⑴ 为什么说夫兰克—赫兹实验验证了原子能级的存在 就是做实验报告最后的讨论问题,怎么回答啊
夫兰克—赫兹实验结果表明:原子被激发到不同的状态时,它所吸收的能量事不连续的,即原子体系内部能量时量子化的.实验有力地证实了原子中量子态的存在.
⑵ 夫兰克赫兹实验
夫兰克-赫兹实验被认为是对原子的玻尔模型的实验证明,但有趣的是直到夫兰克和赫兹发表了他们的实验结果之后,他们才知道玻尔模型。这看起来是非常有趣的,夫兰克后来解释道:
We had not read it because we were negligent to read the literature well enough -- and you know how that happens. On the other hand, one would think that other people would have told us about it. For instance, we had a colloquium at that time in Berlin at which all the important papers were discussed. Nobody discussed Bohr's theory. Why not? The reasons is that fifty years ago, one was so convinced that nobody would, with the state of knowledge we had at that time, understand spectral line emission, so that if somebody published a paper about it, one assumed, Probably it is not right. So we did not know it.
当时的人们根本就不相信看上去复杂无比的原子光谱可能会被某个理论解释,如果有人声称解释了原子的发射谱线,当时的物理学家会本能地认为这个理论是错误的。
夫兰克-赫兹实验的装置如下图所示:
水银(汞,Hg)蒸汽被放在真空管内,电子从阴极射出后,被电势V加速,然后到达阳极,阳极是栅栏状的,阳极后面还有一个微弱的反向电压,反向电压比加速电压(V)弱的多,再后面是个集电极。(类似真空三极管,发射极,基极和集电极)
测量的是加速电压(V)和通过集电极电流(I)之间的关系,实验结果如下图:
可见这里存在一个约4.9伏的周期,每4.9伏周期,集电极电流会周期性的变大,达到峰值,然后陡峭地变小。
这4.9伏的周期性可被玻尔模型所解释。根据玻尔模型,原子中存在一系列的定态(stationary states),当原子由一个定态跃迁到另一定态时,可相应地吸收或放出一个光子,并满足频率关系(frequency relation):。4.9伏的周期性说明在汞原子的第一激发态与基态间能量差是4.9eV。
当加速电压处于0-4.9伏区间时,电子将获得0-4.9eV的动能,电子可能与汞原子发生弹性碰撞或非弹性碰撞,如发生非弹性碰撞电子将损失部分能量,而汞原子将获得部分能量。但根据玻尔模型,小于4.9eV的能量是不足以使汞原子发生跃迁的,因此只能发生弹性散射,电子在弹性散射的过程中并不损失能量,因此当电子达到阳极时具有大于0的动能,可以可以克服反向电压达到集电极,因此表现为有电流,并且随着加速电压的增大,电流也相应增大。
当加速电压正好为4.9伏时,电子具有4.9eV的动能,可与汞原子发生非弹性散射,汞原子被激发到激发态,电子损失4.9eV后动能为0,无法克服反向电压,因此表现为电流急剧下跌。
当加速电压达到两倍4.9伏时,则有可能发生两次电子与汞原子的非弹性散射,因此将出现第二个峰。如果继续增大加速电压,还可能出现更多的峰。如果电子能量大到足以把汞原子激发到更高激发态的能量,则可以出现不是4.9伏周期的峰。
观察夫兰克-赫兹实验的实验曲线,另一特征是电流波谷取值是逐渐变大的,这可以解释为总有部分电子未发生与汞原子的非弹性散射就到达了阳极,从而肯定会到达集电极。发生N+1次非弹性散射的几率要小于只发生N次非弹性散射的几率,因此随着加速电压的增大会有更多的电子以非零动能到达阳极,体现为电流波谷取值越来越高。
还可以考虑更多因素,比如无规则热运动对夫兰克-赫兹实验曲线的影响,将使曲线更加圆滑等等。但这些已经属于实验中不太重要的细节了。
1925年夫兰克和赫兹因夫兰克-赫兹实验共同获得诺贝尔物理学奖。
参考
1. The Franck-Hertz experiment supports Bohr's model
2. Hyperphysics: The Franck-Hertz Experiment
3. The Nobel Prize in Physics 1925
⑶ 赫兹是如何验证电磁波的
1878年10月的一天,柏林大学冷冷清清的教学大楼突然热闹起来,底层的一间宽敞的阶梯教室里坐满了学生,连走廊里都站了人,大家都静心聆听着当代物理大师赫尔姆霍茨教授侃说电学史:“由于牛顿力学的影响,人们总企图用力学的观点来解释电磁现象,企图仿照力学的理论体系来建立电磁理论。唉,这可是一条‘无原的荒路’啊!”
这句话如石破天惊,引起了一阵骚动。大师接着就详尽地讲解了麦克斯韦的理论,最后满怀希望地说:“他的理论高深,多数人听不懂,对‘位移电流’表示怀疑,我希望在座的诸位能澄清目前种种混乱的解释,求得一个统一的理论。”
此时听众席上有位青年,原来是附近工程技术学院的学生,因慕名而来坐在前排,听完了大师高瞻远瞩的一席演说,只感到自己如大梦初醒一般,立即返回学校卷起铺盖,投师到赫尔姆霍茨门下,这位学生名叫亨·路·赫兹(1857~1894)。
1857年2月22日生于德国的汉堡市。他父亲是一位律师和政府议员,对人文科学很有造诣,他因此学会了多种语言,还学习过美术。在他中学毕业的时候,父亲把他叫到跟前,问道:“孩子,该考虑考虑自己一生选择的道路了,你将来想干什么呢?”
“当工程师。”赫兹响亮地回答。父亲深知他有一双巧手,便赞许地点点头,原来赫兹有一位祖叔,特别喜欢实验科学,在他的影响下,赫兹从小就养成了动手的好习惯。上学后,家里还让他拜师学木工,学车工。锯、刨、斧、凿他样样都拿得起。后来他当上了教授,教过他的师傅还惋惜地说:“唉,真可惜,他本是一个难得的车工啊!”
自从赫兹拜了赫氏为师,经过大师的点拨,学识上突飞猛进。以前他学的是工程,特长是动手。现在他贪婪地阅读拉普拉斯和拉格朗日的著作,完全陶醉在严密的逻辑推理之中。一年后赫尔姆霍茨出一道竞赛题,要求用实验来证明,沿导线运动的电荷是否具有惯性。赫兹独占鳌头,荣获金奖。1880年赫兹获得博士学位后就留在老师的身边当了助手,负责物理实验室的工作。
赫兹1885年赫兹的物理实验室有一种称为黎斯螺线管的感应线管,它有初级和次级两个线圈,彼此绝缘。他发现给初级线圈输入一个脉冲电流时,次级线圈的火花隙中常有电火花跳过。他敏锐地感到次级线圈火花隙上的电火花,是因为初级线圈电磁振荡,次级线圈受到感应的结果。于是他调整了初、次线圈的位置,发现次级线圈在某些位置上电火花特别强,而在有些位置上,电火花根本没有。这一发现使赫兹极为兴奋,他立即想到了麦克斯韦的电磁理论,一定是初级线圈激发的电磁场,越过了空间被次级线圈接收到了。也就是空中有电磁波在传播。
1886年底至1887年初,赫兹对电火花现象做了进一步的研究。他把高压的电感应线圈初级与电源连接,调节感应线圈次级的两个极的位置,使两极之间发生电火花。根据麦克斯韦的理论,感应线圈上每一次电火花跳跃都会产生电磁波辐射。那么如何来捕捉这个电磁波呢?赫兹的办法十分简单。将一根粗铜丝弯成环状,并在环的两端各焊一个铜球。仔细地调节圆环的位置和方向,可以发现圆环在某些位置上两个铜球之间的空隙上闪烁起美丽的火花。这个实验成功地证明,感应线圈上发出的电磁能量,确实被辐射出来,跨越空间传到了接收器,并且被接收下来了。赫兹还用这套简单的仪器测定了电磁波的波长,通过计算发现电磁波传播的速度恰好等于光速。
1888年赫兹公布了他的实验结果,全世界的科技人士都为之轰动。谁也没有料到用这样简单的仪器就验证了麦克斯韦的高深理论预言的电磁波的存在。赫兹被人们称颂为“电磁波的报春人”。他的导师赫尔姆霍茨对自己的得意门生也大为赞赏。说:“光——这种如此重要和神秘的自然力——与另一种同样神秘或许更多地应用的力——电——有着最近的亲缘关系,令人信服地证实这种现象无疑是一项重大的成就。”并有意识地把他看做自己事业的接班人。但是天公不愿成人之美,年纪轻轻的赫兹在1883年开始患上了一种齿龈脓肿的病。起初他还以为不碍事,但这种病十分顽固,多次手术也只能缓解痛苦,病痛的折磨使他情绪沮丧。1893年12月4日他预感到自己可能会早逝人世,便秉烛展书,一边流泪一边给双亲写了一封长信:“假如我真发生了什么事情的话,你们不应当悲伤,但你们要感到几分自豪,想到我属于那些生命虽然短促但仍算有充分成就的优秀人物。我不想遭遇,也没有选择这样的命运,但是既然这种命运降临到我的头上我也应感到满意。”
赫兹的预感不幸应验。1894年1月他在一次手术事故中猝然谢世,年仅37岁。赫兹过早地去世给科学事业带来了巨大的损失。当赫兹发现了电磁波的存在时,他的一位好朋友吉布尔工程师曾写信给他,说自己打算用电磁波来进行无线电通讯,请赫兹在理论上出点主意。但赫兹未及深思熟虑就否定了这个富有创造性的设想。他在回信中说:“如果要利用电磁波来进行无线电通讯,空中需有一面像欧洲大陆面积差不多大的反射镜才行。”如果他能活到1924年,知道了大气中存在电离层,当然就不会作出如此草率的回答。
后来赫兹发现了电磁波在金属物体面上会反射,在通过硬沥青的三角棱镜时会折射的时候,也未来得及进一步研究这种原理的技术应用而失去了发明雷达的机会。1889年赫兹在致力于研究电在稀薄气体中的发射时,又一次错过了发现X射线的机会。7年后伦琴发现X射线时所用的放电管,还是赫兹的助手莱纳德提供给伦琴的呢!所以如果赫兹能多活10年、20年、30年,这几段科学史会不会需要改写呢?
电场线
电场线,是为了直观形象地描述电场分布,在电场中引入的一些假想的曲线。曲线上每一点的切线方向和该点电场强度的方向一致;曲线密集的地方场强强,稀疏的地方场强弱。在没有电荷的空间,电场线具有不相交、不中断的特点。应该注意,电场线不是电荷的运动轨迹。根据电场线方向能确定电荷的受力方向和加速度方向,不能确定电荷的速度方向、运动的轨迹。电场线是直线时,电荷运动速度与电场线平行,电荷运动轨迹与电场线重合。
⑷ 夫兰克赫兹实验报告
????:"P{}"?"
⑸ 大学物理实验弗兰克赫兹实验思考题:1、本实验装置能否测氩原子第二激发电位为什么 2依据实验数据
高端
⑹ 赫兹的装置及简图
A,D