有几个Pb(NO3)2的特征衍射峰但衍射峰的强度不大,可知其在电极中含量不大,这是由于电沉积过程是发生在Pb(NO3)2的电镀液中,而且PbO2电极表面因吸附质子带正电荷,电荷平衡原理使得NO-3极易吸附在电极表面,大量的蒸馏水清洗电极表面也不可能全部除去表面的负电荷,因此PbO2电极的内部结构中存在少量的Pb(NO3)2。谱图中有较多四方结构的β- PbO2的特征衍射峰,可知其是电极的主要成分。而对比发现50个循环周期所制备的电极中的主要成分也是β- PbO2,和100个循环周期所制备的电极主要成分相差不大,说明100个循环周期所制备电极表面的二氧化铅结构水合物凝胶并不能产生相应的特征衍射峰。恒电流法沉积制备的电极材料是α- PbO2和β- PbO2的混合物,α- PbO2的含量随着沉积电流的减小而减小,当电流密度减小为1 mA·cm-1时, PbO2电极中仅含有β-PbO2[12];恒电压法沉积得到的电极也是α- PbO2和β- PbO2的混合物[5];循环伏安法沉积是一个很复杂的过程,而就电化学性能而言,α-PbO2在结构方面比β-PbO2更加紧密,在样品中起到使颗粒之间更好的电子接触传递作用,但是正是这样的紧密结构使得α-PbO2在放电性能方面远不如β-PbO2,β-PbO2在PbO2/AC混合超级电容器中比α-PbO2具有更好的电化学活性[12, 16],所以通过循环伏安法沉积可以得到电化学活性较好的电极材料。

2.4PbO2/活性碳混合超级电容器的性能研究
2. 4. 1恒流充放电性能研究将采用50个和100个循环周期所分别制备的PbO2薄膜电极作正极,活性碳电极作负极, 1. 28 g·cm-3H2SO4溶液作电解液组装成混合超级电容器,在250 mA·g-1电流密度下, 0. 8~1. 86 V电位区间内进行恒流充放电性能测试,图6为这两种电极分别组成的电容器的充放电曲线对比。由图可知: 50个和100个循环周期所制备的PbO2电极组成电容器的充放电性能都较好,但50个周期的PbO2电极组成电容器的放电IR降较大,这可能是因为电极表面所存在的裂缝导致其导电性不好,所以内阻较大;而100个周期的PbO2电极组成电容器的放电IR降较小,放电时间更长,说明其电极沉积物与石墨集流体的接触紧密且导电性好。IR降是放电曲线陡然下降的部分,是由电容器欧姆内阻导致的。根据公式:

Cm为比电容值,△t为时间差,△V为电压差,m为活性物质质量值,可以计算出活性物质的比容量。由公式计算得出100个循环周期所制备的PbO2电极组成电容器的比容量为112. 8 F·g-1, 50个循环周期所制备的PbO2电极组成电容器的比容量为80.3 F·g-1。所以, 100个循环周期条件下所制备PbO2电极的放电性能要优于50个循环周期条件,与SEM中得出结构水合物在一定程度上能提高电极的放电性能的结论相吻合。

2. 4. 2循环寿命测试图7为用100个循环周期
所制备的PbO2电极作正极与活性碳负极组装成混合超级电容器,在1. 28 g·cm-3H2SO4溶液中的循环寿命图,电流密度为500 mA·g-1,充放电电压区间为0. 8~1. 86 V,由图可知混合电容的最高比容量可达96. 8 F·g-1,而且经过2 000多次的深循环比容量仍能达到89. 2 F·g-1,容量保持率高达92%以上且有较好的稳定性。由图中可知电容的库仑效率开始并不高,随着充放电循环的进行有一个比较大的上升过程,经过大概200多次循环能达一个比较高的效率,之后上升变缓慢;这是因为正极活性物质二氧化铅有一个被激活的过程,随着充放电循环的进行,电解液硫酸逐渐进入到二氧化铅中与之反应,电极深处的活性物质才被充分利用起来。由于负极活性碳电极为双电层电容性能稳定,而混合超级电容的性能主要决定于正极二氧化铅的电化学性能,所以库仑效率有一个稳定上升的过程,库仑效率总体比较高,能达85%以上[12, 17]。

2. 4. 3交流阻抗法测试图8是用100个循环周期所制备的PbO2电极作正极与活性碳负极组装成混合超级电容器在开路电位时的交流阻抗复平面图,加一个5 mV的正弦激发波,频率范围为10-2~10+5Hz。曲线由一小半圆和一非垂直于实部的直线组成,高频区的阻抗代表电解质/氧化物电极界面的电荷传输反应所引起的阻抗Rc,t其数值通常由半圆直径表达出来,低频区的直线则是溶液中离子在氧化物电极界面扩散所引起的Warburg阻抗[18]。由图可知混合电容器表现的并非纯电容特性,在电极表面存在氧化还原反应,电荷迁移产生法拉第准电容,并且扩散过程控制电荷迁移反应。从高频曲线与实轴的交点,可以得知,该混合超级电容器的溶液电阻(Warburg)大约为0. 86Ω,小半圆的半径大小可知反应中电荷迁移电阻(Rct)大约为2. 74Ω。

3·结论
石墨板具有优良的导电性和很强的搞腐蚀能力,在浓硫酸中是一种很好的集流体材料。本文利用循环伏安法在石墨板基底上沉积PbO2薄膜电极,分别采用50和100个循环周期制备PbO2电极,通过SEM和XRD研究了电极的表面形貌和结构特性。发现电极的表面有明显的区别,前者表面出现裂缝,而后者表面结构致密;沉积的PbO2颗粒主要成分均是β- PbO2。用这两种不同循环周期所制备的PbO2电极与活性碳电极匹配组装成混合超级电容器,恒流充放电对比曲线说明了100个循环周期所制备PbO2电极的放电性能要优于50个循环周期的,这与SEM中得出的结论相吻合。循环寿命测试表明混合电容器在500 mA·g-1电流密度下比容量可达96. 8 F·g-1, 2000多次深循环后容量保持率高达92%以上;交流阻抗显示电容器的欧姆内阻很小,说明石墨板与活性物质PbO2接触很紧密且导电性好。采用循环伏安法制备的石墨基PbO2电极在超级电容中具有很好的电化学性能,在超级电容器领域之中有着潜在的应用价值,如何进一步提高电容器活性物质的比容量成为继续研究的重点。

Ⅳ 如何做好实验室仪器设备的维护保养工作

随着科学技术的发展,教学现代化程度的提高,高校的科研、教学对仪器设备的专要求越来越属高。仪器设备是实验室的重要资源之一,是实验室出具报告(证书)的保证。为了确保检测数据的准确可靠,除了对仪器设备按周期检定、校准、期间核查外,还要做好仪器设备的日常维护和保养工作。1、加强仪器设备管理,做到合理安全存放仪器设备存放要合理,做到光学仪器、精密仪器和普通仪器分开存放,科研设备和学生操作仪器分开放,实验药品和仪器分开放,此外,仪器设备的摆放还要科学合理、整齐美观、陈列有序、取用方便。危险品按其易燃、易爆、腐蚀、毒害等特性分柜隔离存放在危险品室内,要避免因混放(氧化剂和易燃物混放)而诱发的火灾事故;强氧化剂(如氯酸钾、高氯酸)和某些混合物(如氯酸钾和红磷的混合物)易发生爆炸,保存或使用这些药品时应注意安全;银氨溶液久置后也易发生爆炸,用后不能保存,应倾入水槽中;易燃、易挥发的有机溶剂(乙醇、乙醚、苯、丙酮等)要密封保存在阴凉的地方而且远离火源。辐射类物品必须有铅皮等包裹;精密控温水银柱要竖直放置防止水银断柱发生断路。

Ⅳ 电容去离子技术方向的博士有钱途吗

电去离子技术(EDI,electrodeionization),是将离子交换树脂填充在电渗析器的淡水室中从而将离子交换与电渗析进行有机结合,在直流电场作用下同时实现离子的深度脱除与浓缩,以及树脂连续电再生的新型复合分离过程。该方法既保留了电渗析连续除盐和离子交换树脂深度除盐的优点,又克服了电渗析浓差极化所造成的不良影响,且避免了离子交换树脂酸碱再生所造成的环境污染。所以,无论从技术角度还是运行成本来看,EDI都比电渗析或离子交换更高效。但同时处理过程中也不同程度存在膜堆适用性差,过程运行不够稳定,易形成金属氢氧化物沉淀等问题。随着研究的不断深入,上述问题将逐步解决,EDI也将成为一种很有发展潜力的重金属废水处理技术。

Ⅵ 航母用的飞轮储能装置经过模拟船舶摇摆试验吗

电磁弹射器的结构美军研发的电磁弹射器由三大主要部件构成,分别是线性同步电动机、盘式交流发电机和大功率数字循环变频器。线性同步电动机是电磁弹射器的主体,它是20世纪80年代末期研究的电磁线圈炮的放大版。20世纪80年代,美国太空总署(NASA)桑地亚中心一直在进行电磁线圈炮的概念性研发工作,他们曾尝试修建一个长700米、仰角30度、口径500毫米、采用12级、每级3000个电磁线圈的巨炮,可以将2吨重的火箭加速到4000~5000米/秒,推送到200千米以上的高度。NASA预计使用这个系统发射小型卫星或者为未来兴建大型近地空间站提供廉价的物资运送方式,其发射成本只有火箭的1/2000。在早期概念性研究阶段,NASA发展了一系列解决瞬间能源的技术方案,这些都成为电磁弹射的技术基础。美国EMALS中的线性同步电动机采用了单机驱动的方式,只是用一台直线电机直接驱动,和以前的双气缸蒸汽弹射并联输出不同。线性电动机长95.36米,末段有7.6米的减速缓冲区,整个弹射器长103米。弹射器中心的动子滑动组,由190块环形的第三代超级稀土钕铁硼永磁体构成,每一块永磁体间有细密的钛合金制造的承力骨架和散热器管路,中心布置有强力散热器。虽然滑组在工作中其本身只有电感涡流和磁涡流效益产生不多的热量,但是其位置处于中心地带,散热条件不好,且永磁体对温度敏感,高过一定温度就会失效。滑组和定子线圈间保持均匀的6.35毫米间隙,相互间不发生摩擦,依靠滑车和滑车轨道之间的滑轮保持这个间隙不变。滑动组上因为没有需要使用电的装置,所以结构比较简单,且无摩擦设备,需要检修和维修的工作量极少。弹射中,每一块定子磁体将只承受2.7千克/平方厘米的应力。由于滑动组采用了固定的高磁永磁体,所以定子被设计成电磁,形状为马鞍形,左右将滑动组包围,上部有和标准蒸汽弹射器相同大小的35.6毫米的开缝。定子采用模块化设计,共有298个模块,分为左右两组,每个模块由宽640毫米、高686毫米、厚76毫米的片状子模块构成。一个模块上有24个槽,每个槽用3相6线圈重叠绕制而成,这样每一个模块就有8个极,磁极距为80毫米。槽间采用高绝缘的G10材料制成,每个槽都用环氧树脂浇铸,将其粘接成一个无槽的整体模块。通过数字化定位的霍尔元件,定子模块感应滑车上的磁强度信号,当滑车接近时,模块被充电,离开后断开,这样不需要对整个路径上的线圈充电,可以大大节省能源。每一个模块的阻抗很小,只有0.67毫欧,它的设计效率为70%,一次弹射中消耗在定子中的能量有13.3兆瓦,铜线圈的温度会被迅速加热到118.2℃,加之受环境温度影响,这一温度可能会高达155℃。这将超过滑车永磁体的极限推辞温度,因此需要强制冷却,目前的冷却方案是定子模块间采用铝制冷却板,板上有细小的不锈钢冷却管,可以在弹射器循环弹射的45秒重复时间内将线圈温度从155℃降低到75℃。新设计的盘式交流发电机重约8.7吨,如果不算附加的安全壳体设备,其重量只有6.9吨。盘式交流发电机的转子绕水平轴旋转,重约5177千克,使用镍铬铁的铸件经热处理而成,上面用镍镉钛合金箍固定2对扇形轴心磁场的钕铁硼永磁体。镍镉钛合金箍具有很大的弹性预应力,可确保固定高速旋转中的磁体。转子旋转速度为6400转/分,一个转子可存储121兆焦的能量,储能密度比蒸汽弹射器的储气罐高一倍多。一部弹射器由4台盘式交流发电机供电,安装时一般采用成对布置,转子反向旋转,可减少因高速旋转飞轮带来的陀螺效应和单项扭矩。弹射一次仅使用每台发电机所储备能量的22.5%,飞轮转盘的转动速度从6400转/分下降到5200转/分,能量消耗可以在弹射循环的45秒间歇中从主动力输出中获得补充。四蓄能发电机结构允许弹射器在其中一台发电机没有工作的情况下正常使用。由于航母装备4部弹射器,每两部弹射器的动力组会安装到一起,集中管理并允许其动力交联,因而出现6台以上发动机故障而影响弹射的事故每300年才会重复一次。盘式交流发电机采用双定子设计,分别处于盘的两侧,每一个定子由280个线圈绕组的放射性槽构成,槽间是支撑结构和液体冷却板。采用双定子结构,每台发电机的输出电源是6相的,最大输出电压1700伏,峰值电流高达6400安,输出的匹配载荷为8.16万千瓦,输出为2133~1735赫兹的变频交流电。盘式储能交流发电机的设计效率为89.3%,这已经通过缩比模型进行了验证,也就是说每一次弹射将会有127千瓦的能量以热量形式消耗掉。发电机定子线圈的电阻仅有8.6毫欧,这么大的功率会迅速将定子线圈加温数网络,所以设计了定子强制冷却。冷却板布置在定子的外侧,铸铝板上安装不锈钢管,内充WEG混和液,采用流量为151升/分的泵强制散热。根据1/2模型测试可知,上述设计可以保证45秒循环内铜芯温度稳定在84℃,冷却板表面温度61℃。真正最为关键、技术难度最大的部件是高功率循环变频器。这个技术是电磁弹射器的真正技术瓶颈。EMALS现在正处于关键性部件工程验证阶段,循环变频器仅仅是完成了计算机模拟,还没有开始发展工程样机。从设计上看,循环变频器是通过串联或者并联多路桥式电路来获得叠加和控制功率输出的,它不使用开关和串联电容器,省略了电流分享电抗器,实现了完全数字化管理的无电弧电能源变频管理输出。其每一相的输出能力为0~1520伏,峰值电流6400安,可变化频率为0~4.644赫兹。循环变频器设计非常复杂,它不仅需要将4台交流发电机的24相输入电能准确地将正确的相位输入到正确的模块端口,还必须准确的管理298个直线电机的电磁模块,在滑块组运行到来前0.35秒内让电磁体充电,而在滑组经过后0.2秒之内停止送电并将电能输送到下一个模块。循环变频器工作时间虽然不长,每次弹射仅需工作10~15秒,但热耗散非常大,一组循环变频器需要528千瓦的冷却功率,冷却剂是去离子水,流量高达1363升/分,注入温度35℃的情况下可确保系统温度低于84℃。目前,美国对这一核心部件的保密工作非常重视,除了基本原理外,几乎没有任何的模型结构、工程图片披露。2003年,美国海军和通用电气公司签订合同,要求花费7年时间完成这一部件的实体工作。到目前为止,美国在海军航母电磁弹射器上花费了28年的时间和32亿美金的经费,预计将在2014年服役的CVN-78航母上正式使用这一设备。从设计和工程实现的关键性部件的性能来看,成功地按时间表投入使用的可能性非常大。目前的主要技术问题出在线形同步电机上,18米所必模型所显示的效率仅为58%,而50米1/2模型显示的效率仅有63.2%,这证明能量利用率还不足,功率也成倍增加,以目前的设计是不能完成散热需求的。另外一个问题在于军用系统的防火要求,永磁体对温度比较敏感,存在退磁临界温度,一般在100~200℃之间,航母的火工品较多,火灾事故并不罕见,如何保证磁体的磁强度不受大的影响还是一个很棘手的问题。电磁弹射器功率巨大,其磁场强度也非常可怕,现代战斗机上复杂的电磁设备都非常敏感,容易受到干扰,因此需要特别加强电磁弹射系统的磁屏蔽工作。由于弹射器的磁体是开槽形的,和蒸汽弹射器的蒸汽泄露一样会有很强的磁泄露,所以目前设计了复杂的磁封闭条,在离飞行甲板15厘米的高度就能将磁场强度降低到正常环境的水准。相关的电磁干扰和兼容性问题将在2012年进行专门的适应性试验。美国预期电磁弹射器达到如下指标:起飞速度:28~103米/秒;最大牵引力和平均牵引力之比:1.07;最大弹射能量:122兆焦;最短起飞循环时间:45秒;重量:225吨;体积:425立方米;补充能源需求:6350千瓦。

Ⅶ 海水淡化的方法

蒸馏法:蒸馏淡化进程的实质就是水蒸气的构成进程,其原理好像海水受热蒸腾构成云,云在必定条件下遇冷构成雨,而雨是不带咸味的.根据所用动力、设备、流程不一样首要可分设备蒸馏法、蒸汽紧缩蒸馏法、多级闪急蒸馏法等.

冷冻法:冷冻法,即冷冻海水使之结冰,在液态淡水成为固态冰的一起盐被别离出去.冷冻法与蒸馏法都有难以克服的坏处,其间蒸馏法会耗费很多的动力并在仪器里发生很多的锅垢,而所得到的淡水却并不多;而冷冻法一样要耗费很多动力。

太阳能法:人类前期运用太阳能进行海水淡化,首要是运用太阳能进行蒸馏,所以前期的太阳能海水淡化设备通常都称为太阳能蒸馏器.馏体系被动式太阳能蒸馏体系的比如就是盘式太阳能蒸馏器,太阳能具有安全、环保等利益,将太阳能收集与脱盐技能两个体系联系是一种可继续打开的海水淡化技能。

(7)电容去离子实验装置扩展阅读:

电渗析淡化法是使用一种特别制造的薄膜实现的。在电力作用下,海水中盐类的正离子穿过阳膜跑向阴极方向,不能穿过阴膜而留下来;负离子穿过阴膜跑向阳极方向,不能穿过阳膜而留下来。这样,盐类离子被交换走的管道中的海水就成了淡水,而盐类离子留下来的管道里的海水就成了被浓缩了的卤水。 反渗透淡化法更加绝妙。它使用的薄膜叫“半透膜”。半透膜的性能是只让淡水通过,不让盐分通过。

网络--海水淡化

Ⅷ 电容去离子是个神马

超级电容是通过物理原理做的电池,而二次电池多是用化学原理做的化学电池。所以两者本质上就是两回事,一个是物理上的电荷转移,一个是把化学能转变成电能。 使用上,超级电容内阻更小,所以瞬间放出的电流可以更大。

Ⅸ 超纯水水质标准

超纯水是为了研制超纯材料(半导体原件材料、纳米精细陶瓷材料等)应用蒸馏、去离子化、反渗透技术或其它适当的超临界精细技术生产出来的水,其电阻率大于18 MΩ*cm,或接近18.3 MΩ*cm极限值(25℃)。简单得说就是几乎去除氧和氢以外所有原子的水。这样的水是一般工艺很难达到的程度,理论上可以采用二级反渗透再经过串联的混合型交换树脂柱对二次反渗水进行处理,但是交换树脂的再生不便,质量难以保证。

制备
在原子光谱、高效液相色谱、超纯物质分析、痕量物质等的某些实验中,需要用超纯水,超纯水的制备如下:

(1)加入少量高锰酸钾的水源,用玻璃蒸馏装置进行二次蒸馏,再以全石英蒸馏器进行蒸馏,收集于石英容器中,可得超纯水。

(2)使用强酸型阳离子和强碱型阴离子交换树脂柱的混合床或串联柱。可充分除去水中的阳、阴离子,其电阻率达10 Q·cm的水,俗称去离子水,再用全石英蒸馏器进行蒸馏,收集可得超纯水。

应用
超纯水可以在以下领域使用:

(1)电子、电力、电镀、照明电器、实验室、食品、造纸、日化、建材、造漆、蓄电池、化验、生物、制药、石油、化工、钢铁、玻璃等领域。

(2)化工工艺用水、化学药剂、化妆品等。

(3)单晶硅、半导体晶片切割制造、半导体芯片、半导体封装 、引线柜架、集成电路、液晶显示器、导电玻璃、显像管、线路板、光通信、电脑元件 、电容器洁净产品及各种元器件等生产工艺。

(4)高压变电器的清洗等

阅读全文

与电容去离子实验装置相关的资料

热点内容
收割机轴承是什么意思 浏览:815
数控机床中svm表示什么 浏览:27
迅速启闭管道的阀门是 浏览:539
装置设计博物馆 浏览:768
斜齿轮传动中轴承受什么载荷 浏览:879
精密仪器用什么方式表示品质 浏览:875
天然气阀门管出错010 浏览:764
轴承传感器怎么安装 浏览:566
静态酸化实验装置 浏览:238
超声波提示肌瘤什么意思 浏览:595
某实验小组在实验装置测量滑轮组 浏览:812
如何设计一个建筑设备监控系统在施工中注意什么 浏览:703
铁狼电动工具有限公司 浏览:134
喷灌设备在什么地方卖 浏览:396
外置轮胎检测装置 浏览:828
电动工具的执行标准是什么 浏览:487
机械键盘键位不灵怎么解决 浏览:820
学机械类用什么文具 浏览:337
大棚自动喷水手机控制装置 浏览:142
制冷专业工资低什么原因 浏览:60