导航:首页 > 装置知识 > 超临界流体萃取装置设计

超临界流体萃取装置设计

发布时间:2021-11-22 06:49:03

① 超临界流体萃取技术的基本原理,工艺流程,基本特点及主要影响因素

超临界流体(SCF)的特性
超临界流体(SCF)是指物体处于其临界温度(Tc)和临界压力(Pc)以上状态时,向该状态气体加压,气体不会液化,只是密度增大,具有类似液体的性质,同时还保留气体的性能。
超临界流体兼具气体和液体的优点,其密度接近于液体,溶解能力较强,而黏度与气体相近,扩散系数远大于一般的液体,有利于传质。另外,超临界流体具有零表面张力,很容易渗透扩散到被萃取物的微孔内。因此,超临界流体具有良好的溶解和传质特性,能与萃取物很快地达到传质平衡,实现物质的有效分离。
超临界流体萃取分离的原理
超临界流体萃取分离过程是利用其溶解能力与密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,流体与待分离的物质接触,使其有选择性地依次把极性大小、沸点高低和分子质量大小的不同成分萃取出来。然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则自动完全或基本析出,从而达到分离提纯的目的,并将萃取分离的两个过程合为一体。
超临界流体萃取的溶剂
超临界流体萃取过程能否有效地分离产物或除去杂质,关键是萃取中使用的溶剂必须具有良好的选择性。目前研究的超临界流体种类很多,主要有二氧化碳、水、甲苯、甲醇、乙烯、乙烷、丙烷、丙酮和氨等。近年来主要还是以使用二氧化碳超临界流体居多,因为二氧化碳的临界状态易达到,它的临界温度(Tc=30.98℃) 接近室温,临界压力(Pc=7.377 MPa)也不高,具有很好的扩散性能,较低的表面张力,且无毒、无味、不易燃、价廉、易精制等特点,这些特性对热敏性易氧化的天然产品更具吸引力
超临界流体萃取主要特点
超临界流体技术在萃取和精馏过程中,作为常规分离方法的替代,有许多潜在的应用前景。其优势特点是:
(1)使用SFE是最干净的提取方法,由于全过程不用有机溶剂,因此萃取物绝无残留的溶剂物质,从而防止了提取过程中对人体有害物的存在和对环境的污染,保证了100%的纯天然性;
(2)萃取和分离合二为一,当饱和的溶解物的CO2流体进入分离器时,由于压力的下降或温度的变化,使得CO2与萃取物迅速成为两相(气液分离)而立即分开,不仅萃取的效率高而且能耗较少,提高了生产效率也降低了费用成本;
(3)超临界萃取可以在接近室温(35~40℃)及CO2气体笼罩下进行提取,有效地防止了热敏性物质的氧化和逸散。
(4)CO2是一种不活泼的气体,萃取过程中不发生化学反应,且属于不燃性气体,无味、无臭、无毒、安全性非常好;
(5)CO2气体价格便宜,纯度高,容易制取,且在生产中可以重复循环使用,从而有效地降低了成本;
(6)压力和温度都可以成为调节萃取过程的参数,通过改变温度和压力达到萃取的目的,压力固定通过改变温度也同样可以将物质分离开来;反之,将温度固定,通过降低压力使萃取物分离,因此工艺简单容易掌握,而且萃取的速度快。
超临界流体萃取过程的主要影响因素
(1)萃取压力的影响
萃取压力是SFE最重要的参数之一,萃取温度一定时,压力增大,流体密度增大,溶剂强度增强,溶剂的溶解度就增大。对于不同的物质,其萃取压力有很大的不同。
(2)萃取温度的影响
温度对超临界流体溶解能力影响比较复杂,在一定压力下,升高温度被萃取物挥发性增加,这样就增加了被萃取物在超临界气相中的浓度,从而使萃取量增大;但另一方面,温度升高,超临界流体密度降低,从而使化学组分溶解度减小,导致萃取数减少。因此,在选择萃取温度时要综合这两个因素考虑。
(3)萃取粒度的影响
粒度大小可影响提取回收率,减小样品粒度,可增加固体与溶剂的接触面积,从而使萃取速度提高。不过,粒度如过小、过细,不仅会严重堵塞筛孔,造成萃取器出口过滤网的堵塞。
(4)CO2流量的影响
CO2的流量的变化对超临界萃取有两个方面的影响。CO2的流量太大,会造成萃取器内CO2流速增加,CO2停留时间缩短,与被萃取物接触时间减少,不利于萃取率的提高。但另一方面,CO2的流量增加,可增大萃取过程的传质推动力,相应地增大传质系数,使传质速率加快,从而提高SFE的萃取能力。因此,合理选择CO2的流量在SFE中也相当重要。
超临界流体萃取的过程是由萃取和分离2个阶段组合而成的。根据分离方法的不同,可以把超临界萃取流程分为:等温法、等压法和吸附法,如图2所示。
3.1 等温变压萃取流程
等温条件下,萃取相减压,膨胀,溶质分离,溶剂CO2经压缩机加压后再回到萃取槽,溶质经分离器分离从底部取出。如此循环,从而得到被分离的萃取物。该过程易于操作,应用较为广泛,但能耗高一些。
3.2 等压变温萃取流程
等压条件下,萃取相加热升温,溶质分离,溶剂CO2经冷却后回到萃取槽。过程只需用循环泵操作即可,压缩功率较少,但需要使用加热蒸汽和冷却水。
3.3吸附萃取流程
萃取相中的溶质由分离槽中的吸附剂吸附,溶剂CO2再回到萃取槽中。吸附萃取流程适用于萃取除去杂质的情况,萃取器中留下的剩余物则为提纯产品。
其中,前两种流程主要用于萃取相中的溶质为需要的精制产品,第三种流程则常用于萃取产物中杂质或有害成分的去除。
超临界流体具有许多不同于一般液体溶剂的物理化学特性,基于超临界流体的萃取技术具有传统萃取技术无法比拟的优势,近年来,超临界流体萃取技术的研究和应用从基础数据、工艺流程到实验设备等方面均有较快的发展。
但由于对超临界流体本身尚缺乏透彻的认识,对其化学反应、传质理论以及反应中热力学的本质问题研究有待深入,而且超临界流体萃取分离技术需要高压装置,因而对工艺设备的要求往往也比较高,需要有较大的投入等原因的客观存在,因此目前超临界流体的大规模实际应用还存在诸多问题需要进一步解决。
目前国际上超临界流体萃取与造粒技术的研究和应用正方兴未艾,技术发展应用范围包括了:萃取(extraction),分离(separation),清洗(cleaning),包覆(coating),浸透(impregnation),颗粒形成(particle formation)与反应(reaction)。德国,日本和美国已处于领先地位,在医药,化工,食品,轻工,环保等方面研究成果不断问世,工业化的大型超临界流体设备有5000L~10000L的规模,日本已成功研制出超临界色谱分析仪,而台湾亦有五王粮食公司运用超临界二氧化碳萃取技术进行食米农药残留及重金属的萃取与去除。
目前国际上超临界流体萃取的研究重点已有所转移,为得到纯度较高的高附加值产品,对超临界流体逆流萃取和分馏萃取的研究越来越多。超临界条件下的反应的研究成为重点, 特别是超临界水和超临界二氧化碳条件下的各类反应,更为人们所重视.超临界流体技术应用的领域更为广泛,除了天然产物的提取,有机合成外还有环境保护,材料加工,油漆印染,生物技术和医学等;有关超临界流体技术的基础理论研究得到加强,国际上的这些动向值得我们关注。
由于超临界二氧化碳萃取技术在萃取后能将二氧化碳再次利用,把对环境的污染降至最低,所以未来传统工业若是能以超临界二氧化碳当作主要溶剂,那现在我们这颗唯一的地球,便能得到舒缓。
21世纪的化学工业,医药工业等必须通过调整自身的产业结构和产品结构,研究开发清洁化生产和绿色工业的新工艺和新技术。超临界流体技术就是近30年来迅速发展起来的这样一种新技术.我们应当从这个战略高度来认识超临界流体技术研究和推广应用的重要性,制定研究规划,加大投入,加强对该技术的基础和应用研究,使它真正用于工业化生产,造福于人类,造福于社会。

② 超临界流体萃取的装置规模

超临界流体萃取装置设计的总体要求是:
1)工作条件下安全可靠,能经受频繁开、关盖(萃取釜),抗疲劳性能好;
2)一般要求一个人操作,在10 min内就能完成萃取釜全膛的开启和关闭一个周期,密封性能好;
3)结构简单,便于制造,能长期连续使用(即能三班运转);
4)设置安全联锁装置。高压泵有多种规格可供选择,三柱塞高压泵能较好地满足超临界CO2萃取产业化的要求。超临界CO2萃取装置宜以中小型较为实际。大型装置如单釜大于1 000 L规模的就不宜盲目上马。每套装置配置2~3个萃取釜效率会高一些。日本几家拥有超临界CO2萃取装置的公司,其中大部分是中小型装置,只有一家是大于1 000 L容积的。
总体上讲,SFE过程的主要设备是由高压萃取器、分离器、换热器、高压泵(压缩机)、储罐以及连接这些设备的管道、阀门和接头等构成。另外, 因控制和测量的需要, 还有数据采集、处理系统和控制系统。

③ 超临界流体萃取的工艺流程

将需要萃取的植物粉碎,称取约300—700g装入萃取器⑹中,用CO2反复冲洗设备以排除空气。操作时先打开阀⑿及气瓶阀门进气,再启动高压阀⑷升压,当压力升到预定压力时再调节减压阀⑼,调整好分离器⑺内的分离压力,然后打开放空阀⑽接转子流量计测流量通过调节各个阀门,使萃取压力、分离压力及萃取过程中通过CO2流量均稳定在所需操作条件,半闭阀门⑽,打开阀门⑾进行全循环流程操作,萃取过程中从放油阀⑻把萃取液提出。
总之,SFE技术基本工艺流程为:原料经除杂、粉碎或轧片等一系列预处理后装入萃取器中。系统冲入超临界流体并加压。物料在SCF作用下,可溶成分进入SCF相。流出萃取器的SCF相经减压、凋温或吸附作用,可选择性地从SCF相分离出萃取物的各组分,SCF再经调温和压缩回到萃取器循环使用。SC—CO2萃取工艺流程由萃取和分离两大部分组成。在特定的温度和压力下,使原料同SC—CO2
流体充分接触,达到平衡后,再通过温度和压力的变化,使萃取物同溶剂SC—CO2分离,SC-CO2循环使用。整个工艺过程可以是连续的、半连续的或间歇的。

④ 超临界流体萃取技术原理是什么他与传统提取方法相比有何优点

超临界流体萃取分离过程的原理是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。当然,对应各压力范围所得到的萃取物不可能是单一的,但可以控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则完全或基本析出,从而达到分离提纯的目的,所以超临界流体萃取过程是由萃取和分离组合而成的。

超临界流体萃取与化学法萃取相比有以下突出的优点:
(1)可以在接近室温(35-40℃)及CO2气体笼罩下进行提取,有效地防止了热敏性物质的氧化和逸散。因此,在萃取物中保持着药用植物的全部成分,而且能把高沸点,低挥发度、易热解的物质在其沸点温度以下萃取出来;
(2)使用SFE是最干净的提取方法,由于全过程不用有机溶剂,因此萃取物绝无残留溶媒,同时也防止了提取过程对人体的毒害和对环境的污染,是100%的纯天然;
(3)萃取和分离合二为一,当饱含溶解物的CO2-SCF流经分离器时,由于压力下降使得CO2与萃取物迅速成为两相(气液分离)而立即分开,不仅萃取效率高而且能耗较少,节约成本;
(4)CO2是一种不活泼的气体,萃取过程不发生化学反应,且属于不燃性气体,无味、无臭、无毒,故安全性好;
(5)CO2价格便宜,纯度高,容易取得,且在生产过程中循环使用,从而降低成本;
(6)压力和温度都可以成为调节萃取过程的参数。通过改变温度或压力达到萃取目的。压力固定,改变温度可将物质分离;反之温度固定,降低压力使萃取物分离,因此工艺简单易掌握,而且萃取速度快。

⑤ 超临界流体萃取技术的技术特点

1)超临界流体CO2萃取与化学法萃取相比有以下突出的优点:
(1)可以在接近室温(35-40℃)及CO2气体笼罩下进行提取,有效地防止了热敏性物质的氧化和逸散。因此,在萃取物中保持着药用植物的全部成分,而且能把高沸点,低挥发度、易热解的物质在其沸点温度以下萃取出来;
(2)使用SFE是最干净的提取方法,由于全过程不用有机溶剂,因此萃取物绝无残留溶媒,同时也防止了提取过程对人体的毒害和对环境的污染,是100%的纯天然;
(3)萃取和分离合二为一,当饱含溶解物的CO2-SCF流经分离器时,由于压力下降使得CO2与萃取物迅速成为两相(气液分离)而立即分开,不仅萃取效率高而且能耗较少,节约成本;
(4)CO2是一种不活泼的气体,萃取过程不发生化学反应,且属于不燃性气体,无味、无臭、无毒,故安全性好;
(5)CO2价格便宜,纯度高,容易取得,且在生产过程中循环使用,从而降低成本;
(6)压力和温度都可以成为调节萃取过程的参数。通过改变温度或压力达到萃取目的。压力固定,改变温度可将物质分离;反之温度固定,降低压力使萃取物分离,因此工艺简单易掌握,而且萃取速度快。
2)从超临界流体性质看,其具有的特点:
(1)萃取速度高与液体萃取,特别适合于固态物质的分离提取;
(2)在接近常温的条件下操作,能耗低于一般精馏发,适合于热敏性物质和易氧化物质的分离;
(3)传热速率快,温度易于控制;
(4)适合于挥发性物质的分离

⑥ 超临界流体萃取技术的工艺流程

更多了解·········
莱特.莱德····················将需要萃取的植物粉碎,称取约300—700g装入萃取器(6)中,用CO2反复冲洗设备以排除空气。操作时先打开阀(12)及气瓶阀门进气,再启动高压阀(4)升压,当压力升到预定压力时再调节减压阀(9),调整好分离器(7)内的分离压力,然后打开放空阀(10)接转子流量计测流量通过调节各个阀门,使萃取压力、分离压力及萃取过程中通过CO2流量均稳定在所需操作条件,半闭阀门(10),打开阀门(11)进行全循环流程操作,萃取过程中从放油阀(8)把萃取液提出。总之,SFE技术基本工艺流程为:
原料经除杂、粉碎或轧片等一系列预处理后装入萃取器中。系统冲入超临界流体并加压。物料在SCF作用下,可溶成分进入SCF相。流出萃取器的SCF相经减压、凋温或吸附作用,可选择性地从SCF相分离出萃取物的各组分,SCF再经调温和压缩回到萃取器循环使用。SC—CO2萃取工艺流程由萃取和分离两大部分组成。在特定的温度和压力下,使原料同SC—CO2
流体充分接触,达到平衡后,再通过温度和压力的变化,使萃取物同溶剂SC—CO2分离,SC-CO2循环使用。整个工艺过程可以是连续的、半连续的或间歇的。超临界流体具有类似气体的较强穿透力和类似于液体的较大密度和溶解度,具有良好的溶剂特性,可作为溶剂进行萃取、分离单体。超临界流体萃取是近代化工分离中出现的高新技术,SFE将传统的蒸馏和有机溶剂萃取结合一体,利用超临界CO2优良的溶剂力,将基质与萃取物有效分离、提取和纯化。
SFE使用超临界CO2对物料进行萃取。
CO2是安全、无毒、廉价的液体,超临界CO2具有类似气体的扩散系数、液体的溶解力,表面张力为零,能迅速渗透进固体物质之中,提取其精华,具有高效、不易氧化、纯天然、无化学污染等特点。超临界流体萃取分离技术是利用超临界流体的溶解能力与其密度密切相关,通过改变压力或温度使超临界流体的密度大幅改变。在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地依次把极性大小、沸点高低和相对分子质量大小不同的成分萃取出来。

⑦ 超临界流体萃取技术的萃取装置

超临界萃取装置可以分为两种类型,一是研究分析型,主要应用于小量物质的分析,或为生产提供数据。二是制备生产型,主要是应用于批量或大量生产。
超临界萃取装置从功能上大体可分为八部分:萃取剂供应系统,低温系统、高压系统、萃取系统、分离系统、改性剂供应系统、循环系统和计算机控制系统。具体包括二氧化碳注入泵、萃取器、分离器、压缩机、二氧化碳储罐、冷水机等设备。由于萃取过程在高压下进行,所以对设备以及整个管路系统的耐压性能要求较高,生产过程实现微机自动监控,可以大大提高系统的安全可靠性,并降低运行成本。

⑧ 什么是超临界流体萃取技术 什么是超临界流体

超临界流体萃取过程是利用处于临界低压和临界温度以上的流体具有特异增加的溶解能力而发展出来的化工分离新技术,人们发现处于临界压力和临界温度以上的流体对有机化合物溶解增加的现象是非常惊人的。一般能增加几个数量级,在适当条件下甚至可达到按蒸气压计算所得浓度的1010倍(油酸在超临界乙烯中的溶解度)但是应用这一特殊溶解能力的新型分离技术一超临界流体萃取过程却是近20年的事情。从80年代以来,国际上投入大量人力、物力进行研究,范围涉及食品、香料、医药和化工等领域,并取得了一系列进展。我国超临界流体萃取研究始于20世纪80年代初,从基础数据,工艺流程和实验设备等方面逐步发展,历经20多年的努力,我国超临界流体萃取技术研究和应用已取得显著成绩。目前全国已建成10余套工业规模萃取装置,中小型设备,达百余套。超临界流体萃取在我国已逐步走向工业化,有多种产品进入市场,其发展方兴未艾。

1 超临界流体萃取过程简介

将萃取原料装入萃取釜。采用二氧化碳为超临界溶剂。二氧化碳气体经热交换器冷凝成液体,用加压泵把压力提升到工艺过程所需的压力(应高于二氧化碳的临界压力),同时调节温度,使其成为超临界二氧化碳流体。二氧化碳流体作为溶剂从萃取釜底部进入,与被萃取物料充分接触,选择性溶解出所需的化学成分。含溶解萃取物的高压二氧化碳流体经节流阀降压到低于二氧化碳临界压力以下进入分离釜(又称解析釜),由于二氧化碳溶解度急剧下降而析出溶质,自动分离成溶质和二氧化碳气体二部分,前者为过程产品,定期从分离釜底部放出,后者为循环二氧化碳气体,经过热交换器冷凝成二氧化碳液体再循环使用。整个分离过程是利用二氧化碳流体在超临界状态下对有机物有特异增加的溶解度,而低于临界状态下对有机物基本不溶解的特性,将二氧化碳流体不断在萃取釜和分离釜间循环,从而有效地将需要分离提取的组分从原料中分离出来。

2 超临界流体萃取技术的特点

2.1 具有广泛的适应性

由于超临界状态流体溶解度特异增高的现象是普遍存在。因而理论上超临界流体萃取技术可作为一种通用高效的分离技术而应用。

2.2 萃取效率高,过程易于调节

超临界流体兼具有气体和液体特性,因而超临界流体既有液体的溶解能力,又有气体良好的流动和传递性能。并且在临界点附近,压力和温度的少量变化有可能显著改变流体溶解能力,控制分离过程。

2.3 分离工艺流体简单

超临界萃取只由萃取器和分离器二部分组成,不需要溶剂回收设备,与传统分离工艺流程相比不但流程简化,而且节省耗能。

2.4 分离过程有可能在接近室温下完成(二氧化碳),特别适用于过敏性天然产物

2.5 必须在高压下操作,设备及工艺技术要求高,投资比较大

3 超临界流体萃取技术展望

当今,随着人们生活水平的不断提高,对工业污染的普遍关心,以及世界各地对食品管理卫生法规有日趋严格的趋势,天然产物,“绿色食品”将取得不断发展。然而,传统的天然产物分离,精制加工工艺中的压榨;加热;水汽蒸馏和溶剂萃取等工艺手段往往会造成天然产物中某些热敏性或化学不稳定性成分在加工过程中被破坏,改变了天然食品的独特“风味”和营养。而且加工过程溶剂残留物的污染也是不可避免的,因而人们一直在寻找新的天然产物加工新工艺,超临界流体萃取技术将有可能满足人们这一要求。所以在过去20年中,国际上在超临界流体萃取分离领域上投人大量研究工作。并在食品和香料加工领域取得一批有价值的应用成果,引起广泛关注。但超临界流体萃取并没有像有些人所期望那样取代传统的分离方法,特别是90年代以来发展趋势渐缓,没有新的,有影响力的工业化成果出现,综观其原因,超临界流体萃取存在着以下弊端:

⑴分离过程在高压下进行,设备一次性投资大。

⑵萃取釜无法连续操作,造成装置的时空产生率比较低。

⑶过程消耗指标不容忽视。

因此,超临界流体萃取技术的开发,应充分考虑其经济性能,只有那些能充分发挥该技术固有优点的过程才具有工业实用性的观点,正逐渐成为人们的共识。

我国超临界萃取技术历经引进和仿制设备,工艺技术等阶段,已逐步走向工业化。只有结合我国丰富天然产物资源开发出自己的分离新工艺,新技术才可能有进一步的发展,另外,目前我国超临界产品如何走向市场,也是本技术能否进一步发展的重大问题,殷切希望在全国同行努力下,使我国超临界流体萃取产业能够形成特色,走出一条自己的路。

阅读全文

与超临界流体萃取装置设计相关的资料

热点内容
燕秀工具箱转样条圆形 浏览:858
72电动工具快速充电电路 浏览:978
管桩机械连接价格多少 浏览:64
150w制冷量能干什么 浏览:413
chost工具箱 浏览:877
大型沥青路面用防水设备哪里有 浏览:474
冷风系统的主要设备有哪些 浏览:655
dnf85机械带什么装备搭配 浏览:850
轴承与轴承顺时针转角怎么算 浏览:223
浆泵轴承箱加什么油 浏览:54
机械羊为什么没有感情 浏览:983
道路可降尘式防护装置设计 浏览:896
曲轴轴承用什么级别轴承 浏览:957
做永久切片用什么器材 浏览:123
阀门中offset是指什么 浏览:396
机械封边多少钱 浏览:831
双凤空调不制冷怎么办 浏览:149
家用天然气阀门拔出来 浏览:432
东莞市长安宇轩五金制品厂 浏览:632
惠州旭辉设备招聘电话是多少 浏览:425