导航:首页 > 装置知识 > 孔隙微观可视化渗流模拟实验装置

孔隙微观可视化渗流模拟实验装置

发布时间:2021-11-15 20:59:08

① 孔隙介质中流体渗流-组分扩散-化学反应耦合过程的动力学

岩石、土壤和疏松沉积物(下面统称为固体介质)均可以视为孔隙介质或多孔介质。孔隙介质中的流体渗流-组分扩散-化学反应耦合的动力学系统是最常见,也是最重要的地球化学动力学系统。微细裂隙可视为孔隙度和渗透率较大的孔隙区带。现在见到的较大裂隙系统,如脉型矿床系统,可能是在漫长的地质历史中随着矿脉的充填逐渐扩张的,可近似地处理为高孔隙度和渗透率的区带。对于地下溶洞、地表溪流和江河内营养元素和污染元素的迁移富集的环境则不能视为多孔介质。

多孔介质中热流体渗流、化学组分扩散和反应的动力学体系可表示为:

地球化学

上述式中v为孔隙流体的实际流速,q为渗透速率,v=q/φee为有效孔隙度,即连通孔隙度;κ=κ/μ,κ为渗透率系数,μ为流体的粘度系数;g为重力加速度;ρ为流体总密度;z为垂直方向上的坐标;p为流体内压力;t为时间;T表示流体的温度;CE=(1-φ)cmρmφCfρ,为等效热容,cm、cf分别为多孔介质和流体的比热,ρm和ρ则分别为多孔介质和流体的密度,φ为介质总孔隙度;同样,κE=(1-φ)κm+κφf为等效热传导系数,κm、κf则分别为多孔介质和流体的热传导系数;a代表热源(或汇,即去向、聚集区、汇聚区)的强度,如放射性蜕变热、化学反应热等,无热源或汇时a=0;ci、Di和Ri分别代表流体中组分i的浓度、扩散系数和单位时间单位体积内由于流体中或流体与围岩介质反应所导致的组分i的生成(源)或损耗(汇),当主要为溶解-沉淀反应时,Ri的表达式参见式(4.127);ρ0为当流体温度为T0、组分浓度均为零(纯水)时流体的参照密度,α为热膨胀系数,βi为组分i的溶质膨胀系数。

式(4.129a)表明体系内流体速度的散度处处为零,这是不可压缩流体的质量守衡定理的数学表述。式(4.129b)是渗透定律的微分形式,即渗透速率q的大小与水头梯度呈正比,但方向相反,由高水头流向低水头;水头由流体内压力p和流体的重力势gpz构成。式(4.129c)表明流体微团内热能随时间的变化率,可归结为热对流项▽·(ρqcfT)、热传导▽·(κE▽T)和热源项。热对流项前面的负号表示速度梯度方向(由低流速指向高流速)为“流出”方向,导致热的减少。式(4.129d)为流体内组分守恒表述式。组分浓度的变化率同样可归结为对流项▽·(qci)、扩散项▽·(φDici)和反应项。式(4.129e)为流体本构方程,说明流体密度随温度的增大而减小,随溶解其中的组分浓度的增大而增大。

当测定了待研究系统的各种动力学参数,如孔隙度、渗透率、扩散系数等,并确定了初始条件和边界条件后,即可应用有限元、有限差分等数学方法进行计算机编程和求解,称为计算机模拟。

地质流体输运-反应过程动力学是地球化学动力学的一个十分重要的方面。各种地球化学作用的动力学过程虽千差万别,但几乎均与流体的运动(或称输运)和流体与介质(土壤、岩石等)的化学反应有关。许多地质作用必须有流体参与,另一些地质作用则由于流体的参与而大大加快了。流体的作用往往既涉及流体的输运又涉及流体与周围介质的反应,两者是相互耦合的。无论地幔对流、壳幔交换、岩浆房动力学、热液成矿作用动力学,或表生及环境地球化学动力学等均归属为地质流体输运-反应过程的动力学。所以,地质流体输运-反应过程动力学具有很重要的理论意义。

简单地说,地质流体输运-反应过程的动力学是研究在不同温压条件下地质流体在土壤或围岩介质中的流动与反应。地质流体的输运-反应过程动力学不同于水文学研究的地下水动力学:首先地质流体不限于水,它可以是溶液、气体、甚至粘度很大的岩浆;其次,地下水动力学较少考虑热对流体的驱动作用,也很少涉及流体内各种组分的扩散运动,更少考虑流体与周围介质的化学反应。地质流体的输运-反应动力学也不同于水-岩反应动力学和地质流体力学。水-岩反应动力学相对忽略地质流体对能量和物质的输运,而侧重于流体与周围介质的化学反应机制、反应速率测定;地质流体力学则相对忽略地质流体与周围介质的化学反应,而着重考察流体在地质体中的运动。在许多地质过程中,例如岩浆动力学过程和热液成矿过程中,热(岩浆热)对流体的驱动作用、流体的运动、流体内各种组分的扩散运动以及流体与周围介质(围岩)的化学反应是相互耦合、不可分割的,对这类地质过程动力学的研究属于地质流体输运-反应过程的动力学的范畴。因此,地质流体输运-反应动力学是地球化学动力学和地质流体力学的综合,是今后地学发展的前沿领域。

於崇文近年来提出了“广义地球化学动力学”研究的对象、理论和方法论,指出地球化学系统是复杂的动力系统,地球化学的任务及最终目的是探索地球化学系统的复杂性,阐明复杂性的涌现机制与发展规律。广义地球化学作用可理解为地球物质的运动,广义地球化学动力学的研究涵盖了化学运动、力学运动和磁学运动。於崇文提出了广义地球化学动力学的三大基础理论问题:①广义地质过程的非线性动力学;②“广义地质作用与时-空结构”耦合系统的复杂性;③广义地质学系统的自组织临界性与混沌边缘。这里的广义地质学系统和广义地质过程指所有地质、地球化学、地球物理的系统和作用过程。可见,广义地球化学动力学包含了地球物质运动的全部动力学研究内容。

② 渗流的运动要素

描写渗流场运动特征的各物理量(水头、水压、流速等)称为运动要素。

(1)孔(空)隙平均流速(地下水实际流速)和渗透流速(Darcy流速)

地下水只能在多孔介质的空隙中流动,如果从微观水平,即从空隙中地下水的质点流速矢量来研究地下水运动,将是十分困难的。为此,采用上述典型体元的方法,将真实的地下水质点流速矢量引入到多孔介质连续体上的流速矢量,我们可采用两种平均的方法。

若将空隙中地下水质点流速矢量u′在整个典型体元V0(包括空隙和固体两部分)上取平均值,即

地下水动力学(第五版)

式中:v(P)为多孔介质连续体中P点的渗流速度矢量(欧美文献中多称之为比流量,即单位面积的流量)或Darcy流速矢量。方程中第二个等号的成立是由于在固体部分中u′=0。显然,渗透流速是个假想的流速,它假定多孔介质连续体(包括空隙和固体部分)都能过水的流动速度。这种假想的流速使用起来比较方便,因为计算通过某断面的流量Q时,只要依下式计算即可

Q=vA

式中:A为多孔介质连续体的过水断面(包括空隙和固体部分)的面积,这在连续体内取值是十分方便的。

若将空隙中地下水质点流速矢量u′在典型体元的空隙部分V0v中取平均值,即

地下水动力学(第五版)

式中:u(P)为多孔介质连续体中P点的孔隙平均流动速度,前苏联习惯上称之为地下水实际流速(不要和地下水的质点流速相混淆)。孔隙平均流速在研究地下水溶质运移问题中比较方便。

至此,我们定义了地下水的3种流速,即质点流速u′(图1-1-2a)、孔隙平均流速u和渗透流速v;图1-1-2b表示三者之间的关系。

图1-1-2a 质点流速分图

图1-1-2b 地下水各种流速关系概念图(据陈崇希,1966)

由(1-1-5)式和(1-1-6)式可以看出孔隙平均流速u与渗透流速v之间存在下列关系

地下水动力学(第五版)

我们注意到,多孔介质中互不连通的孤立孔隙对地下水的储存与运动都是没有意义的;盲孔隙只有一个小口与空隙系统相联系,对于地下水的运动几乎没有意义(仅在地下水溶质运移上有意义)。另外,研究地下水的运动时,一般情况下可以忽略结合水的运动,从而可略去结合水所占据的空隙空间。我们仅将那些对地下水储存和运动有意义的空隙体积与相应典型体元的体积之比称有效空隙率ne(严格地讲,关于运动的有效空隙率与关于储存的有效空隙率是有差别的)。因此,地下水渗透流速与孔隙平均流速之间的关系可改为

地下水动力学(第五版)

为方便起见,在不致引起误会的情况下,本教材后文所说的空隙率n,均指有效空隙率。

引进渗透流速的概念之后,渗流场内地下水流的实际流线(图1-1-3a)则可以用渗流速度为基础的虚构流线来表示(图1-1-3b)。垂直于所有流线的断面AB称为渗流断面(过水断面),它可以是平面也可以是曲面。单位时间内通过渗流断面的地下水体积称为渗透流量。

渗透流速是个矢量,因而根据渗透流速方向与空间坐标轴的关系把地下水流分为:只沿一个坐标方向运动的称为一维流动;沿两个坐标方向有分流速的称为二维流动;而沿三个坐标方向都有分流速的则称为三维流动。

图1-1-3a 地下水实际流线

图1-1-3b 基于渗透流速的流线

(2)压强、水头和水力坡度

宏观水平的地下水压强p(也称水压)定义为

地下水动力学(第五版)

由于自然界中的地下水都承受大气压力,所以习惯上地下水压强一般不考虑(不计算)大气压强。与水力学一样,地下水压强的大小也可用水柱高度表示为

地下水动力学(第五版)

式中:hp称为测压高度;p为地下水压强(不计大气压强);γ为地下水的容重。

图1-1-4a和图1-1-4b分别表示潜水含水层和承压含水层孔底进水条件下,孔底点的测压高度hp

图1-1-4a 潜水含水层中A和B点的测压高度及水头

图1-1-4b 承压含水层中A和B点的测压高度及水头

宏观水平的水头H定义为

地下水动力学(第五版)

水力学中已学过,总水头应表征流场中任意点具有的位置势能、压力势能、动能三者总和,即

地下水动力学(第五版)

式中:z为位置高度;α为动能修正系数;u是过水断面平均流速,对应地下水流则是孔隙平均流速;g是重力加速度。

由于地下水的孔隙平均流速通常很小(岩溶管道流除外),即上式右端第三项比第一、二项之和小得多,一般情况可以忽略不计。因此,地下水动力学中通常近似表示为

地下水动力学(第五版)

实用上一般不去严格区分总水头或测压水头,而通称为水头,以H表示。

水头H随着位置高度z而变,位置高度又取决于基准面的选取。基准面的选取主要考虑使用方便。一般地说,隔水底板水平的潜水含水层,其基准面取在隔水底板处,其他情况,通常以海平面为基准面。

水头(H)值的大小可用水柱高度表示,量纲为[L]。因而,渗流场内任意点水头值的大小可以用从基准面到揭穿该点的井孔的水位处的垂直距离来表示(图1-1-4a和图1-1-4b)。研究地下水水头的时空分布规律是地下水动力学的重要研究内容之一。

地下水在空隙介质中流动会引起水头损失(机械能转为热能)。渗流场内,沿着流线各点的水头值不等,若用铅直线段表示各点的水头值并将线段顶端连成线,则此线称为该流线的水头线。它沿着流向倾斜(降落),说明地下水是由水头高处向低处运动的。但水头线形状可能是下降的直线,也可能是下降的曲线(包括上凸型或下凹型)。

渗流场内水头值相等的点连成的面(线)称为等水头面(线),即H1、H2、H3。沿等水头面(线)的法线方向n水头的变化率最大。沿法线方向的水头变化率称为水力坡度(图1-1-5),即

图1-1-5 水力坡度概念图

地下水动力学(第五版)

式中:H为水头;n为等水头面的法线,并指向水头减小的方向。此式的负号表示沿n方向水头值减小。

在各向同性岩层中,流线垂直穿越等水头面,与等水头面的法线n相重合,因而水力坡度可以表示为

地下水动力学(第五版)

式中:s是指流线方向(也即等水头面的法线方向)。在此条件下,水力坡度J表示水头H沿流线方向的变化率(最大变化率)。J在空间直角坐标系中可表达为3个分量,即

地下水动力学(第五版)

③ 地层条件下油藏岩石渗流特征研究

王建孙志刚

摘要介绍了地层条件下测定油水相对渗透率的流程与方法。实验研究了压力、温度和流体性质对油水相对渗透率测定结果的影响。以胜坨油田2-3-J1503井为例,给出了地面条件及地层条件下的典型相渗透率曲线,并对测定结果的差异进行了讨论。

关键词地层条件渗流特征测定方法影响机理

一、引言

室内实验得到的岩石渗透率、油水两相相对渗透率等参数广泛应用于油藏数值模拟、最终采收率和含水量上升率计算中。目前,这类参数都是在地面条件下测定的,存在着地面条件和油藏条件的差异。本次研究的目的就在于探索油藏条件下渗流参数测定方法,深入研究其影响机理,提高室内实验成果的整体水平。

二、影响因素研究

1.压力对岩石渗流的影响

目前,对上覆地层压力的影响问题看法不一。Wilson等人的研究表明,在地层温度和上覆压力为34.5MPa时,测得的油水有效渗透率比常温、常压下要低;Merliss等人则认为上覆压力对相对渗透率的影响主要是由于界面张力的变化所引起[1]。

为研究压力对油水相对渗透率的影响,进行了地层压力和常压条件下的油水相对渗透率对比实验。使用两组平行样品,分别在净上覆压力为2MPa(地面条件)和20MPa(地层条件)条件下测定其油水相对渗透率。为得到有代表性的相对渗透率曲线,将同组样品所测定的相对渗透率曲线先进行标准化处理,后求取平均相对渗透率曲线(图1)。

图1两种条件下的平均相渗曲线图

由图1可见,在地层压力条件下,由于上覆压力的增大,使得相渗曲线中束缚水饱和度增大,油水两相区宽度减小;高压下的水相相对渗透率上升较快,油相相对渗透率下降较快,这是由于上覆压力改变了岩心的孔隙结构,在上覆压力的作用下,岩心的非均质性增强,油水前缘分布更加不均,造成水相的上升和油相的下降都增快的结果。

2.温度对岩石渗流的影响

针对油藏温度与常温条件下油水相对渗透率是否存在差别,进行了两类实验研究。一类使用同一种油水在不同温度下测定油水相对渗透率;另一类是使用不同油水,保证在不同的温度时具有接近的油水粘度比条件下测定油水相对渗透率。所用岩心都是胶结好、均质程度高的平行样。

图2不同温度和不同油水粘度比条件下的油水相渗曲线图

(1)相同种油水,不同温度和油水粘度比条件下的相渗曲线对比

用自配油-3%KCl水分别在20℃、70℃和90℃条件下进行了油水相对渗透率测定。随着温度的升高,束缚水饱和度增大,残余油饱和度减小(图2)。这是由于温度的升高使得油水粘度比减小,从而改变了样品中油水两相的分布。高油水粘度比时,油更易将水驱出,因此束缚水较低,而水较难将油驱出,因此残余油较高;相反,在低油水粘度比时,就会出现高束缚水饱和度,低残余油饱和度的现象。

(2)不同温度相同油水粘度比的油水相渗曲线对比

选择在18℃、60℃和120℃条件下具有相近油水粘度比的三种自配油/3%KCl,进行油水相对渗透率测定。从测定结果看出,不再出现“随着温度的升高,束缚水饱和度增大,残余油饱和度减小”的现象,而是三条相对渗透率曲线基本接近。只是随着温度的升高,油水相对渗透率略有增大(图3)。这是因为在油藏温度下,精制油/盐水的毛管压力要低于常温条件的毛管压力。因此,在进行相对渗透率实验时,最好选用模拟油藏温度。实验条件达不到时,必须模拟油藏油水粘度比。

图3不同温度、相同油水粘度比条件下的油水相渗曲线

3.流体对岩石渗流的影响

实验室进行岩石渗流研究大多采用精炼油。为了研究不同油品对两相渗流的影响,进行了精制油、脱气原油和含气原油的对比实验。实验结果看出,用三种油品所做的相对渗透率曲线基本接近(图4)。其原因是:①实验是在油藏温度下进行,原油中的胶质、沥青质不会析出阻塞孔道;②实验所用的样品是新鲜天然岩心,且样品清洗未破坏岩心原始润湿性;③三条相渗曲线是在相近的油水粘度比条件下测定完成的。

含气原油/盐水的油水两相相对渗透率要略高于脱气原油/盐水。这是含气原油在饱和压力以上随压力的升高界面张力降低所造成的[2]。

图4精制油、脱气原油和含气原油的相渗曲线图

精制油/盐水与原油/盐水的相对渗透率曲线之间存在差别,但差别不大。其原因是原油降低了样品的相对润湿指数,使样品的润湿性从水湿趋向弱水湿[3]

综上所述,研究油藏条件下的岩石渗流问题,应该使用油层压力和油层温度条件下的含气原油,也可以使用相同粘度的脱气原油来代替含气原油。在条件达不到时,使用精制油。

三、地层条件下岩石相对渗透率的测定

对岩石渗流影响因素的分析表明,在研究模拟地层条件下岩石渗流时,必须模拟油藏岩石的净上覆压力;模拟油藏油水粘度比的同时应该同时模拟地层温度并且使用含气原油,也可以使用相同粘度的脱气原油来代替含气原油;试验用水可使用现场地层水、注入水或由实验室根据水分析资料配制而成的盐水。

进行地层条件下油水相对渗透率测定的具体步骤如下。

第一,校对岩样清单,记录油藏压力、油藏温度、油水粘度比以及样品的井段、距顶。

第二,检查所有仪器设备

第三,按SY/T5336标准,测定岩样的空气渗透率。

第四,测定岩样的孔隙体积和孔隙度:①将样品装入高压夹持器,围压加至地层净上覆压力,抽真空1h-2h;②将夹持器进口连接高精度计量泵,开泵,恒压方式建立一定压力;③待泵压稳定后,将泵出体积项清零,打开夹持器进口阀,待压力再次恒定后,读出泵的泵出体积数,此数即样品孔隙体积。

第五,测定岩样的含油饱和度和束缚水饱和度:①将夹持器的出口端与高压油水分离器连接,调节回压控制旋钮,将高压分离器出口回压加至含气原油泡点压力以上;②泵入盐水,直至回压阀出口流出液体,系统的流压高于泡点压力;③打开油容器出口,将高压油水分离器充满实验所用的油水,使油水界面处于分离器的中下部,关闭分离器下部出口,打开上部出口,待整个系统的压力平衡后,油水分离器清零,进行油驱水;④不断提高注入速度,直到分离器刻度不再增加,记下此点,减去饱和油死体积就是原始油体积,从而可计算出含油饱和度和束缚水饱和度。

第六,测定束缚水饱和度下油相渗透率:由低到高选择3个压力点进行测定,并在其压力、流速稳定后测定油相渗透率,测量值之间的相对偏差小于5%时,取其算术平均值。

第七,进行水驱油的油水相对渗透率测定(非稳态恒速法):①关闭分离器上部出口,打开下部出口,待系统压力平衡后,将油水分离器清零,记下出口天平刻度;②注水驱油,记录各个时刻的驱替压力、分离器读数和电子天平读数。

四、地面条件下和地层条件下实验结果的对比和讨论

通过实验研究,分别就平行样(天然岩心)在地面条件下和地层条件下的渗流特征进行了对比分析,取得了一定的规律性认识。

1.单相渗流规律

研究方法是测定样品在不同净上覆压力下的有效渗透率,将测得的结果按二次多项式拟合,截距设定为地面渗透率。将得到的一系列系数进行数理统计,得到不同岩性的有效渗透率随净上覆压力变化的变化规律。表1为胜坨油田2-3-J1503井10块样品有效渗透率与净上覆压力关系式。

表1有效渗透率与净上覆压力关系式以及三个系数的统计表

将2-3-J1503井样品作为反映该区块岩石性质的一个整体,将其有效渗透率与净上覆压力关系式中的系数进行数理统计,统计方法如图5、6所示。

统计后得到关系式:b=67.6a;Ko=42.88b。其相关系数分别为0.9924和0.9745。

将 a,b代换,有效渗透率与净上覆压力的统计规律如下:

胜利油区勘探开发论文集

式中:Kob——层上覆压力下的样品有效渗透率,10-3μm2

pc——地层净上覆压力,MPa;

Ko——地面条件下的样品有效渗透率,10-3μm2

图5b—a关系图

图6Ko—b关系图

利用公式(1),根据实际油藏的净覆盖压力以及地面条件下的有效渗透率可预测油藏的地层有效渗透率。而公式(2)反映的是油藏岩石无因次渗透率随净上覆压力的变化规律。

2.两相渗流规律

利用平行样品,分别测定它们在地面条件下和地层条件下的相对渗透率曲线,将每块样品的相对渗透率曲线进行标准化处理,求取平均相对渗透率曲线。以胜坨油田2-3-J1503井样品为例,结果见图7。

由图7可见,两种条件下的相渗曲线在束缚水饱和度、两相区宽度以及曲线形态上都存在一定的差异。为更加清楚地分析认识地层条件与地面条件的区别,绘制其平均分流量曲线(图8)。

由图8可以清楚地看出,地层条件下的束缚水饱和度(Swi)高于地面条件;地层条件下的油水两相的前缘含水饱和度(Swf)低于地面条件;地层条件下的油水两相区平均含水饱和度

低于地面条件,含水量上升变快。这是由于净上覆压力的增大改变了样品的孔隙结构,增加了岩心的微观非均质性,造成束缚水饱和度增大,使得水相渗透率上升变快,油水前缘分布更加不均,也就造成了前缘水饱和度的降低。

图7地层条件下和地面条件下平均油水相对渗透率对比曲线图

图7中,地面条件下测定的最终水相相对渗透率要低于地层条件下测定的最终水相相对渗透率。其原因是实验条件中,温度的升高降低了毛管力的影响[4],同时,含气原油改变岩心的润湿性,这两种影响都会造成最终水相渗透率的增高[3]

图8 地层条件下和地面条件下水分流量对比曲线图

Swi—束缚水饱和度;Swf—前缘含水饱和度;

—平均含水饱和度

五、结论

净上覆压力是影响岩石渗流规律的主要因素。

对岩石有效渗透率与净上覆压力所做出的统计规律具有一定的推广应用价值。

与地面条件相比,地层条件下的相对渗透率曲线存在着“三高两低”的规律,即束缚水饱和度高,油水两相的前缘含水饱和度低,油水两相区平均含水饱和度低,含水量上升率高以及最终水相相对渗透率高。因此,在进行油水相对渗透率实验时,应该模拟地层条件。

通过对地层条件下油藏岩石渗流特征的分析研究,可以推断,在进行其他的开发试验时同样也存在地层条件下与地面条件下测量结果的差异,也存在如何再现油藏真实条件的问题。这将是开发试验研究需要认真研究解决的重大问题之一。

致谢 在研究过程中,得到院机关有关科室,尤其是计划科的领导提供了支持和帮助,本室的老专家宗习武、李树浓、涂富华等给予了悉心指导在此表示衷心感谢。

主要参考文献

[1]沈平平.油层物理实验技术.北京:石油工业出版社,1995:166.

[2]沈平平.油层物理实验技术.北京:石油工业出版社,1995:96.

[3]KKMohanty,A EMiller.影响混合润湿性储集层岩石非稳态相对渗透率的因素.见:Ccmattax,RMMckinley著.杨普华,倪方天译.岩心分析论文集.北京:石油工业出版社,1998:175~196.

[4]Fred Bratteli,Hans P Normann.油藏条件和润湿性对毛细管压力曲线的影响.见:C C Mattax,R M Mckinley著.杨普华,倪方天译.岩心分析论文集.北京:石油工业出版社,1998:246~257.

④ 渗透率与孔隙介质平均孔道半径的关系

油层的渗透率取决于岩石孔隙孔道的大小,明确它们之间的关系有很大的实际意义。地层中油水的物理力学性质、黏滞力、毛细管力、剪切应力 (含剪切应力和极限剪切应力)、运动阻力等,都与岩石的孔隙孔道大小有关,也就是与渗透率有关。

虽然岩心的渗透率与岩心的孔隙结构 (孔径分布)之间并不存在唯一性,即渗透率相同的岩心可能具有不同的孔隙孔径分布曲线,但是如果在渗透率与其平均孔道半径之间找到某种关系,那是非常有用的。渗透率本身就是岩心中各种不同半径孔道的孔隙系统允许流体通过的一种平均参数。所以,渗透率与平均孔道半径之间的关系是一种数理上性质对等的关系。

从表2.2可以看出,长庆油田中高渗透层的主流喉道半径为11.7μm,特低渗透层为1.5μm,约是中高渗透层的十分之一。而中高渗透层的渗透率为181×10-3μm2,特低渗透层的渗透率只有4.4×10-3μm2,仅为高渗透层的3%。

表2.2 长庆油田储层微观孔隙结构分类特征参数

(据长庆油田资料)

对于一个油藏或一个油田来说,毛细管压力曲线的资料是很少的,而渗透率的资料则很多。如果能通过渗透率的变化来了解孔隙结构的特征,将是很有益的。可应用不同渗透率岩样的毛细管压力曲线,计算出其平均毛细管半径,作出它们之间的关系曲线,以求出它们之间的相互关系。

根据毛细管模型理论与达西定律的关系,可以得到:

低渗透油藏渗流机理及应用

式中:K——渗透率;

r——毛细管半径;

φ——孔隙度。

这说明,在一定的沉积条件下,渗透率的平方根与平均孔道半径成正比。

⑤ 什么是可视化微观渗流模型

在任何温度压力下均服从理想气体状态方程(PV=nRT)的气体称为理想气体。 理想气体在微观上具有以下两个特征: 1、分子间无相互作用力。 2、分子本身不占有体积 实际上绝对的理想气体时不存在的,它只是一种假想的气体。

⑥ 油页岩原位开采关键技术研究

薛华庆 王红岩 郑德温 方朝合 闫 刚

(中国石油勘探开发研究廊坊分院新能源研究所,河北廊坊 065007)

摘 要:我国油页岩资源量为11602×108t,其中埋藏深度在500~1500m的油页岩资源量为6813×108t,原位开采技术是开发该部分资源的有效手段。我国油页岩原位开采技术处于起步阶段,已经完成了不同温度 下油页岩微观孔隙和渗透变化规律研究,电加热和蒸汽加热原位开采室内模拟实验和数值模拟研究等。研究 表明,电加热和蒸汽加热开采方式都具有可行性。设计了电加热器、注蒸汽井、生产井,为油页岩原位开采 现场试验提供技术支撑。

关键词:油页岩;原位开采;电加热;蒸汽加热

The Key Technique of Oil Shale In-situ Conversion Process

Xue Huaqing,Wang Hongyan,Zhen Dewen,Fang Chaohe,Yan Gang

(New Energy Department,Petrochina Research Institute of Petroleum Exploration & Development-Langng,Langfang 065007,Hebei,China)

Abstract:The oil shale resources,bury in 500-1000m,are about 0.7 trillion tones in China,which count for 59% of total resources and only are developed by in-situ conversion process.The in-situ conversion process are still in infancy in China.The regularity of oil shale micropores and permeability were studied in different temperature,the simulated experiment and numerical simulation were also respectively investigated in electrical heating and steam heating method of in-situ conversion process.As a result,both methods are available.The electrical heating well,injection steam well and procer well were designed,which provide the technique support for field test.

Key words:oil shale,in-situ conversion process,electrical heating,steam heating

引言

油页岩(又称油母页岩)是一种高灰分的含可燃有机质的沉积岩,其有机物主要为干酪根。在隔 绝空气或氧气的情况下,被加热至400~500℃,油页岩中的干酪根可热解,产生页岩油、干馏气、固 体含碳残渣及少量的热解水。目前油页岩开发的主要有两种方式:原位开采和地面干馏。原位开采是指 埋藏于地下的油页岩不经开采,直接在地下设法加热干馏,地下页岩分解,生产页岩油气被导至地面。地面干馏则是指油页岩经露天开采或井下开采,送至地面,经破碎筛分至所需粒度或块度,进入干馏炉 内加热干馏,生成页岩油气及页岩半焦或页岩灰渣。与地面干馏相比,原位开采具有节省露天开采费用 和降低地面植被破坏程度,占地面积少等优点[1]

中国油页岩资源储量非常丰富。2004~2006年新一轮全国油气资源评估结果显示[2,3],全国油页 岩资源为7199.4×108t,折算成页岩油资源476.4×108t,其中埋深500~1000m的油页岩资源量占全国 的36%。该部分资源无法用成熟的地面干馏工艺进行开发,只有通过原位开采工艺才能得到有效的开 发和利用。目前,国际上油页岩原位开采技术研究大部分都处于实验研究阶段,只有壳牌公司开展了现 场试验[4]。我国油页岩原位开采还处于起步阶段。在国家重大专项“大型油气田及煤层气开发”项目 18“页岩油有效开采关键技术” 的支撑下,研发了多台(套)油页岩原位开采模拟实验装备,开展了 油页岩微观孔隙变化、物理模拟实验和开采数值模拟研究等,沉淀了一批科研成果,为我国油页岩原位 开采技术研究奠定了基础。

1 国内外原位开采技术

国内外油页岩原位开采技术种类较多,根据传热方式不同可分为三种类型:直接传导加热、对流加 热和辐射加热[5],详见表1。

表1 国内外油页岩原位开采技术

开展油页岩原位开采直接传导加热研究的单位主要有4家,加热载体包括电加热棒、导电介质、 燃料电池等。壳牌公司的ICP技术(In-situ Conversion Process)是直接将电加热棒插入井内,对地下 油页岩矿层进行加热,目前正在进行第二代电热棒(三元复合电加热棒)的现场试验研究[4,6]。埃 克森美孚公司的ElectrofracTM技术是指对地下页岩层进行水力压裂造缝,将导电介质(如煅烧后的 石油焦炭)注入裂缝中,通电后导电介质成为加热体,该公司正在考虑进行现场试验[7]。美国独立 能源公司(Independent Energy Partners)的GFC技术(Geothermic Fuel Cell)是利用地热能持续为燃 料电池反应堆提供能量,反应堆放热来加热页岩层,油页岩热解生产的液态烃类和气体从生产井排 出,部分气体和其它剩余的烃类物质返回燃料电池反应堆[7]。EGL能源公司(EGL Resources)是将 高温空气注入到封闭循环管道中,通过被加热的管道对地下页岩层加热,因此也归属于直接传导 加热[8]

开展油页岩原位开采对流加热研究的单位主要有4家,加热载体主要为高温水蒸气、二氧化碳、空 气、烃类气体等。太原理工大学的水蒸气加热技术是通过常规油气开采中的水力压裂对页岩层造缝后,将高温水蒸气注入页岩层中加热,同时高温流体将热解产生的页岩油和烃类气体携带至生产井[9]。雪 弗龙公司的CRUSH技术[7,10]也是利用压裂技术对页岩层进行改造,提高裂缝发育程度,其中压裂液为 二氧化碳,然后将压缩后的高温空气注入加热井中对页岩层加热。美国地球科学探索公司(Earth Search Sciences)方法是将空气在地表的锅炉中预热后注入井下,对油页岩中干酪根进行气化[7]。美国 西山能源公司(Mountain West Energy)的IGE技术(In-Situ Gas Extraction)是将高温天然气注入目标 页岩层中,通过对流方式来加热页岩层[7]

开展油页岩原位开采辐射加热研究的单位主要有3家,加热载体主要为无线射频和微波等。20世 纪70年代后,美国伊利诺理工大学利用无线电波加热油页岩,随后劳伦斯·利弗莫尔国家实验室(Lawrence Livermore National Laboratory)对该技术进行改进,通过将射频传送至直井中直接对地下页岩 层进行加热[11,12]。雷神公司(Raython)与海德公园公司(Hyde Park)联合研发了RF/CF(Radio Frequency/Critical Fluids)技术,目前已经被斯伦贝谢公司收购[7]。该技术利用射频加热页岩层,通过 注入二氧化碳来实现超临界流体提高页岩油的采收率的效果。怀俄明凤凰公司(Phoenix Wyoming)是 将微波传送至地下,对页岩层加热,研究发现微波加热的速度是电加热棒的50倍以上,但对微波源的 要求很高[7]

2 中深层油页岩勘探现状

我国埋深0~1500m的油页岩资源为11602×108t,折算成页岩油626×108t,其中,埋藏深度在 500~1000m油页岩资源量为3489×108t,页岩油资源量为185×108t,1000~1500m资源量为3324× 108t,页岩油资源量为155×108t。比2005年全国新一轮油气资源评价结果显示的油页岩资源量7200× 108t多了4402×108t,主要增加了埋深1000~1500m资源量。

我国油页岩资源分布与常规油气资源相似,主要分布于北方,均表现为北富南贫。东部地区油页岩 资源主要集中于松辽盆地,占全国总资源的47%;中部地区油页岩资源集中于鄂尔多斯盆地,占全国 总资源的37%;西部地区油页岩资源主要集中于准噶尔盆地,占全国总资源的9%;南方地区主要集中 分布于茂名盆地,占全国总资源的2%;西藏地区主要集中分布于伦坡拉盆地,占全国总资源的5%。我国埋深500~1500m油页岩资源十分丰富,占总资源量的59%,该部分资源只能通过原位开采技术才 能得到有效的开发和利用。

3 油页岩原位开采开发技术现状

3.1 油页岩原位开采物理模拟实验研究

3.1.1 热破裂规律研究

油页岩在热解过程中形成大量的孔隙、裂隙,不仅提高了油页岩的渗透性,而且也为页岩油排采提 供了渗流的通道,使得原位开采技术开发中深层油页岩资源成为可能。

一般认为,当加热到105℃左右时,油页岩的主要变化时干燥脱水,待油页岩水分脱出后,温度 逐渐升高,在180℃左右,放出油页岩中包藏的少量气体。在这两个阶段油页岩内部的裂隙多发育于 层理面及矿物颗粒的周围,形成的破裂面基本上都与层理面互相平行,且数量不多,宽度较小。随 着温度进一步升高至300℃以上时,油页岩内的有机质开始发生热解生产页岩油蒸气和热解气体。油页岩内部的裂隙数量、长度和宽度有了剧烈增加,裂隙面仍具有与层理面平行,同时也形成了 一些垂直于层理方向的微小裂隙。小裂隙与大裂隙相互连通,根本上提高了油页岩的渗透 性[13~15](图1)。

3.1.2 热解后渗透规律实验研究

干馏前后的油页岩样品进行不同体积应力和孔隙压力条件下的渗透系数的变化规律研究发 现[15,16]:当体积应力不变时,渗透系数随孔隙压力的增大而增大。主要原因是孔隙压力的增高,页岩 内部的孔隙数量增加、裂隙更加发育,使得单位时间内通过的流体流量增大,即渗透系数增大。当孔隙 压力不变时,渗透系数随体积应力的增大而减小。主要原因为体积应力的增大,岩体发生收缩变形,页 岩内部的孔隙数量减少、有些发生裂隙会闭合,使油页岩的微观结构发生了变化,导致流体的渗流通道 减少,即渗透系数减小(图2,图3)。因此,在进行地下原位开采油页岩时,对油页岩地层渗透特性 的评价,必须考虑流体压力和地应力的影响。

图1 不同温度下油页岩裂缝发育情况

图2 渗透系数随孔隙压力的变化曲线

图3 渗透系数随体积应力的变化曲线

3.1.3 油页岩电加热原位开采模拟实验研究

电热原位开采与常规地面干馏工艺原理类似,都是通过直接传导方式将油页岩加热至热解温度。其 不同之处在于,原位开采工艺热解过程有地下水介质参与,反应系统存在一定压力,压力大小与页岩层 的埋藏深度有关。

马跃、李术元等[17]将油页岩与蒸馏水置于密闭的压力容器中,模拟油页岩原位开采热解反应。研 究表明,随着反应温度的增加,页岩油和气体的产率随温度的升高不断增加,中间产物沥青的产率随温 度的升高先升高后减小。由于水介质的存在,降低了化学键断裂所需要的能量,促进了热解生烃过程,使油页岩的热解温度比无水条件时降低了约120℃。

3.1.4 油页岩蒸汽加热原位开采模拟实验研究

利用过热水蒸气对油页岩进行加热,干馏后的油页岩残渣中含油率约为0.30%,页岩油的回收率 达到铝甄干馏的90%以上[15]。因此高温水蒸气加热油页岩具有一定的可行性,而且能达到较高的采收 率。研究发现油页岩热解产生的气体主要以CH4、C2H4、H2、CO、CO2气体为主。对常温至300℃、 300~500℃、500~580℃三个温度段的干馏气组成成分进行分析,发现随着温度的升高CH4和C2H4含 量具有相同的变化趋势,基本上呈现单调下降的趋势;CO2的含量呈逐渐下降,H2的含量一直上升的 趋势,CO的含量呈现先降低后增加的趋势。不同温度和压裂条件下,烃类气体、残炭、一氧化碳、二 氧化碳、水蒸气等之间发生了不同程度的化学反应,反应机理十分复杂。因此,针对实验过程中CH4、 C2H4、H2、CO、CO2的变化趋势的主要原因还有待进一步的研究。

3.2 油页岩原位开采数值研究

3.2.1 油页岩原位开采电加热数值研究[18,19]

基于油页岩原位开采电加热技术的原理上,建立了油页岩热传导方程包括续性方程,动量方程,能 量方程,结合适当的初始条件和边界条件,得到油页岩原位开采电加热数学模型。采用三维有限元法,对该模型进行研究,其中加热井距为15m,运作周期为6年。通过研究油页岩矿层温度场随时间的变化 规律,加热时间为5年时矿层温度大部分超过440℃,即几乎所有的油页岩完全发生热解。

图4 油页岩原位开采高温蒸汽加热示意图

3.2.2 油页岩原位开采蒸汽加热数值研究[15,20]

油页岩是几乎不渗透的岩层,蒸汽很难注入,因此需要 引进常规油气的压裂技术对页岩层进行改造,制造裂缝,作 为注汽的良好通道,提高传热效率。然后向地下油页岩矿层 注入高温水蒸气,使矿层温度升高至油页岩热解温度。最 后,将油页岩热解形成油气,通过低温蒸汽或水携带至生产 井进行排采(图4)。

油页岩原位开采高温蒸气加热是一个复杂的物理化学反 应过程,涉及热量的传递、固体变形、油页岩热解、油气的 产出和渗流等。赵阳升、康志勤等[12,16]考虑到诸多影响因 素的背景下,建立了油页岩原位开采高温蒸汽加热的固、 流、热、化学耦合数学模型。通过对正九点井网的加热方式 的数值模拟研究,加热井距50m,加热周期为2.5年。通过 研究油页岩矿层温度随时间分布变化规律发现,加热时间为 2.5年时,地下油页岩地层的温度大部分都达到了500℃,完成热解。

仅从数值模拟研究发现,高温水蒸气加热比电加热的效率更高,加热温度达到油页岩热解所需的时 间更短。

3.3 油页岩原位开采现场试验研究

3.3.1 油页岩原位开采电加热器与生产井设计

针对油页岩电加热原位开采技术专门设计了静态防爆电加热器,如图5。

图5 静态防爆电加热器

静态防爆电加热器的发热元件采用金属矿物绝缘加热电缆,它不同于一般管式电加热元件,其形状 属于线形,加热电缆发热芯体和金属护套之间温差很小,导热性能好。

油页岩原位开采的排采工艺与稠油开采相似,生产井结构包括隔热油管、泵、补偿器、封隔器、筛 管等(图6),将页岩油排采至地面后进行油、气、水分离。隔热油管用于防止温度下降后页岩油的流 动性降低,筛管与封隔器起到防砂的作用。该生产井同时适用于电加热和蒸汽加热原位开采技术。

3.3.2 蒸汽加热井设计

蒸汽加热井与注蒸汽开采稠油的结构相似,主要由隔热油管、补偿器、封隔器、分层注汽阀、死堵 等部分组成(图7)。蒸汽加热井的最关键技术是井筒隔热与密封技术,其中井筒隔热总系统包括隔热 油管、耐高温的封隔器、补偿器等。蒸汽通过注汽阀(分层注汽阀)进入地层,通过封隔器实现不同 层选注,有效的提高的热量利用效率。

图6 生产井

图7 蒸汽加热井

4 结束语

我国500~1500m的油页岩资源丰富,只能通过原位开采技术才能加以有效的开发和利用。该部分 资源的开发和利用对促进我国页岩油产业的发展具有重要意义,页岩油作为石油的补充能源,也大大提 高了我国石油的供给能力。通过模拟实验研究和数值模拟研究表明,油页岩电加热与蒸汽加热原位开采 技术都具有一定的可行性。电加热工艺相对简单,加热速度较慢,能耗大等特点,蒸汽加热工艺加热速 率快,高温蒸汽对设备的要求较高等。“十二五” 期间,我国应继续加大对油页岩原位开采技术研究的 投入力度,加快原位开采现场试验装备的研发,推动现场试验研究,为工业化生产提供有效的技术 支撑。

参考文献

[1]钱家麟,尹亮.油页岩——石油的补充能源[M].北京:中国石化出版社,2008:137~138.

[2]刘招君,董清水,叶松青等.中国油页岩资源现状[J].吉林大学学报(地球科学版),2006,36(6):869~876.

[3]车长波,杨虎林,刘招君等.我国油页岩资源勘探开发前景[J].中国矿业,2008,17(9):1~4.

[4]Shell Frontier Oil and Gas Inc.E-ICP Test Project Oil Shale Research and Development Project.[R].Houston:Bureau of Land Management U.S.A.2006-02-15.

[5]刘德勋,王红岩,郑德温等.世界油页岩原位开采技术进展[J].天然气工业,2009,29(5):128~132.

[6]Shell Frontier Oil and Gas Inc.For 2nd Generation ICP Project Oil Shale Research and Development Project[R].Houston: Bureau of Land Management U.S.A.2006-02-15.

[7]The US Department of Energy.Secure Fuels from Domestic Resources:The Continuing Evolution of America's Oil Shale and Tar Sands Instries[R].2007.

[8]E.G.L.Resources,Inc.Oil Shale Research,Development and Demonstration(R,D/D)Tract.[R]Houston:Bureau of Land Management U.S.A.2006.

[9]赵阳升,冯增朝,杨栋.对流加热油页岩开采油气方法:中国,200510012473[P].2005-10-01.

[10]Chevron USA Inc.Oil Shale Research,Development & Demonstration Project Plan of Operations.[R].Houston: Cordilleran Compliance Services,Inc.2006-02-15.

[11]A.K.Burnham.Slow Radio-Frequency Processing of Large Oil Shale Volumes to Proce Petroleum-like Shale Oil[R].Lawrence Livermore National Laboratory.2003-8-20:UCRL-ID-155045.

[12]A.K.Burnham,J.R.McConaghy Comparison of the Acceptability of Various Oil Shale Processes.26th Oil Shale Symposium[C].Colorado:2006.

[13]康志勤,赵阳升,杨栋.油页岩热破裂规律分形理论研究[J].岩石力学与工程学报.2010,29(1):90~96.

[14]孟巧荣,康志勤,赵阳升等.油页岩热破裂及起裂机制试验[J].中国石油大学学报(自然科学版).2010,34(4):89~98.

[15]康志勤.油页岩热解特性及原位注热开采油气的模拟研究[D].山西:太原理工大学,2008.

[16]杨栋,茸晋霞,康志勤等.抚顺油页岩干馏渗透实验研究[J].西安石油大学学报(自然科学版).2007,22(2):22~25.

[17]马跃,李术元,王娟等.饱和水介质条件下油页岩热解动力学[J].化工学报.2010,61(9):2474~2479.

[18]薛晋霞.油页岩物理力学特性实验及其原位开采非稳态热传导数学模型研究[D].山西:太原理工大学,2007.

[19]康志勤,赵阳升,杨栋.利用原位电法加热技术开发油页岩的物理原理及数值分析[J].石油学报.2008,29(4):592~597.

[20]康志勤,吕兆兴,杨栋等.油页岩原位注蒸汽开发的固-流-热-化学耦合数学模型研究[J].西安石油大学学报(自然科学版).2008,23(4):30~36.

⑦ 土石混合体渗透性能的正交试验研究

周中1 傅鹤林1 刘宝琛1 谭捍华2 龙万学2 罗强2

(1.中南大学土木建筑学院 湖南 长沙 410075

2.贵州省交通规划勘察设计研究院 贵州 贵阳 550001)

摘要 土石混合体作为土和石块的介质耦合体,具有非均质性、非连续性及试样的难以采集性等独特的性质,从而给研究带来极大的困难。土石混合体属于典型的多孔介质,其渗透特性与颗粒的大小、孔隙比及颗粒形状关系密切。本文采用室内正交实验,利用自制的常水头渗透仪,研究了砾石含量、孔隙比和颗粒形状三个因素在不同水平下对土石混合体渗透系数的影响。通过正交试验确定了三种因素对土石混合体渗透系数的影响顺序及各因素的显著性水平。提出了土石混合体渗透系数计算公式,并通过试验结果验证了计算公式的正确性,为土石混合体渗透系数的理论计算提供了一个简明有用的计算工具。

关键词 土石混合体 多孔介质 渗透性能 计算公式 正交试验

土石混合体一般由作为骨料的砾石或块石与作为充填料的粘土或砂组成,是介于土体与岩体之间的一种特殊的地质体,是土和石块的介质耦合体[1]。因为土石混合体具有物质组成的复杂性、结构分布的不规则性以及试样的难以采集性等独特的性质,从而给研究带来极大的困难,目前人们对于它的研究仍处于探索之中[2]。渗透与强度和变形特性,都是土力学中所要研究的主要力学性质,其在土木工程的各个领域中都有重要的作用[3]。土石混合体属于典型的非均质多孔介质[4],其渗透特性与颗粒的大小、颗粒组成、孔隙比及颗粒形状关系密切。土的渗透系数可以通过室内试验由达西定理计算得出,然而土石混合体的渗透系数却难以确定,主要原因是:取样困难;难以进行常规的渗透试验;大尺度的渗透试验不仅造价高准确性差,而且试验结果离散度大,难以掌握其规律性。迄今为止,国内还没有对土石混合体渗透性能进行研究的资料,现有研究成果局限于利用物理和数值模拟试验对其变形和力学性质进行研究,而对渗透性还未涉及。因此,能够求出土石混合体渗透系数的计算公式具有重要的理论意义和工程应用价值。

本文研究土石混合体中砾石含量、孔隙比(压实度)和颗粒形状三个因素在不同水平下对土石混合体的渗透系数的影响,找出三因素与土石混合体渗透系数之间的关系,并提出土石混合体渗透系数计算公式。

1 土石混合体渗透性能的正交试验

1.1 正交试验方案设计

在室内试验中考虑砾石含量、孔隙比(压实度)和颗粒形状三个因素对土石混合体渗透系数的影响,就每种因素拟考虑3个水平。对于这种3因素3水平的试验,如果考虑每一个因素的不同水平对基材的影响,则根据组合可得有33组试验,这对人力、物力与时间来说都是一种浪费,因此采用正交试验设计来研究这一问题更为合理。本试验所选取的正交表为L9(34),考虑试验误差的影响,但不考虑各因素间的交互作用(即假定他们之间相互没有影响)。共需9组试验,每组作平行试验3次,共27次渗透试验。本试验中采用的因素与对应的水平数如表1所示,其中粗粒形状分为球形体、六面体和三棱锥3个水平,分别由卵石、强风化石块和新打碎的碎石来近似替代。

表1 正交试验的因素水平

1.2 试样的基本物理力学性质

试验所取土样为正在修建的上瑞高速公路贵州段晴隆隧道出口处典型性土石混合体,其天然状态土的物理指标及颗粒级配曲线见表2和图1。由图1可知现场取回土样的不均匀系数Cu为12.31,说明土样中包含的粒径级数较多,粗细粒径之间差别较大,颗粒级配曲线的曲率系数Cc为1.59,级配优良。

表2 天然状态土的基本物理指标

图1 天然状态土的颗粒级配曲线

1.3 大型渗透仪的研制

《土工试验规程》(SL237—1999)规定粗粒土的室内渗透系数需由常水头渗透仪测试,国内常用的常水头渗透仪是70型渗透仪。70型渗透仪的筒身内径为9.44cm,试验材料的最大粒径为2cm,规范[5]要求筒身内径应为最大粒径的8~10倍,因此70型渗透仪的筒身内径过小,有必要研制大尺寸的渗透仪。自制渗透仪的内径和试样高度至少应为最大颗粒粒径的8倍,即至少应为16cm,另外,考虑到边界效应,试样的上下两头分别增加2cm,因此,自制渗透仪的内径和试样高分别取为16cm和20cm。考虑到土石混合体的渗透性较强,选取进排水管的口径为2cm。自制的大型常水头渗透仪的如图2 和图3所示。

图2 常水头渗透仪示意图

数据单位为cm

图3 自制渗透仪

2 试验结果分析

2.1 试验结果

按正交试验表L9(34)的安排,共需作9组试验,每组试验作平行试验3次,取3次测量的平均值,并乘以温度校正系数

,即可求出每组试验20℃时的渗透系数,渗透系数的测量结果见表3。

表3 渗透试验测定结果

续表

2.2 试验分析

运用正交试验的直观分析法和方差分析法,分析各因素对土石混合体渗透系数影响的主次顺序,绘出因素水平影响趋势图,求出各因素的显著性水平。

2.2.1 直观分析

对试验所得的土石混合体的渗透系数进行正交试验的极差分析,并画出各因素的水平影响趋势图。正交试验的极差分析表见表4,3个因素与渗透系数的关系见图4。

表4 极差分析表

图4 各因素与渗透系数的关系

A—砾石含量;B—孔隙比;C—粗粒形状

由正交试验的极差分析表可以看出,对土石混合体渗透系数影响的主次顺序为A→B→C,即砾石含量→孔隙比→颗粒形状。由各因素与渗透系数的关系图可以看出砾石含量越多渗透系数越大,孔隙比越大渗透系数越大,颗粒磨圆度越大渗透系数越小。在路基工程及大坝工程中,可以通过调节粗颗粒的含量、压实度及颗粒形状以获得工程所需的渗透系数。

2.2.2 方差分析

为了确定因素各水平对应的试验结果的差异是由因素水平不同引起的,还是由试验误差引起的,并对影响土石混合体渗透系数的各因素的显著性水平给予精确的数量评估,需采用正交试验的方差分析法对试验数据进行分析,分析结果如表5所示。

表5 方差分析结果

方差分析结果表明:

(1)因素各水平对应的试验结果的差异是由因素水平不同引起的,而不是由试验误差引起的;

(2)砾石含量对土石混合体渗透系数的影响高度显著,孔隙比对土石混合体渗透系数的影响显著,颗粒形状土石混合体渗透系数的影响不显著。

3 土石混合体渗透系数

3.1 渗透系数与砾石含量之间的关系

众所周知,土石混合体的渗透系数与颗粒的大小及级配有关,本文选择等效粒径d20和曲率系数Cc来表示土的颗粒大小和颗粒级配,原因是文献[3]认为等效粒径d20比其他粒径特征系数更能准确地表示颗粒的大小,而与颗粒级配有关的系数是不均匀系数Cu和曲率系数Cc,不均匀系数Cu只反映土粒组成的离散程度,曲率系数Cc能在一定程度上反映颗粒组成曲线的特性,因而曲率系数Cc更适合于评价土的颗粒级配。不同砾石含量的颗粒级配曲线如图5所示。由图5可以求出各曲线的粒径特征系数,见表6。

图5 试样的颗粒级配曲线

表6 不同粗粒含量时的粒径特征

由图6可知,其他条件相同时,土石混合体的渗透系数k与函数f(d20,Cc)呈线性关系,其中

图6 k20-f(d20,Cc)关系曲线

3.2 渗透系数与密实度之间的关系

由正交试验的方差分析可知,孔隙率e对渗透系数的影响虽不如粗粒含量大,但也是很显著的。在其他条件相同时,k与

呈线性关系,如图7所示。

土石混合体

3.3 渗透系数与颗粒形状之间的关系

狄凯尔与海阿特(Tikell and Hiatt)于1938年探讨了颗粒的“棱角性”与“圆度”对渗透系数的影响,并指出颗粒的棱角性越大,渗透系数越大[6]。由正交试验分析表可知Cs1∶Cs2∶Cs3=0.9∶1∶1.2,并且将试验数据进行回归分析,当形状系数Cs1=0.18,Cs2=0.2,Cs3=0.24时与试验结果最为接近,此结论与卡门(Carmen)的研究成果[7]相近。

3.4 土石混合体的渗透系数

由以上分析可知土石混合体的渗透系数与颗粒大小、颗粒级配、颗粒形状及孔隙比有关,同时渗透流体对渗透性也有一定的影响,主要是受液体的动力粘滞度η的影响,大量研究成果表明渗透系数k 与g/η 成正比[3,4,7]。因此,土石混合体的渗透系数计算公式为

土石混合体

式中:k为土石混合体的渗透系数,cm/s;Cs为颗粒的形状系数,m-3;d20为等效粒径,小于该粒径的土重占总土重的20%,m;Cc为颗粒级配曲率系数,

;e为孔隙比;g为重力加速度,9.8 N;η 为液体的动力粘滞度,kPa · s(10-6),η20=1.01×10-6kPa·s。

由公式(1)计算出20℃时土石混合体的渗透系数k20列于表7。与其他物理力学参数相比,土石混合体的渗透性变化范围要大得多。同时,受宏观构造和微观结构复杂性的影响,其渗透性具有高度的不均匀性[8]。为进一步验证公式(1)的正确性,将实测值与由公式(1)得出的计算值进行对比分析,见图8。由图8可知由公式(1)计算出的渗透系数值与实测值基本吻合,9组试样的平均相对误差为21%,这对于离散性很强的土石混合体的渗透系数来说已经具有足够的精确性。

表7 计算值与实测值对应关系

图8 计算值与实测值关系

4 结论

(1)通过正交试验获取了砾石含量、孔隙比和颗粒形状对土石混合体渗透系数影响的主次顺序,并得出各因素的显著性水平,工程设计中可以通过合理调整土石混合体的砾石含量、孔隙比(压实度)和颗粒形状,以达到控制其渗透能力的目的。

(2)土石混合体的渗透系数与等效粒径d20和曲率系数Cc组成的函数

成正比,并与孔隙比函数

成正比。

(3)提出了土石混合体渗透系数的计算公式,并通过试验结果验证了计算公式的正确性,为土石混合体渗透系数的定量预测提供了一个简明有用的计算工具。

参考文献

[1]油新华.土石混合体随机结构模型及其应用研究.北方交通大学博士论文,2001:1~18

[2]油新华,汤劲松.土石混合体野外水平推剪试验研究.岩石力学与工程学报,2002,21(10):1537~1540,60~129

[3]刘杰.土的渗透稳定与渗流控制.北京:水利电力出版社,1992:1~20

[4]薛定谔A E.多孔介质中的渗流物理.北京:石油工业出版社,1984:141~173

[5]中华人民共和国水利部.土工试验规程(SL237—1999).北京:中国水利水电出版社,1999:114~120

[6] Tickell FG,Hiatt WN.Effect of angularity of grains on porosity and permeability of unconsolidated sands.AAPG Bulletin,1938,22(9):1272~1274

[7]黄文熙.土的工程性质.北京:水利电力出版社,1984:60~129

[8]邱贤德,阎宗岭,刘立等.堆石体粒径特征对其渗透性的影响.岩土力学,2004,25(6):950~954

⑧ 孔隙率与渗流的关系,建模的话,可以用Fluent建模吗如果能建的话,怎么建呀谢谢

我以前做的是布袋过滤粉尘的模拟,照你说的情况和我的差不多,可以用gambit把物理模型画出来,但是渗流面的边界条件记住要采用多孔介质边界条件。

⑨ 岩石中孔隙的微观结构

孔隙的微观结构是指:①孔隙的大小、分布及其形状;②粘土基质;③砂粒组构。经验证明,孔隙的微观结构对于岩层内的流体流动有很大的影响。例如,孔隙的微观结构直接影响由人工注入的流体对原油的驱动效率。

1.孔隙喉道及其形态

孔隙的喉道是孔隙很小的部分,其大小和形状对储集层的性能有很大的影响。砂岩中常见的孔隙喉道有下列5种类型(图2-3-3):① 孔隙的缩小部分;② 孔隙的可变断面的收缩部分;③ 片状喉道;④ 弯片状喉道;⑤管状喉道。

2.粘土杂基

粘土杂基是指作为杂基充填于碎屑岩孔隙中的粘土矿物。由于粘土矿物有很大的比面和很强的活性(如吸附能力,对外来流体的敏感性等),它们对人工注入的流体的吸附性能改变有很大的影响。对粘土杂基的描述通常是下列几个方面:①粘土含量,根据定义,颗粒直径小于0.005mm的矿物颗粒称为粘土,其含量为粘土的总量。②粘土矿物类型,粘土矿物类型较多,如在第一节中所指出的那样,常见的粘土矿物有蒙脱石、高岭石、绿泥石、伊利石等,在不同物源和不同沉积环境中出现的粘土矿物的类型和含量不同,不同类型的粘土矿物对流体的敏感度不同,因此要分别测定不同孔隙性岩层中所出现的粘土矿物类型,以及各类粘土矿物的相对含量。③粘土矿物产状,粘土矿物的产状对储集性岩石内的流体运动影响较大,一般分为:分散状(充填式)、薄层状(衬垫式)、搭桥状(图2-3-4)。在分散状产状中,粘土以分散的形式分布在孔隙中。如果粘土附着于孔隙壁上,形成一个相对连续的薄粘土矿物层,则形成薄层状产状。搭桥状是指粘土矿物黏附于孔隙壁表面且伸长很远,整个横跨孔隙,像搭桥一样,把颗粒间的孔隙分隔成为大量的微孔隙。④粘土矿物对流体的敏感性。粘土矿物与地层中的流体(如原油)通常处于平衡状态,当其他流体进入后,它们的平衡状态会遭到破坏。外界流体与储层流体和储层矿物的不匹配会导致储层渗流能力下降。

图2-3-3 孔隙喉道类型

(a)孔隙的缩小部分;(b)可变断面的收缩部分;(c)片状喉道;(d)弯片状喉道;(e)管状喉道

图2-3-4 孔隙内粘土矿物的典型产状

阅读全文

与孔隙微观可视化渗流模拟实验装置相关的资料

热点内容
机械表怎么样调整日期 浏览:628
郑州最大的五金建材批发市场是哪个 浏览:274
开洗车店的设备多少钱一台 浏览:807
韩国电动工具什么牌子 浏览:897
暖气片总阀门开关 浏览:685
气包液位检测装置 浏览:793
链条传动装置怎么制作 浏览:856
实验器材中的动滑轮是什么 浏览:837
不插钥匙那个仪表灯亮是什么原因 浏览:425
地暖分水器总阀门怎么开 浏览:349
阀门侧法兰片比管道测大 浏览:535
成都最大的五金市场 浏览:116
机床g49什么意思 浏览:68
工程如何管控机械费 浏览:692
仪表盘出现制动灯亮都是什么问题 浏览:720
机械密码锁怎么改密码视频patnt 浏览:460
景程20空调用什么制冷剂 浏览:396
五金件卷圆 浏览:660
美国国家实验室点火装置 浏览:706
油井自动量油装置 浏览:933