A. 牛顿环实验的思考题
减少误差的措施:
原理上,采用通过测量条纹直径求的半径的方法减少圆心确回定带来的误差;选定答第4级到第12级间的条纹进行测量,避免级别小的条纹因挤压变形和级别大的条纹不明显不宜测量而带来的误差;数据处理时采用逐差法,提高数据利用率。实验中,测量数据时,手轮要朝一个方向旋转,减小齿轮间隙造成的机械误差。
从牛顿环装置下方投射上来的光也可以形成干涉条纹,它与反射光形成的条纹不同之处在上方投射的光形成的中心条纹是暗纹,下方形成的是亮纹,这是因为由上方投射的光在空气薄膜下表面反射时是在光密介质反射,会有半波损失,下方投射来的光则没有。
B. 牛顿环实验中,其他实验过程不变,只是将实验装置浸泡在水中,下列说法正确的是
正确的答案是选(D)中心为暗纹,条纹变密。
因为水替代空气,水的折射率大于空气,与玻璃的折射率差变小,使环的半径变小(变密)。
C. 用本实验装置观察牛顿环的实验中是如何使等厚条纹的产生条件得到近似的满足的
通过反光镜反光将光垂直射入牛顿环,调节显微镜观察出干涉条纹
D. 等厚干涉牛顿环实验设计的原理在实验装置中是如何实现的
E. 单选题(12.5分) 8.在牛顿环干涉实验中,平凸透镜不动,将平板玻璃板向下平移,干
第抄10个明纹即k=10,设波长为a,则充液前:2d1+a/2=10a,即2d1=9.5a (1)
充液后:2nd2+a/2=10a,即2nd2=9.5a (2)
由(1)/(2)可得n,此题用不到第10个明纹,应该题目还要求波长吧.
F. 将牛顿环实验装置放到白光下观察,此时的条纹有何特征
牛顿环实验装置放到白光下观察,此时的条纹是彩色条纹。
用单色光照射透镜与玻璃板,就可以观察到一些明暗相同的同心圆环.圆环分布是中间疏、边缘密,圆心在接触点O.从反射光看到的牛顿环中心是暗的,从透射光看到的牛顿环中心是明的.若用白光入射.将观察到彩色圆环.
G. 在牛顿环实验中,反射光与透射光所形成的干涉条纹有什么不同
反射光与透射光所形成的干涉条纹差别只有一个:透射光形成的干涉条纹明暗程度刚好和反射光相反。反射光干涉形成的光场中亮条纹出现的地方恰好是折射光场中暗条纹出现的地方。也可以理解为能量守恒的一种表现,光场中某一区域,能量一定,反射的多了,透射的必然少。
牛顿环干涉中,反射光产生的干涉条纹与透射光产生的干涉条纹强度相反。因为两束反射相干光的振幅之和(A1r+A2r)与两束透射相干光的振幅之和(A1t+A2t)不相等。由于透镜玻璃的反射率一般较低(例如为4%)。
一束光经其两表面多次反射和透射而形成的多束反射光和透射光中,只有最初两束对干涉场有贡献,其余的振幅太弱,可忽略不计。最初两束反射光大小相近,其光强为I1r=4%I0,I2r=3.69%I0,即A1r≈A2r;但最初两束透射光强却相差较大,I1t=92.2%I0,I2t=0.0147%I0。
即A1tA2t(以上I0均为入射光强),干涉相长后所得光强极大值IM=(A1+A2)2,而(A1r+A2r)2≠(A1t+A2t)2,所以反射光和透射光产生的条纹强度极大值不同。
由于条纹可见度还可由两支相干光振幅表示:对于反射光,A1≈A2,其条纹可见度γ=1,即可见度较好;而对于透射光,A1A2,其γ值很小,甚至接近于零,条纹可见度差。因此,一般都用反射光观察。
(7)在牛顿环的实验装置中扩展阅读:
能量守恒的其他表现形式:
1、保守力学系统
在只有保守力做功的情况下,系统能量表现为机械能,(动能和势能)能量守恒具体表达为机械能守恒定律。
2、热力学系统
能量表达为内能,热量和功,能量守恒的表达形式是热力学第一定律(热量可以从一个物体传递到另一个物体,也可以与机械能或其他能量互相转换,但是在转换过程中,能量的总值保持不变)。表达式为Q=△U+W.。
3、相对论力学
在相对论里,质量和能量可以相互转变。计及质量改变带来能量变化,能量守恒定律依然成立。历史上也称这种情况下的能量守恒定律为质能守恒定律。
4、流体力学
在流体力学中有一种边界层表面效应,又称"伯努利效应“。是指流体速度加快时,物体与流体接触的界面上的压力会减小,反之压力会增加,伯努利效应是流体力学中的能量守恒定律。伯努利因发现这一现象并成功解释它而创立的流体力学。
5、电磁学
根据楞次定律,感应电流所产生的磁场总是阻碍原磁场磁通量的变化,这种阻碍的结果就使得电磁感应的过程中将其他形式的能量转化为电能,感应电流形成回路,再将电能转化为其他形式的能量。
也就是说,楞次定律所揭示的感应电流与原磁场的关系本质仍然是能量转化的关系,即能量守恒定律。
H. 牛顿环的环实验
牛顿环实验是这样的:取来两块玻璃体,一块是14英尺望远镜用的平凸镜,另一块是50英尺左右望远镜用的大型双凸透镜。在双凸透镜上放上平凸镜,使其平面向下,当把玻璃体互相压紧时,就会在围绕着接触点的周围出现各种颜色,形成色环。于是这些颜色又在圆环中心相继消失。在压紧玻璃体时,在别的颜色中心最后现出的颜色,初次出现时看起来像是一个从周边到中心几乎均匀的色环,再压紧玻璃体时,这色环会逐渐变宽,直到新的颜色在其中心现出。如此继续下去,第三、第四、第五种以及跟着的别种颜色不断在中心现出,并成为包在最内层颜色外面的一组色环,最后一种颜色是黑点。反之,如果抬起上面的玻璃体,使其离开下面的透镜,色环的直径就会偏小,其周边宽度则增大,直到其颜色陆续到达中心,后来它们的宽度变得相当大,就比以前更容易认出和训别它们的颜色了。
牛顿测量了六个环的半径(在其最亮的部分测量),发现这样一个规律:亮环半径的平方值是一个由奇数所构成的算术级数,即1、3、5、7、9、11,而暗环半径的平方值是由偶数构成的算术级数,即2、4、6、8、10、12。例凸透镜与平板玻璃在接触点附近的横断面,水平轴画出了用整数平方根标的距离:√1=1√2=1.41,√3=1.73,√4=2,√5=2.24等等。在这些距离处,牛顿观察到交替出现的光的极大值和极小值。从图中看到,两玻璃之间的垂直距离是按简单的算术级数,1、2、3、4、5、6……增大的。这样,知道了凸透镜的半径后,就很容易算出暗环和亮环处的空气层厚度,牛顿当时测量的情况是这样的:用垂直入射的光线得到的第一个暗环的最暗部分的空气层厚度为1/189000英寸,将这个厚度的一半乘以级数1、3、5、7、9、11,就可以给出所有亮环的最亮部分的空气层厚度,即为1/178000,3/178000,5/178000,7/178000……它们的算术平均值2/178000,4/178000,6/178000……等则是暗环最暗部分的空气层厚度。
牛顿环装置产生的干涉暗环半径为√(kRλ) ,其中k=0,1,2……
牛顿还用水代替空气,从而观察到色环的半径将减小。他不仅观察了白光的干涉条纹,而且还观察了单色光所呈现的明间相间的干涉条纹。
牛顿环装置常用来检验光学元件表面的准确度.如果改变凸透镜和平板玻璃间的压力,能使其间空气薄膜的厚度发生微小变化,条纹就会移动。用此原理可以精密地测定压力或长度的微小变化。
按理说,牛顿环乃是光的波动性的最好证明之一,可牛顿却不从实际出发,而是从他所信奉的微粒说出发来解释牛顿环的形成。他认为光是一束通过窨高速运动的粒子流,因此为了解释牛顿环的出现,他提出了一个“一阵容易反射,一阵容易透射”的复杂理论。根据这一理论,他认为;“每条光线在通过任何折射面时都要进入某种短暂的状态,这种状态在光线得进过程中每隔一定时间又复原,并在每次复原时倾向于使光线容易透过下一个折射面,在两次复原之间,则容易被下一个折射面的反射。”他还把每次返回和下一次返回之间所经过的距离称为“阵发的间隔”。实际上,牛顿在这里所说的“阵发的间隔”就是波动中所说的“波长”。为什么会这样呢?牛顿却含糊地说:“至于这是什么作用或倾向,它就是光线的圆圈运动或振动,还是介质或别的什么东西的圆圈运动或振动,我这里就不去探讨了。”
牛顿环仪是由曲率半径为R的待测平凸透镜L和玻璃平板P叠装在金属框架F中构成,如下右图所示。框架边上有三个螺钉H,用来调节L和P之间的接触,以改变干涉条纹的形状和位置。调节H时,螺钉不可旋得过紧,以免接触压力过大引起玻璃透镜迸裂、破损。右图为牛顿环实物图。 判断透镜表面凸凹、精确检验光学元件表面质量、测量透镜表面曲率半径和液体折射率。
应用于光谱仪、把复合光分离成单色光的组成。
I. 牛顿环实验思考题
楼主是南来京大学大一学生吗?说不自准我们是同学哟,嘿嘿!
1.由于光的波动性,因此光不是绝对直线传播的,总有光会漏到牛顿环装置上的,所以能观察到牛顿环,并且玻璃片角度越偏向45度,牛顿环越明显(做实验调试装置时你就应该感觉到了)。
2.这个问题书上有公式(第273页21-4),你抄一下公式就可以了。
3.画一张光路图,尽量精准一些,如果对自己的画图水平没有信心,可以在书上第272页图21-1上方虚线框中的图进行改造。(将曲率半径扩大,在原图上画一幅光路图就一切明了了。)答案是条纹向外移动。中心会变暗(实验时把房间灯关掉观察),因为第一圈亮环会向外移动,中心位置的暗斑面积扩大,接受光粒子的数量相应减少,亮度降低。
做一下最后总结:如果你是南京大学的学生,那么你做的四个光学试验中有两个体现了光的粒子性,两个体现了光的波动性。通过四个实验,我们应该充分了解光粒子性与波动性的结合,即波粒二象性。
J. 在牛顿环实验中,如果平玻璃由冕
1、根据等厚干涉原理,厚度相同地方干涉现象相同,所以在玻璃平板突起处,由于其到牛顿环上表面空气层处的厚度减小,所以该处的干涉条纹会相应地向中心内凹.
2、不能,因为白光是复色光,不是单色光.干涉条纹的形状等与入射光波长有关,白光波段覆盖了咱们能看到的所有可见光波段,这样没法形成干涉.