⑴ 什么是射流及其原理主要的应用。
射流泵的工作原理。
工作流体Q 从喷嘴高速喷出时﹐在喉管入口处因周围的空气被射流卷走而形成真空﹐被输送的流体Q S即被吸入。两股流体在喉管中混合并进行动量交换﹐使被输送流体的动能增加﹐最后通过扩散管将大部分动能转换为压力能。 按照工作流体的种类射流泵可以分为液体射流泵和气体射流泵﹐其中以水射流泵和蒸汽射流泵最为常用。射流泵主要用于输送液体﹑气体和固体物。它还能与离心泵组成供水用的深井射流泵装置﹐由设置在地面上的离心泵供给沉在井下的射流泵以工作流体来抽吸井水。射流泥浆泵用于河道疏浚﹑水下开挖和井下排泥。射流泵没有运动的工作组件﹐结构简单﹐工作可靠﹐无泄漏﹐也不需要专门人员看管﹐因此很适合在水下和危险的特殊场合使用。此外﹐它还能利用带压的废水﹑废汽(气)作为工作流体﹐从而节约能源。射流泵虽然效率较低﹐一般不超过30%﹐但新发展的多股射流泵﹑多级射流泵和脉冲射流泵等传递能量的效率已有所提高。|||射流式真空泵工作流体可分为高压蒸汽、空气或高压水,射流式真空泵与所输送的流体(液体或气体)混合,共同排出。
⑵ 千眼狼高速摄像机可以用于高速气体射流实验吗
我们可以借助是国产的千眼狼高速摄像机5F-16,其最高频率能到达到200,000帧每秒,用其研究二维水槽中高速气体射流的振荡流流型,建立了一套操作方便、可重复性好的实验系统以研究水下高速气体射流的形貌。
⑶ 射流的气体射流
流体射入静止环境中时,它与周围静止流体之间存在速度不等的间断面,间断面一般受到不可避免的干扰,失去稳定而产生涡旋,卷吸周围流体进入射流,同时不断移动、变形、分裂产生紊动,其影响逐渐向内外两侧发展形成自由紊动的混合层。由于动量的横向传递,卷入的流体获得动量而随原射流向前流动,原来的流体动量减小而失去速度,形成一定的速度梯度。卷吸和掺混的结果,射流断面不断扩大,而流速则不断降低,流量沿程增加。
图2-1 等密度射流速度场
射流运动一般都要受初始动量的影响或受浮力的作用,纯射流和卷流是射流的两种极端情况。如果环境流体的密度是处处相同的,那么射流就是均匀环境射流。若环境流体密度沿铅直分布是不均匀的,浮射流就是分层环境力射流。环境流体密度与泄漏的天然气密度相等时的均匀环境射流过程,如图2-1所示。直线OB、OC为射流的外部边界,交点O为射流的极点在射流边界上,前进的运动速度为零。射流向周围环境空气分子微团扩散的边界AD、ED也是直线。在ADE区域内,纯天然气速度等于孔口泄漏速度,称为射流核心区。射流外部边界的夹角 称为射流张角。射流核心区边界的夹角 :为射流核心收缩角。经过D点的射流横截面FG称为过渡截面。在此截面以前,射流轴心速度Wm保持不变,并等于起始速度W0,而其后轴心速度逐渐减小。断面平均速度W随S增大而减小。过渡截面之前称为起始段,其后称为基本段。紊流自由射流的起始段长度S0及极点深度h0都与孔口半径r有关。
当环境空气的温度和密度与泄漏的天然气不同时,可看作非等密度射流。非等密度射流的轨迹比较复杂,这时重力差使射流弯曲。泄漏燃气的密度大于环境空气的密度,射流一般向下弯曲,反之则向上弯曲。如果射流垂直向上出,那么重力差只是稍微改变射流的张角及核心收缩角,并不使截面上速度分布失真,也不使射流弯曲,在这种情况下,如果泄漏的气流密度大于周围空气的密度,则张角及收缩角增大,反之则角度减小。
天然气发生管道孔口或裂缝泄漏时,虽然孔口或裂缝比较小,泄漏量也比较小,但泄漏速度极大,所以在孔口或裂缝形成紊流自由射流。根据燃气泄漏的具体情况,假定受纳流体在射流流入之前处于静止状态,天然气泄漏过程可看成静止环境中的射流;若受纳流体所占的空间是无限的,天然气泄漏过程可看成自由射流;若天然气密度与受纳流体密度不同,天然气泄漏过程可以简化为紊动变密度射流。在流体力学的研究和实际的计算过程中,若把流体看作不可压缩流体,显著地简化了理论分析和数值计算,并在大多数问题的研究中具有足够的精度。在低速气流中(一般小于50m/s),当压强变化不大时,通常可以忽略可压缩性的影响,按不可压缩流体处理,其结果也是有足够精确的。 总之,根据影响射流运动规律的各种因素,又可将射流组合成许多类型。当天然气通过管道孔口或裂缝泄漏到环境中去,可以进一步看成是无限静止环境变密度射流。
⑷ 喷射型自动射流灭火装置有哪些
喷射型自动射流灭火装置有的是倒装的,有的是坐装的,灭火的介质也是有两种的,有泡沫炮跟水质的消防水炮,流量有5L,10L,20L,30L,40L不等。喷射型自动射流灭火装置国内基本都是使用红紫外探测。
⑸ 水射流器和水蒸汽射流器还有空气射流器哪个效率更高
看抽什么物质。
泵液体的话水射流泵效率高;
泵气体的话蒸汽射流泵和空气射流泵效率高;
⑹ 流体力学:气体射流器高速气流引射出低速气流,经过平直段混合后各参数均匀分布.求混合后截面上各参数
质量方程:1位置的A的流速*当地密度+1位置的B的流速*当地密度=2位置的流速*当地密度;
动量方程:1位置A的质量流量*A的速度+1位置的B的质量流量*B的速度=2位置的质量流量*2位置的速度
能量方程:(1位置A的动能+内能)+(1位置B的动能+内能)=2位置的动能+内能
⑺ 射流的原理是什么
射流泵的工作原理。工作流体Q 从喷嘴高速喷出时﹐在喉管入口处因周围的空气被射流卷走而形成真空﹐被输送的流体Q S即被吸入。两股流体在喉管中混合并进行动量交换﹐使被输送流体的动能增加﹐最后通过扩散管将大部分动能转换为压力能。 按照工作流体的种类射流泵可以分为液体射流泵和气体射流泵﹐其中以水射流泵和蒸汽射流泵最为常用。射流泵主要用于输送液体﹑气体和固体物。它还能与离心泵组成供水用的深井射流泵装置﹐由设置在地面上的离心泵供给沉在井下的射流泵以工作流体来抽吸井水。射流泥浆泵用于河道疏浚﹑水下开挖和井下排泥。射流泵没有运动的工作组件﹐结构简单﹐工作可靠﹐无泄漏﹐也不需要专门人员看管﹐因此很适合在水下和危险的特殊场合使用。此外﹐它还能利用带压的废水﹑废汽(气)作为工作流体﹐从而节约能源。射流泵虽然效率较低﹐一般不超过30%﹐但新发展的多股射流泵﹑多级射流泵和脉冲射流泵等传递能量的效率已有所提高。|||射流式真空泵工作流体可分为高压蒸汽、空气或高压水,射流式真空泵与所输送的流体(液体或气体)混合,共同排出。
⑻ 求教我做流体力学题目,每个都有110+的悬赏的。要详细过程!
时间不早了,下次吧,要休息了。有时间就帮你做几道
⑼ 做“气道激发试验”是怎么做的有什么风险
吸入性支气管激发试验是临床及实验中采用最为普遍的方法。
1 包括各种吸入非特异性激发物,如组织胺、乙酰甲胆碱、乙酰胆碱、腺苷、白三烯 E4 、高渗盐水、低渗盐水、冷空气吸入,以及尘螨、花粉、动物皮毛等特异性抗原刺激物。。通过刺激物的量化测量及与其相应的反应程度,还可判断气道高反应性的程度。 吸入激发物的制备与储存 1. 稀释液:磷酸组织胺( histamine phosphate )或氯化乙酰甲胆碱( methacholine chloride )为粉剂,需用稀释液稀释后才能用于吸入。稀释液常用生理盐水 (0.9%NaCl) ,因其等渗且配制容易,其缺点为略呈酸性 (pH<5.0) 。也有学者建议用 0.5%NaCl+0.275%NaHCO 3 + 0.4%Phenol 的水溶液,该配方稀释液等渗, pH=7.0 ,且含酚防腐,保存时间较久,但配制较为复杂。蒸馏水(注射用水)因其为低渗溶液,可诱发气道痉挛而不宜作为稀释液。
配制:
通常是先配制 “ 原液 ” (可用于激发试验的最高浓度激发液),如 5% 组织胺、 5% 乙酰甲胆碱、 1:20 抗原等,以利于储存。于需要时才将原液按对半或 4 倍稀释。亦可按需要倍增激发物浓度,配制成浓度为 0.03 、 0.06 、 0.12 、 0.25 、 0.5 、???? 至 32mg/ml ,或按表 28-2 ~ 4 所示之浓度配制,然后分别存储于不同的容器中。注意配制液应充分溶解及均匀后才能使用,配制过程时间应尽量缩短,组织胺应避光。 雾化吸入装置 射流雾化器 借助高速气体流过毛细管孔口并在孔口产生负压,将液体吸至管口并撞击,形成雾化颗粒(雾粒),亦称气溶胶。可用瓶装压缩气源或电动压缩气源产生高速气体。此类型雾化器仅需患者作潮气呼吸,无需其它呼吸动作配合,患者易于掌握。对年老,年幼病者及严重气促病者最为适用。 手捏式雾化器 亦采用射流雾化原理,以手捏加压驱动雾化器产生雾液。常用的有 De Velbiss 40 雾化器或其仿造、改进型。材质为玻璃或塑料。释雾量每揿 0.0030 ± 0.0005ml, 70%~80% 雾粒直径 <5 μ m 。 超声雾化器 通过电流的转换使超声发生器发生高频振荡,经传导至液面产生雾粒。多数超声雾化产生之雾粒直径较小( 1 μ m )、均匀而量大(相同时间内较射流雾化器释雾量大 2 ~ 4 倍),吸入时间过长可致气道湿化过度,对支气管哮喘或严重 COPD 者并不合适。此外,超声作用也可能破坏某些激发物成分,尤其是生物激发物。但利用其释雾量大的特点,可用于高渗盐水、低渗盐水或蒸馏水吸入激发试验。 雾化吸入的影响因素 雾化吸入是通过雾粒(携带激发药物的载体)在支气管树及肺泡的沉积而起作用的。雾粒直径的大小、吸气流速以及气道的通畅性均可影响雾粒在气道的沉积,从而影响气道反应性。
1 .雾粒直径: 最适宜的雾粒直径为 3-5 μ m ,雾粒过小 (<0.5 μ m) 不易在呼吸道停留而随呼气排出 , 且所携带药物能力有限 ( φ 0.5 μ m 的颗粒只有φ 10 μ m 颗粒的 1/8000 大小 ) ;而雾粒过大 (>10 μ m) 则被截留在上呼吸道,不能进入支气管树沉积而产生刺激作用。
2 .吸气流速: 吸气流速增加可增加撞击沉积的机会而使雾粒更多地沉积在口咽部及中央气道。慢而深的吸气利于雾粒的重力沉积及扩散沉积,因而使更多的雾粒沉积于外周气道和肺泡。反之,快速呼气因使气道变窄及增加撞击沉积,利于药物的停留作用。
3 .气道的通畅性: 声门的闭启、气道口径的缩小(如气道痉挛)、气道分泌物对雾粒的截留或阻塞气道等均可影响雾粒在气道内的沉积作用。故气道分泌物较多时应鼓励将其咳出。
4 .鼻腔的过滤: 由于鼻腔的过滤作用,直径 >1 μ m 的颗粒多被过滤而使到达支气管及肺部的药物量不足。此外,药物又可直接刺激鼻粘膜而产生副作用。因此,推荐经口吸入雾化吸入,避免经鼻吸入。对于需用面罩吸入(如年老、体弱、年幼病者)应同时夹鼻。
理想的雾化呼吸方式为:经口从残气量位缓慢吸气至肺总量位(流速 < 1L /sec ) , 吸气末摒气( 5~10 秒),然后快速呼气。此方式适用于定量气雾吸入。连续潮气呼吸者病人多采用自然平静呼吸方式。 受试者的准备 测试前受试者应在实验室休息至少 15 分钟。应详细了解受试者的病史、是否曾经做过激发试验及其结果,是否有严重的气道痉挛发生、并作体格检查,排除所有激发试验的禁忌症(后述)。
试验前应停用可能干扰检查结果的药物:吸入性短效 b 2 -受体兴奋剂或抗胆碱能药停用 4 ~ 6 小时、口服短效 b 2 -受体兴奋剂或茶碱停 8 小时、长效或缓释型停用 24 小时以上、抗组胺药停用 48 小时、色甘酸钠停用 24 小 时、糖皮质激素口服停 24 小时、吸入停 12 小时,并应避免剧烈运动、冷空气吸入 2 小时以上;避免吸烟、咖啡、可口可乐饮料等 6 小时以上。 对于复查的病人,重复试验应选择每天相同的时间进行。以减少生物钟的影响。 支气管激发试验具有一定危险性。试验时吸入激发物浓度应从小剂量开始,逐渐增加剂量。应备有急救器械和药品,如氧气、雾化吸入装置与输液设备、吸入型 b 2 -受体兴奋剂、注射用肾上腺素等。试验时需有经验的临床医师在场。
二、禁忌症 有心或(和)肺功能不全、高血压、甲亢、妊娠等,一般不适宜作此试验。 一周之内有呼吸道感染、预防接种、职业性过敏因素的接触等。 有过敏性休克,严重的血管性水肿及严重的喉头水肿病史者。 患有严重咽喉炎,呼吸道感染或肺炎者。 副作用有头痛、面红、心动过速、血压下降、支气管痉挛等