A. 无酸拉丝除锈机
拉丝机行业,涉及的设备种类非常多,常见的拉丝机有水箱式拉丝机、直进式拉丝机、滑轮式拉丝机、倒立式拉丝机等,拉丝机主要应用在对铜丝、不锈钢丝等金属线缆材料的加工,属线缆制造行业极为重要的加工设备。随着变频调速技术的不断发展,变频调速器已经被广泛应用在拉丝机行业,承担着拉丝调速、张力卷取、多级同步控制等环节,变频器的应用,大大提高了拉丝机的自动化水平与加工能力、有效降低了设备的单位能耗与维护成本,得到了行业的广泛认同。
从机械上,可以分解为拉丝部分与收线部分,从电气控制上可以分解为拉丝无级调速控制与卷取的恒张力同步控制,通过张力摆杆的位置变化,回馈控制系统,经过自动运算,改变卷取电机运行速度,从而达到卷取与拉丝两个环节体现出恒张力与速度同步,并通过排线导轮电机,可以随着卷取速度的不同,均匀地将成品金属丝缠绕在卷取工字轮上,以实现对金属材料的拉伸加工。
行业现状:
行业的现状,本材料只限于针对电气控制部分的陈述,请读者谅解!
小型拉丝机的控制模式,是目前主流的控制方式,拉伸与卷取控制由PLC或者工控机IPC来完成,变频器接受PLC或者IPC的指令,实现拉伸级的无级调速与卷取的恒张力控制。该系统解决方案将直接导致成本高昂、系统复杂、维护难度大、维修成本高、系统控制响应差等问题。
INVT推荐方案:
INVT向您推荐的控制方式,该两种中型、小型、微型伸线机电气控制方式,将卷取的同步与张力控制、系统开动与停车控制、故障报警等功能集成在变频器内部,与机械系统融为一个整体,外部信号直接送入变频器,经内部算法快速反应在对系统的直接控制,大大提高了系统的响应速度,省去PLC、HMI、IPC,节省系统成本,降低故障点,并可根据用户需求配置LED或者LCD操作盘,体现人机操作的人性化,方便用户的操作、维护、调试与使用。
产品介绍: INVT-CHV130专用型变频器
INVT-CHV130专用型变频器,是在INVT-CHV100高性能矢量变频器的硬件平台与核心控制算法的基础上,结合双变频中型、小型及微型拉丝机控制的要求,开发出来一款专门针对双变频控制拉丝机的变频器,为适应行业应用的要求,在硬件、软件算法、结构上都做了许多特殊处理,特别针对耐高温、防金属粉尘、防潮湿、防腐蚀等处理,大大增强了变频调速器在拉丝机行业的可靠性。
1、电流矢量控制
INVT-CHV130专用型变频器采用ARM(32位)+DSP(16位)双CPU控制系统,功能控制与性能控制完全分离,底层高性能电机控制模块采用电流矢量控制算法,即把定子电流按照坐标变化分解成励磁电流分量与转矩电流分量,分别进行控制,从而实现转矩的高精度控制。
与V/F控制比较,矢量控制的优势
(1)低频转矩特性优秀
(2)动态响应特性好,能快速响应负载的变化
(3)速度控制精度高,能实现高精度的同步控制
(4)能进行直接转矩控制,无PG反馈转矩控制精度高,实现低成本的张力控制
2、主要技术
◆输出频率范围:0.00~600.00Hz;
◆速度控制方式:SVC、VC、V/F控制、转矩控制;
◆指令通道方式:操作面板、端子控制、远程通讯控制;
◆频率给定方式:数字键盘给定、模拟量给定(电流、电压信号)、脉冲频率给定、远程通讯给定、PID闭环给定等。可实现给定的组合和给定方式的相互切换,方便现场调试及复杂工艺的要求;
◆起动转矩大:0.5Hz/150% (SVC)、0Hz/180% (VC);
◆过载能力: 150%额定电流 60s;180%额定电流 10s;
◆调速比: SVC:1:100,VC:1:1000;
◆载波频率范围:1.0K~16.0KHz;可根据温度和负载特性自动调整;
◆速度控制精度:±0.5%最高速度(SVC);±0.1%最高速度(VC);
◆自动电压调整(AVR):当电网电压变化时,能自动保持输出电压恒定;
◆转矩控制:多种转矩指令设定方式,可实现有PG与无PG的转矩控制;
◆高速脉冲输入功能:可实现定长控制;
◆停机处理:停机刹车抱闸输出功能;
◆断线故障检测功能:提供数字信号检测与模拟量信号检测方式;
◆提供两套PID参数:可依据线速度、半径、运行频率自动调节PID控制;
◆显示功能:能显示拉丝长度、拉丝线速度,显示范围广;
◆定长自动停车:定长自动停车功能;
◆设计PID调节限幅功能:实现同步控制系统平稳起停;
◆同步速增益:方便同步控制的调试;
◆配置卷径计算功能:实现高精度张力卷取控制;
◆卷径复位功能:可通过端子实现工字轮卷径复位;
◆排线电机控制功能:带FDT频率检测
3、外围配置
◆可编程数字输入:6路输入,其中1路可作高速脉冲输入(HDI1),I/O卡可扩展4路输入;
◆可编程模拟量输入:AI1:0~10V输入,AI2:0~10V或0~20mA输入,扩展卡可扩展2路输入(AI3:-10V~10V输入,AI4:0~10V或 0~20mA 输入);
◆可编程开路集电极输出:1路输出,扩展卡可扩展1路输出(开路集电极输出或高速脉冲输出);
◆继电器输出:2路输出,扩展卡可扩展1路输出;
◆模拟量输出:1路输出,扩展卡可扩展1路(0/4~20mA或0/2~10V);
◆提供两种控制电源:+24V,COM;+10V,GND;
4、可靠性设计
1、全系列独立风道设计
◆ 全系列独立风道
◆ 散热器安装方式为柜体内、柜体外可选,风扇更换方便,变频器维护简单
◆ 极大提高了变频器在拉丝等行业不同的应用环境下长期运行的可靠性
2、宽电网电压设计
◆ 电网输入电压在-15%~15%,变频器可安全运行,用户无须其他处理
3、18.5KW~90KW标准配备直流电抗器
◆ 提高输入侧功率因数
◆ 提高整机效率及热稳定
◆ 有效消除输入侧的高次谐波对变频器的影响,减少对外围的干扰
4、安全自检功能
◆ 变频器上电,系统对软、硬件进行完备的安全自检
◆ 系统对功能参数的修改及设置进行安全的钳制,防止用户对功能参数的误设置
5、超强的保护功能
◆ 提供多达20多种的保护功能,可实现变频器、电机、外围设备的全方位保护
◆ 提供故障自动复位功能,方便常规故障的自动排除
◆ 内置雷击过流保护装置,有效提高对于感应雷的自我保护功能
6、标准的制造平台
◆ 具有防静电、防腐蚀、防金属粉尘的三防烤漆处理工艺
◆ 专业化流水生产线
◆ 严格的生产管理制度
B. 古代计时方法计时工具的演变是什么
我国古代,人们发明了很多计时的方法或工具。
圭(读作guī)表是一种既简单又重要的测天仪器,它由垂直的表(一般高八尺)和水平的圭组成。它利用了立竿见影的道理来测量日影长度。主要功能是测定冬至日所在,并进而确定回归年长度。此外,通过观测表影的变化可确定方向和节气。
日晷(读作guǐ)又称“日规”,是我国古代利用日影测得时刻的又一种计时仪器。通常由铜制的指针和石制的圆盘组成。铜制的指针叫做“晷针”, 石制的圆盘叫做“晷面”。使用时,观察日影投在盘上的位置,就能分辨出不同的时间。日晷的计时精度能准确到刻(15分钟)。
铜壶滴漏又名“漏刻”或“漏壶”。即用一个在壶底或靠近底部凿有小孔的盛水工具,利用孔口流水使铜壶的水位变化来计算时间。 我国发明的铜壶滴漏比外国制作的滴水计时器要早的多,应用也普遍,成为历代计时的重要工具。
除了以上的计时方法之外,我国古代人们还用“沙漏”、“火计时”、“烛光计时”等方法来计时。
我国古代,人们发明了很多计时的方法或工具。
圭(读作guī)表是一种既简单又重要的测天仪器,它由垂直的表(一般高八尺)和水平的圭组成。它利用了立竿见影的道理来测量日影长度。主要功能是测定冬至日所在,并进而确定回归年长度。此外,通过观测表影的变化可确定方向和节气。
日晷(读作guǐ)又称“日规”,是我国古代利用日影测得时刻的又一种计时仪器。通常由铜制的指针和石制的圆盘组成。铜制的指针叫做“晷针”, 石制的圆盘叫做“晷面”。使用时,观察日影投在盘上的位置,就能分辨出不同的时间。日晷的计时精度能准确到刻(15分钟)。
铜壶滴漏又名“漏刻”或“漏壶”。即用一个在壶底或靠近底部凿有小孔的盛水工具,利用孔口流水使铜壶的水位变化来计算时间。 我国发明的铜壶滴漏比外国制作的滴水计时器要早的多,应用也普遍,成为历代计时的重要工具。
除了以上的计时方法之外,我国古代人们还用“沙漏”、“火计时”、“烛光计时”等方法来计时。
C. 求手表发展的历史
手表的创制及生产都基于一个简单而机智的发明,这就是“弹簧”,它能够收紧并储存能量,又能慢慢地把能量释放出来,以推动手表内的运行装置[1]及指针,达到显示时间的功能,手表内的这种弹簧装置被称为主弹簧(Mainspring)。
1914年第一次世界大战爆发,各国军方意识到“免手提”腕表的重要性,这才启发了一般民众对手戴腕表的热切需求。
1926年,发明了第一块自行上弦的腕表,从1960年起,传统的圆形表样普遍受到接受。瑞士对腕表的进一步改进,就是把怀表所具有的计时、日历、陀飞轮及自动发条装置加以微型化,而装设于腕表上。
1952年在美国、法国和瑞士生产出第一块电子表。1967年,纳沙泰尔的电子钟表中心开发出第一块石英手腕表,并在1970年以不同瑞士品牌的名字开始大量生产。自此,新的技术开始快速开发。
世界第一座时钟: 中国宋朝水钟(水运仪象台),1088年。入选中国世界纪录协会世界最早的时钟世界纪录。
世界第一只有名字的怀表: 德国纽伦堡的「纽伦堡蛋」,1564年。
世界第一只手表: :pp表厂为匈牙利王族夫人所制造的手镯表,1868年。
世界第一只飞行表:卡地亚山多士SANTOS飞行表 (亦是最早的皮带表),1904年。
世界第一只登月表:欧米茄超霸手上炼计时码表,1969年。
世界第一只自动上炼表:夏活HARWOOD(英国人John.Harwood) ,1923年。
世界第一只防水表:劳力士蚝式型OYSTER手表,1926年。
世界第一只有摆轮的电子表:汉弥顿Ventura奇形电子表,1957年。
世界第一只音*表:宝路华BULOVA ACCTRON音*表,1966年。
世界第一只石英表: 精工SEIKO QUARTZ ASTRON,1969年。
世界第一只光动能表:星辰Eco-Drive表,1976年。
世界第一只动能表:珍达翡Jean D′Eve Samara 1988年。
世界第一只动能计时码表:SEIKO Kinetic Chronograph,1998年。
世界第一只横越大西洋的手表:浪琴林白飞行表Hour Angle Watch 1927年。
世界第一只最有名气的闹铃表:积家Memovax,1950年。
世界第一只可以翻转表面的手表:积家 蕾葳索 Reverso 1931年。
世界第一只最复杂的怀表:PP Cal.89怀表(具33种功能),1989年。
世界第一只大日历窗表:IWC Pallweber怀表,1885年。
世界第一只36000次振频手表:芝柏HF手表,1966年。
世界第一只36000次振频自动上炼计时码表:ZENITH EI Primero,1969年。
世界第一只陀飞轮怀表:宝玑Breguet怀表,在1795年研制成功,1807年批量生产。
世界第一只三金桥陀飞轮怀表:芝柏三金桥怀表,1860年。
世界第一只三金桥陀飞轮手表:芝柏三金桥手表(机芯直径28.6mm),1991年。
世界第一只女用三金桥陀飞轮表:芝柏三金桥迷你手表(机芯直径27mm) ,1998年。
世界第一只飞行陀飞轮表:A.Lange & Sohne,1930年。
世界第一只超薄自动上炼陀飞轮手表:AP陀飞轮机制位于11点钟位置的手表,1986年。
世界第一只防水最深的手表:SINN 403 Hydro(12000公尺),1998年。
世界第一只钛金属手表:Porsche Design,1973年。
世界第一只最薄的怀表机芯:AP(1.32mm) ,1892年。
世界第一只最薄的手表机芯:AP(1.64mm) ,1946年。
世界第一只最薄的自动上炼机芯:AP(2.45mm) ,1967年。
世界第一只镂空手表:AP方型镂空表,1934年。
世界第一只长方型跳时三问报时手表:AP Jumping Hour三问手表,1992年。
世界第一只最小的三问报时手表:AP女用三问钟乐报时手表,(机芯直径22.3mm) ,1998年。
世界第一只八天储能陀飞轮手表:BLANCPAIN 陀飞轮手表,1989 年。
世界第一只春宫三问报时手表:BLANCPAIN 金雕或彩绘三问手表,1989年。 (春宫表又称激情表或风月表)
世界第一只最薄的手表:君皇CONCORD Delirium 4(0.98mm),1981年。
世界第一只号称最坚硬的手表:RADO概念一号Concept 1,1996年。
世界上第一个注册的手表品牌--宝珀表
D. 闹钟的发展
公元1300年以前,人类主要是利用天文现象和流动物质的连续运动来计时。例如,日晷是利用日影的方位计时;漏壶和沙漏是利用水流和沙流的流量计时。
东汉张衡制造漏水转浑天仪,用齿轮系统把浑象和计时漏壶联结起来,漏壶滴水推动浑象均匀地旋转,一天刚好转一周,这是最早出现的机械钟。北宋元祜三年(1088)苏颂和韩公廉等创制水运仪象台,已运用了擒纵机构。
1350年,意大利的丹蒂制造出第一台结构简单的机械打点塔钟,日差为15~30分钟,指示机构只有时针;1500~1510年,德国的亨莱思首先用钢发条代替重锤,创造了用冕状轮擒纵机构的小型机械钟;1582年前后,意大利的伽利略发明了重力摆;1657年,荷兰的惠更斯把重力摆引入机械钟,创立了摆钟。
1660年英国的胡克发明游丝,并用后退式擒纵机构代替了冕状轮擒纵机构;1673年,惠更斯又将摆轮游丝组成的调速器应用在可携带的钟表上;1675年,英国的克莱门特用叉瓦装置制成最简单的锚式擒纵机构,这种机构一直沿用在简便摆锤式挂钟中。
1695年,英国的汤姆平发明工字轮擒纵机构;1715年,英国的格雷厄姆又发明了静止式擒纵机构,弥补了后退式擒纵机构的不足,为发展精密机械钟表打下了基础;1765年,英国的马奇发明自由锚式擒纵机构,即现代叉瓦式擒纵机构的前身;1728~1759年,英国的哈里森制造出高精度的标准航海钟;1775~1780年,英国的阿诺德创造出精密表用擒纵机构。
18~19世纪,钟表制造业已逐步实现工业化生产,并达到相当高的水平。20世纪,随着电子工业的迅速发展,电池驱动钟、交流电钟、电机械表、指针式石英电子钟表、数字式石英电子钟表相继问世,钟表的日差已小于0.5秒,钟表进入了微电子技术与精密机械相结合的石英化新时期
有关钟表的演变大致可以分为三个演变阶段,那就是:
一、从大型钟向小型钟演变。
二、从小型钟向袋表过渡。
三、从袋表向腕表发展。每一阶段的发展都是和当时的技术发明分不开的。
出现第四个演变:由顺时针计时改变为逆时针计时。
1088年,宋朝的科学家苏颂和韩工廉等人制造了水运仪象台,它是把浑仪、浑象和机械计时器组合起来的装置。它以水力作为动力来源,具有科学的擒纵机构,高约12米,七米见方,分三层:上层放浑仪,进行天文观测;中层放浑象,可以模拟天体作同步演示;下层是该仪器的心脏,计时、报时、动力源的形成与输出都在这一层中。虽然几十年后毁于战乱,但它在世界钟表史上具有极其重要的意义。由此,中国著名的钟表大师、古钟表收藏家矫大羽先生提出了“中国人开创钟表史”的观点。
14世纪在欧洲的英、法等国的高大建筑物上出现了报时钟,钟的动力来源于用绳索悬挂重锤,利用地心引力产生的重力作用。15世纪末、16世纪初出现了铁制发条,使钟有了新的动力来源,也为钟的小型化创造了条件。1583年,意大利人伽利略建立了著名的等时性理论,也就是钟摆的理论基础。
1656 年,荷兰的科学家惠更斯应用伽利略的理论设计了钟摆,第二年,在他的指导下年轻钟匠S.Coster制造成功了第一个摆钟。1675年,他又用游丝取代了原始的钟摆,这样就形成了以发条为动力、以游丝为调速机构的小型钟,同时也为制造便于携带的袋表提供了条件。
18世纪期间发明了各种各样的擒纵机构,为袋表的进一步产生与发展奠定了基础。英国人George Graham在1726年完善了工字轮擒纵机构,它和之前发明的垂直放置的机轴擒纵机构不同,所以使得袋表机芯相对变薄。另外。
1757年左右英国人 Thomas Mudge发明了叉式擒纵机构,进一步提高了袋表计时的精确度。这期间一直到19世纪产生了一大批钟表生产厂家,为袋表的发展做出了贡献。19世纪后半叶,在一些女性的手镯上装上了小袋表,作为装饰品。那时人们只是把它看成是一件首饰,还没有完全认识到它的实用价值。直到人类历史进入20世纪,随着钟表制作工艺水平的提高以及科技和文明的巨大变革,才使得腕表地位的确立有了可能。
20世纪初,护士为了掌握时间就把小袋表挂在胸前,人们已经很注重它的实用性,要求方便、准确、耐用。尤其是第一次世界大战的爆发,袋表已经不能适应作战军人的需要,腕表的生产成为大势所趋。1926年,劳力士表厂制成了完全防水的手表表壳,获得专利并命名为oyster,第二年,一位勇敢的英国女性Mercedes Gleitze佩带着这种表完成了个人游泳横渡英伦海峡的壮举。这一事件也成为钟表历史上的重要转折点。从那以后,许多新的设计和技术也被应用在腕表上,成为真正意义上的带在手腕上的计时工具。紧接着的二战使腕表的生产量大幅度增加,价格也随之下降,使普通大众也可以拥有它,腕表的年代到来了! 从中国水运仪像台的发明到现代各国都在研制的原子钟这几百年的钟表演变过程中,我们可以看到:
各个不同时期的科学家和钟表工匠用他们的聪明的智慧和不断的实践融合成了一座时间的隧道,同时也为我们勾勒了一条钟表文化和科技发展的轨迹。 关于中国的钟表史,得从三干多年前说起,中国祖先最早发明了用土和石片刻制成的“土圭”与“日规”两种计时器,成为世界上最早发明计时器的国家之一。到了铜器时代,计时器又有了新的发展,用青铜制的“漏壶”取代了“土圭”与“日规”。东汉元初四年张衡发明了世界第一架“水运浑象”,此后唐高僧一行等人又在此基础上借鉴改进发明了“水运浑天仪”、“水运仪象台”。至元明之时,计时器摆脱了天文仪器的结构形式,得到了突破性的新发展。元初郭守敬、明初詹希元创制了“大明灯漏”与“五轮沙漏”,采用机机械结构,并增添盘、针来指示时间,其机械的先进性便明显地显示出来,时间性电益见准确。
十九世纪末期,中国造钟工艺达到了一个崭新的水平。1875年由上海“美利华”作坊制造的南京钟,屏风式样,钟面镀金,镌刻花纹,以造型古朴典雅、民族风格鲜明和报时清脆、走时准确而闻名于海内外,曾于1903年在巴拿马国际博览会上获特别奖。
中国近代机械制钟工业始于1915年。民族实业家李东山出资在烟台开办了中国时钟制造业的第一家钟厂—一烟台宝时造钟厂。并在1918年自制成功第一批座挂钟投放市场。1927年,烟台第二家造钟厂一一永康造钟公司开业。到1937年,烟台钟表工业已拥有6家企业和相当的生产规模。据1934年的统计,仅德顺兴、永康、慈业三家造钟厂已拥有职工1416人,拥有各类从德、英、法等国进口的生产设备149台,年生产座挂钟10.88万只。产品不仅销往华北、华东、东北、华南各大商埠,还销往新加坡、菲律宾、马来西亚、印度尼西亚、夏威夷等十多个国家和地区。
新中国成立后,中国钟表工业得到迅速发展,取得了令人瞩目的成绩。1955年由天津、上海试制出第一批国产手表。经过三十多年来不断地进行技术改造和技术改进,中国手表行业已形成具有相当生产能力和配套完整的工业体系。1988年手表产量达6700多万只,其中石英电子表2900多万只,手表产量居世界第四位。在品种方面,已成批生产机械男表、女表、日历表、双历表、自动表、怀表、秒表、数字式和指针式石英表等。在质量上,手表的走时精度已达到国际同类产品的水平,现较为出名的有东风、上海、宝石花、海鸥等牌号。 在制作钟的方面,主要以福建为主。十年,一时间商城的商品,在包括引领时尚潮流的欧洲,与南、北美,中东,东南亚等超过50多个国家和地区销售超过80,000,000个,并与迪士尼、梦工厂、可口可乐、奔驰等全球超过100个顶级品牌有过深厚合作经验。
2009年,第一块逆时针钟表将在厦门试制成功。
中国的钟表市场上出现了一种新的市场:网上市场。这个就是电子商务在传统行业中起到重大作用的一种表现方式,作为全球首个综合行业商业信息集合平台,汇聚各行各业的代销产品展销信息、代理项目招商信息、直销产品供应信息等。具有能同时服务于经销商、代理商、采购商的特点。生意家是经销商、代理商资源最多的网站。其中:展吧更适合代销产品展销,招商更适合代理项目招商,供应更适合产品批零直销具有广告传播功能,比阿里巴巴等b2b,具有更多的经销商、代理商,较网络等搜索引擎,则是分类信息丰富、销售和招商功能强,经销商、采购商多。
E. 机械表的运动原理是什么
机械表的结构型式较多,但工作原理大致相同.自动上条装置安装在机芯后面,打开后盖即能看到.自动瑞士手表机芯一般都比较厚.一般换向轮结构的自动表由自动锤(重锤)、换向轮、自动传动轮、自动头轮等组成.自动锤用螺钉固定在中心自动锤轴上.在外力的作用下,它围绕中心旋转,带动换向轮.
全自动机械表
换向轮轴齿又推动自动传动轮转动,自动传动轮推动自动头轮,自动头轮与大钢轮齿啮合,使大钢轮一个齿一个齿地转动而上条.全自动表是自动陀向任一方向转动都能上条.区别于单向换向装置,双向换向装置或棘轮棘爪式装置.现在以全自动手表为多.ETA2892机芯,双狮46941机芯就是双向自动上弦的绝大多数都是用偏心的摆陀(自动陀或称自动重锤),它的形状像个半圆的盘,选用质量比较重的金属制成,且边缘比较厚,所以大部分质量都在陀的边缘上,利用地心的引力和人手臂的摆动而旋转,并驱动一组齿轮去卷紧发条来上弦.
半自动机械表
半自动和全自动的区别:自动机械表表的驱动件自重锤
( 即自动摆陀 ),通过一组自动轮系为自动上条的传动系,经手臂摆动自动上发条.
由于自动手表所采用的重锤和自动上条系的工作状态不同,可将自动机械表表的结构
区分为以下四种类型:
1)摆动式单向上条
2)摆动式双向上条
3)旋转式单向上条
4)旋转式双向上条
摆动式自动重锤只能在表机中作120°左右的摆动,为半自动.旋转式自动重锤在表机中能做
360°旋转运动,称全自动,这就是半自动和全自动机械表原理.
表中摆锤绕轴向任一方向(包括顺时针、反时针)转动都有上发条作用的叫全自动机械表;另一种是摆锤转动时,只有一个方向有效而另一方向是空转的叫半自动机械表.
F. 现在拉丝有些什么技术
金属线是一种常见的产品形式,通常是指丝、线或杆。随着经济的不断发展,需求和生产也空前繁荣。在竞争越来越激烈的时代,以最低的成本生产出让顾客满意的产品的竞争压力,促进了拉丝技术的持续进步。尽管最细的金属线已经达到了几微米,最高的钢丝强度已经超过了4000MPa,但我们还面临着不断变化的需求及非金属材料的竞争,所以我们需要更怜快、更好的拉丝技术。
1、拉丝技术的历史回顾
已知最早的金属线是由埃及人在大约公元2750年做的多线。在我国西安秦始皇兵马俑的考古中发现大量的石甲衣中采用了铜线,这也许是中国最早的金属线实证。公元400-1100年,金属线技术开始在很多国家发展起来,开始用手或马拉的方式拉丝,慢慢地,后来发明了一些技术,如绞盘、秋千、棘轮,并利用了重力。17世纪欧洲人开始采用水力拉丝。1769年蒸汽发动机的发明取代了人力拉丝技术以及水力拉丝[1]。20世纪电机技术的推广,为拉丝技术的飞跃提供了新动力。
1632年,开发出钢丝制针的工匠偶然发现,钢丝上的人尿残留层起到了润滑钢丝的作用,并且发现润滑可以减少动力需要。
早期有人尝试石模,后来有了铁模。从明朝江西人宋应星1637年在分宜所著《天工开物》中所做的描述中,可以发现用铁模拉丝:“凡针先锤铁为细条。用铁尺一根,锥成线眼,抽过条铁成线,逐寸断为针……”。1970年,新余仍有老工人在台虎钳上手工拉铁丝。贵州的首饰工匠现在还用手工拉银线。
1834年德国人Wilhelm Albea发明了钢丝绳,同期在英国架起了电报线,并开始做海底电报线。
电机的发明促使了单卷筒拉丝机的出现。为了提高效率和质量,在单拉机实现了2道,甚至3道拉拔(滑动拉丝),采用了骑马式起线器和水冷技术,模具技术不断提高。1993年,笔者参观堪萨斯州的联合钢丝绳公司时,仍看见他们在用单拉机,不过一个人开6台,盘重大约1 t,效率还是不低。倒立式单拉机和水平卷筒的拉丝机仍得到了大量的使用,适合加工道次少和中大尺寸的钢丝产品,并且很容易实现大盘重生产。
随着交流电机及控制技术的发展,20世纪初发明了连续式拉丝机,降低了人工成本,并提高了拉丝速度。MORGAN是早期主要的拉丝机生产企业之一。20世纪30年代后期Marchal Richard Barcro公司发明了B—B拉丝机(双积线),改善了冷却,并减少了扭转问题。该设备特别受钢丝绳厂的欢迎,到1976年该公司停业时,已有上千台这样的设备投入使用。
后来出现的拉丝机是活套式,20世纪70年代末德国的KOCH公司发明了直线式调谐辊式SEN-SOR ARM拉丝机。大约1970年发明的窄缝式冷却技术为拉丝速度的提高提供了非常有利的条件。改进卷筒设计、卷筒外风冷、旋转模、直接水冷的采用都是提高拉丝机性能的技术。20世纪90年代起出现了卧式连续拉丝机,主要是出于降低劳动强度的需要,且便于维修。拉细丝时可以两排布置,降低了占地面积,大型的已经发展到直径为1 270mm的卷
筒。
在避免钢丝扭转的同时,直线式拉丝机获得了优秀的道次与速度协调能力。速度更快、质量更好,易操作和维护,可灵活配模,因电气技术的发展使得能耗下降了。
随着数字技术的发展,可以通过一台计算机监控一组拉丝机的工作状态。
干式连续拉丝机的卷简直径是250-1270mm,直流或交流的电机功率为15-160kW。小型干式拉丝机工作速度达到25m/s以上,大型拉丝机的产能已突破2万t/a。
基于滑动拉丝技术的湿拉设备在有色金属及小尺寸钢丝上得到了大量的应用,如铜线、铝线、钢帘线、钢丝绳用钢丝、细弹簧丝等,采用水性或油性的润滑液体。有色线早就已经出现了多根同时拉拔的技术。水箱拉丝机的速度很高,拉拔道次从几次到二十几次,可以实现很大的压缩量,重型水箱可使φ5.5mm的高碳钢线材直接十产品,但是钢丝在水箱中有一些扭转,需要调整平整度的技术和经验。
2、突破速度障碍
拉丝机技术已经取得了很大进步,一些速度记录可以反应当前的成就:进线φ9.5mm拉拔电工铝线时的速度可以达到30m/s以上,拉拔高碳钢细丝也可接近这样的速度;进线φ1lmm的82B钢丝,出线94.22mm的速度记录是12m/s。高速度生产优质钢丝需要全面综合的条件。以下总结和分析了几种影响高速拉拔的因素及突破方向。文中未特别说明时,线材指钢线材。
2.1原料
大盘重可减少接头所需的停机时间,对于提高拉丝设备的作业效率非常重要。有色金属工业在20世纪70年代就引进了先进设备,而钢铁工业的线材大盘重生产开始于80年代的后半期。在1988年以前,盘重300kg线材在中国已经属于大盘重了,有些产品每件甚至只有大约60kg,金属制品企业少量的引进设备只有使用进口大盘重线材时才能发挥效益。1988年在马鞍山出现了第一个盘重约2t的高速线材厂,后来2t左右的盘重逐渐成为国内主流,大盘重线材的出现使得我国有了发展高速拉丝的条件。国外已有了约3t盘重的线材。
原料品质也相当重要。好的线材极少断线,可以拉得更快,确保拉丝机的作业效率;另外,好的线材是优质钢丝的质量基础,可以降低产品成本。拉拔PC钢丝时,好的材料每百口屯断线次数不到一次。钢帘线由于加工工序多,产品直径细,对断线问题更加敏感。现代冶金和轧钢技术改善了金属组织和线材质量,使拉丝更容易,降低了生产成本。
2.2线材表面的准备
线材热轧时表面都会产生氧化铁皮,个别钢铁企业提供酸洗服务,特别是不锈钢线材。多数情况下,拉拔前的表面准备是由钢丝企业完成的。好的表面准备可以确保金属变形时与模具间摩擦正常,对于确保顺利、高速的拉拔非常重要。
最普遍的工艺仍然是酸洗+磷化+硼化(或皂化,或在石灰液中浸泡)。采用振动、超声波和电解等技术,结合一些其他技术,在保证质量的前提下,减少了污染物排放。法国有代替磷化的非反应涂层材料,可减少污染问题。为了解决环保问题,越来越多人采用机械除鳞技术,但实践中也遇到了一些困难,尤其是生产成品钢丝时。
德国的ECOFORM公司推出了在线涂覆技术,采用类似挤塑的技术,将润滑剂涂在钢丝表面,大大改善润滑效果,提高模具寿命和拉拔速度。在应用中,拉拔W(C)=0.83%的碳素钢丝时,
进线直径5.5mm,出线直径2.2mm,成品速度由12m/s提高到了20m/s。将发生在模具里的被动过程变成了易控制的主动过程。
2.3收放线技术
成品出线速度提高后,放线速度自然也要跟上去,但是放线速度快到一定程度以后容易出现乱线、卡线现象,从而制约速度的提升。
选择放线技术的时候要同时考虑前道的收线技术,放线可看作是前道收线的一个逆过程。选择收线技术应进行系统地考虑,主要考虑下道工序的需要。如果是成品就得研究最适合顾客的方式,通常收线技术影响顾客的成本及效率。
盘条一般采用水平叉或竖筒放线,水平叉的鸭舌起到了减少线圈过快跑出的问题,但因容易乱线,水平叉放线速度很难提高。对小直径的钢丝使用工字轮是最理想的高速放线方法。
工字轮可以高速收线,且排线较整齐,有利于再放线。主动式工字轮放线可以实现精确张力控制,不过很少用在拉丝上。有的设备实现了自动换盘,如KOCH的一些钢丝拉丝机和其他公司的一些铝线拉丝机,明显提高了生产效率。
象鼻子(鹅颈)收线也是一种可以实现连续作业的技术,钢丝有一些扭转,可实现大盘重收线或小盘重不停机收线。GCR此类设备设计速度达到了28 m/s,直径为400-760mm。采用倒立式收线没有扭转问题,国外最高设计速度达25 m/s,且可实现大盘重生产。
收放线的张力控制很重要。设备通过张力可判断速度是否协调正常,张力也影响收线的排线质量。被动式放线主要靠制动产生张力,主动放线可采用如力矩电机、活套和张力感应辊等技术。散卷放线被动放线没有张力控制,但需要水平叉的鸭舌产生适当的阻尼。
2.4 润滑
拉拔离不开润滑,润滑失效的可能出现是限制速度的重要原因之一。润滑失效使得钢丝温度剧升,被拉拔金属与模具粘连,导致模具寿命缩短及产品表面损坏等问题。
常用的润滑材料有钙基或钠基的硬脂酸盐(拔丝粉)、润滑油和油脂等。同样的润滑材料在不同厂有时候表现不同,这是因为其他因素导致模具内压力和温度的不同,使得润滑剂的表现不同。
除了2.2所述的润滑技术外,压力模也可实现类似的干涂。无酸拉拔时,在拉丝机前加在线硼化装置是有效果的,且降低了对涂粉技术的要求。在拉丝机的拔丝粉盒里增加一个搅拌器,可避免隧道效应。粉夹是一种卡在钢丝上使拉丝粉更容易带进模具中的工具,有时效果很好,但也可能导致带进模具的粉过多。粉夹的压力和接触形式会影响到使用效果[1]。
润滑失效可根据出粉状态判断,正常时不结焦,
塑化的粉粘附在钢丝上,出现问题时出粉很硬,结块
显示出高温的黑色。严重时会出现剧烈摩擦,钢丝
表面磷化膜破损,甚至出现拉拔马氏体及横向裂纹。
2.5 拉丝机
拉丝机的机电特性、冷却能力以及前面讲到的收放线技术都影响到拉丝的速度和质量。高速拉丝需要电机、传动机构、速度协调控制系统及旋转卷筒的动平衡效果的支持。
拉丝系统的热平衡能力也是关键因素,金属拉拔变形过程中的摩擦及变形都产生热量,现代的拉丝机通过模具水冷、卷筒内部水冷及外部钢丝风冷带走热量,速度越快,单位时间产生的热量越多,而拉丝机的冷却能力是有限的。高温导致时效脆性,一般建议出模温度不能高出180℃,220℃以上会出现严重的脆化。
意大利线材技术有限公司提出如下拉丝卷筒冷却水量计算方法:
每个卷筒每分钟冷却水量(20℃):W20=f·Pinst,其中/是0.7-1.0的系数,Pinst是装机功率。如安装8台75kW电机的连续拉丝机,系数取0.85,其冷却水总供应量(未包括模盒)应为8*75*60*0.85=30.6 t/h。
卷筒内壁的锈蚀对冷却传热影响很大,WAI的钢丝手册[2]上可以查到,0.25mm厚的锈蚀使传热能力下降50%。采用适当的防锈技术应该是有益的,但应注意避免采用低导热性的涂层。
窄缝式冷却已经成为全球流行的技术,也有公司制造直接水冷的V形槽拉丝机,直接水冷法做的成品钢丝呈温热状态,韧性好,强度略低。温度较高时,虽然拉出的拉丝强度更高,但同时有塑韧性损失,即使没到严重的程度,其强度也不能稳定保持。做预应力钢绞线的经验表明,在绞线稳定化后,直接水冷的低温低强度钢丝强度会回升,而很高强度的热钢丝其强度会有一个明显的损失。神户制钢于20世纪70年代研究出模后钢丝直接水冷,用了两年时间才将此技术实用化。也有企业曾在卷筒旁进行喷水雾的尝试。
斜卷筒设计是改善冷却、提高速度潜力的有效手段。因为斜卷筒增加积线高度,即增加钢丝在卷筒上的冷却时间。增加卷筒数量也是一种设计思路,这可以减少每道的压缩率,即减轻每道次冷却系统的负荷。
为高速生产,也有公司研究出不停机的钢丝拉拔技术,采用3 t盘重防乱线放线技术,前4道高积线,打轴机自动换盘,工字轮的容量达3t。
2.6改进拉拔工艺
韩国的研究者采用了等温度的压缩率分配原则[3],即将各道出模预测温度都控制在166℃,避免了传统分配方法第一道冷却能力利用不足的问题。这样的分配结果是压缩率从第一道起逐步下降,充分利用了每道次的冷却能力。一般的经验做法是将第一道压缩率控制在较低水平,这可以在第一道实现较好的润滑剂涂覆效果,但此效果同时受润滑剂特性、压缩量、速度和冷却能力的影响。更理想的是应综合考虑拔丝粉的特性和表现、设备性能、冷却能力、材料变形能力和总压缩率,在保证质量的前提下发挥设备潜力。
采用压力模可以提高润滑效果,并提高材料拉拔变形时的塑性,有利于提高速度。
在拉丝机上装辊模进行拉拔也可以实现高速拉拔,采用辊拉方法生产钢丝时,比固定模获得更加强烈的[110]织构,变形均匀,发热更少,具有较高的强度指标和塑性指标[4]。一种注册商标为MICROROLLING的技术已经应用于加工铜、锌、铝、钛、铜合金、铝合金、碳素钢、不锈钢、工具钢丝及气保焊丝和药芯焊丝等。加工φ1.8mm的中、高碳钢丝时,出线速度达到了16m/s,同规格的软线速度可达25m/s。
3、结语
为了更快更好地拉丝,我们应注意以下几点:(1)采用盘重尽量大的优质原料;(2)做好适合后续高速加工技术的表面准备,甚至可与拉丝机整合在一条线上;(3)采用适当的收放线技术,防止乱线和断线,适应相应的拉丝速度;(4)采用适当的润滑剂,适应预期的加工条件;(5)采用控制稳定、无扭转、冷却优良的高速拉丝机,甚至可用辊拉方式实现变形过程;(6)综合地考虑表面准备、润滑、冷却、模具及材料特性在拉丝过程的影响,在控制温度和确保表面质量的前提下充分利用设备的冷却及速度潜力。
G. 钟表知识介绍全面的有吗
有 的 , 可 以 看 看 时 间 观 念 钟 表 词 典
H. 钟表发展历史
时钟是人类最早发明的物品之一,原因是需要持续量测时间间隔,有些自然的时间间隔(如日、闰月及年)可以用观测而得,较短的时间间隔就需要利用时钟。
数千年计时设备的原理也有大幅变化,日晷是利用在物体在一平面上影子的变化来计时,计算时间间隔的仪器也有许多种,包括最广为人知的沙漏。配合日晷的水钟可能是最早的计时仪器。
欧洲在1300年发明了擒纵器,后来也创作了第一个机械钟,可以利用像摆轮之类的振荡计时设备。发条驱动的时钟约在15世纪出现,钟表业约在15世纪至16世纪开始发展,1656年发明了摆钟。
因此在计时的准确性又进一步提升,当时因为航海导航对时间的精确性要求,也带动时钟可靠性及精确性的提升。电子时钟在1840年申请专利,二十世纪电子学的发展产生了可以完全不用机械机芯的时钟。
现在时钟内的计时元件是谐振子,一个会以固定精准频率振荡的物体,谐振子可能是单摆、音叉、石英晶体,或是原子在发射微波时电子的振荡。
类比型的时钟会用指针及角度表示时间,数位时钟则是用数字的方式表示,有两种时间表示法:十二小时制及二十四小时制。
大部分数位时钟都是用电子设备及液晶、LED及真空荧光显示器来显示时间。时钟功能也是现在电脑、手机的标准功能之一。
为了方便性、距离、电话或是失明人士的需求,有用声音报时的听觉时钟。为了盲人需求,也有用触摸方式可以感知其时间的盲人时钟,其中有些类似传统时间,但调整其设计,可以直接触摸表面得知时间,但又不会影响计时功能。计时技术也在持续演进之中。
(8)工字轮自动导开装置扩展阅读:
原始人凭天空颜色的变化、太阳的光度来判断时间。古埃及发现影子长度会随时间改变,发明日晷在早上计时,他们亦发现水的流动需要的时间是固定的,因此发明了水钟。古代中国人亦有以水来计时的工具——铜壶滴漏。
中国除了用水流来计时外,中国古代民间亦有利用燃点线香来计量时间。龙舟报时更香就是利用烧香来计时的仪器,它更设有定时响闹的作用。
龙舟上挂了数条两端系着金属球的幼线,线下放了燃著的香。每隔一段时间,香便会烧断一条线子,当金属球跌进下面的盛器时,便会发出报时响闹。这种烧香时计最早见于宋代的文献中。
用更香来计算时间的精度不高,但由于它简单易行,极之适合民间使用,所以曾经十分流行。据文献记载有些更香可燃烧一昼夜,有些甚至可以燃烧至一个月。
公元1088年,宋朝的科学家苏颂和韩工廉等人制造了史上首座以水力作自动化机械操作的水运仪象台,它是把浑仪、浑象和机械计时器组合起来的装置。
它以水力作为动力来源,具有科学的擒纵机构,高约12米,7米见方,分三层:上层放浑仪,进行天文观测;中层放浑象,可以模拟天体作同步演示;下层是该仪器的心脏,计时、报时、动力源的形成与输出都在这一层中。
公元1276年,中国元代的郭守敬制成大明灯漏。它是利用水力驱动,通过齿轮系及相当复杂的凸轮结构,带动木偶进行“一刻鸣钟、二刻鼓、三钲、四铙”的自动报时。
自宋起,十二时辰分初正即廿四小时系统,一刻即今天的十五分钟,其准确度较德国之桌钟早三百多年。
公元1283年在英格兰的修道院出现史上首座以砝码带动的机械钟。
13世纪意大利北部的僧侣开始建立钟塔(钟楼),其目的是提醒人祷告的时间。
公元1360年詹希元创制“五轮沙漏”,以齿轮、时刻盘合成。
16世纪中在德国开始有桌上的钟。那些钟只有一支针,钟面分成四部分,使时间准确至最近的十五分钟。
公元1657年,惠更斯发现摆的频率可以计算时间,造出了第一个摆钟。1670年英国人William Clement发明锚形擒纵器。
公元1797年,美国人伊莱·泰瑞获得一个钟的专利权。他被视为美国钟表业的始祖。
公元1840年,英国的钟表匠亚历山大·贝恩发明了电钟。
公元1946年,美国的物理学家伊西多·拉比博士弄清楚了原子钟的原理。于两年后,创造出了世界上第一座原子钟,原子钟至今也是最先进的钟。它的运转是借助铯、氢原子的天然振动而完成的,它可以在300年内都能准确运转,误差十分小。
18到19世纪,钟表制造业逐步实行了工业化生产。
20世纪,开始进入石英化时期。
21世纪,根据原子钟原理而研制的能自动对时的电波钟表技术逐渐成熟。
参考资料来源:网络——钟表
I. 钟表的钟表发展
公元前140年到100年,古希腊人制造了用30至70个齿轮系统组成的奥林匹克运动会的计时器。
东汉公元78年-139年,张衡制造漏水转浑天仪,用齿轮系统把浑象和计时漏壶联结起来,漏壶滴水推动浑象均匀地旋转,一天刚好转一周,这是最早出现的机械钟。
1350年,意大利的丹蒂制造出第一台结构简单的机械打点塔钟,日差为15~30分钟,指示机构只有时针;1500~1510年,德国的亨莱思首先用钢发条代替重锤,创造了用冕状轮擒纵机构的小型机械钟;1582年前后,意大利的伽利略发明了重力摆;1657年,荷兰的惠更斯把重力摆引入机械钟,创立了摆钟。
1660年英国的胡克发明游丝,并用后退式擒纵机构代替了冕状轮擒纵机构;1673年,惠更斯又将摆轮游丝组成的调速器应用在可携带的钟表上;1675年,英国的克莱门特用叉瓦装置制成最简单的锚式擒纵机构,这种机构一直沿用在简便摆锤式挂钟中。
1695年,英国的汤姆平发明工字轮擒纵机构;1715年,英国的格雷厄姆又发明了静止式擒纵机构,弥补了后退式擒纵机构的不足,为发展精密机械钟表打下了基础;1765年,英国的马奇发明自由锚式擒纵机构,即现代叉瓦式擒纵机构的前身;1728~1759年,英国的哈里森制造出高精度的标准航海钟;1775~1780年,英国的阿诺德创造出精密表用擒纵机构。
18~19世纪,钟表制造业已逐步实现工业化生产,并达到相当高的水平。20世纪,随着电子工业的迅速发展,电池驱动钟、交流电钟、电机械表、指针式石英电子钟表、数字式石英电子钟表相继问世,钟表的日差已小于0.5秒,钟表进入了微电子技术与精密机械相结合的石英化新时期 有关钟表的演变大致可以分为三个演变阶段,那就是: 从大型钟向小型钟演变。 从小型钟向袋表过渡。 从袋表向腕表发展。每一阶段的发展都是和当时的技术发明分不开的。 1088年,宋朝的科学家苏颂和韩工廉等人制造了水运仪象台,它是把浑仪、浑象和机械计时器组合起
来的装置。它以水力作为动力来源,具有科学的擒纵机构,高约12米,七米见方,分三层:上层放浑仪,进行天文观测;中层放浑象,可以模拟天体作同步演示;下层是该仪器的心脏,计时、报时、动力源的形成与输出都在这一层中。虽然几十年后毁于战乱,但它在世界钟表史上具有极其重要的意义。由此,中国著名的钟表大师、古钟表收藏家矫大羽先生提出了“中国人开创钟表史”的观点。
14世纪在欧洲的英、法等国的高大建筑物上出现了报时钟,钟的动力来源于用绳索悬挂重锤,利用地心引力产生的重力作用。15世纪末、16世纪初出现了铁制发条,使钟有了新的动力来源,也为钟的小型化创造了条件。1583年,意大利人伽利略建立了著名的等时性理论,也就是钟摆的理论基础。
1656 年,荷兰的科学家惠更斯应用伽利略的理论设计了钟摆,第二年,在他的指导下年轻钟匠S.Coster制造成功了第一个摆钟。1675年,他又用游丝取代了原始的钟摆,这样就形成了以发条为动力、以游丝为调速机构的小型钟,同时也为制造便于携带的袋表提供了条件。
18世纪期间发明了各种各样的擒纵机构,为袋表的进一步产生与发展奠定了基础。英国人George Graham在1726年完善了工字轮擒纵机构,它和之前发明的垂直放置的机轴擒纵机构不同,所以使得袋表机芯相对变薄。另外,
1757年左右英国人 Thomas Mudge发明了叉式擒纵机构,进一步提高了袋表计时的精确度。这期间一直到19世纪产生了一大批钟表生产厂家,为袋表的发展做出了贡献。19世纪后半叶,在一些女性的手镯上装上了小袋表,作为装饰品。那时人们只是把它看成是一件首饰,还没有完全认识到它的实用价值。直到人类历史进入20世纪,随着钟表制作工艺水平的提高以及科技和文明的巨大变革,才使得腕表地位的确立有了可能。
20世纪初,护士为了掌握时间就把小袋表挂在胸前,人们已经很注重它的实用性,要求方便、准确、耐用。尤其是第一次世界大战的爆发,袋表已经不能适应作战军人的需要,腕表的生产成为大势所趋。1926年,劳力士表厂制成了完全防水的手表表壳,获得专利并命名为oyster,第二年,一位勇敢的英国女性Mercedes Gleitze佩带着这种表完成了个人游泳横渡英伦海峡的壮举。这一事件也成为钟表历史上的重要转折点。从那以后,许多新的设计和技术也被应用在腕表上,成为真正意义上的带在手腕上的计时工具。紧接着的二战使腕表的生产量大幅度增加,价格也随之下降,使普通大众也可以拥有它。腕表的年代到来了。 从中国水运仪像台的发明到现在的钟表演变过程中,我们可以看到:
各个不同时期的科学家和钟表工匠用他们的聪明的智慧和不断的实践融合成了一座时间的隧道,同时也为我们勾勒了一条钟表文化和科技发展的轨迹。关于中国的钟表史,最早用土和石片刻制成的“土圭”与“日晷”两种计时工具,成为世界上最早发明计时工具的国家之一。到了铜器时代,计时器又有了新的发展,用青铜制的“漏壶”取代了“土圭”与“日晷”。东汉元初四年张衡发明了世界第一架“水运浑象”,此后唐高僧一行等人又在此基础上借鉴改进发明了“水运浑天仪”、“水运仪象台”。至元明之时,计时器摆脱了天文仪器的结构形式,得到了突破性的新发展。元初郭守敬、明初詹希元创制了“大明灯漏”与“五轮沙漏”,采用机机械结构,并增添盘、针来指示时间,其机械的先进性便明显地显示出来,时间性日益见准确。
十九世纪末期,中国造钟工艺达到了一个崭新的水平。1875年由上海“美利华”作坊制造的南京钟,屏风式样,钟面镀金,镌刻花纹,以造型古朴典雅、民族风格鲜明和报时清脆、走时准确而闻名于海内外,曾于1903年在巴拿马国际博览会上获特别奖。
我国近代机械制钟工业始于1915年。民族实业家李东山出资在烟台开办了中国时钟制造业的第一家钟厂—一烟台宝时造钟厂。并在1918年自制成功第一批座挂钟投放市场。1927年,烟台第二家造钟厂一一永康造钟公司开业。到1937年,烟台钟表工业已拥有6家企业和相当的生产规模。据1934年的统计,仅德顺兴、永康、慈业三家造钟厂已拥有职工1416人,拥有各类从德、英、法等国进口的生产设备149台,年生产座挂钟10.88万只。产品不仅销往华北、华东、东北、华南各大商埠,还销往新加坡、菲律宾、马来西亚、印度尼西亚、夏威夷等十多个国家和地区。
新中国成立后,我国钟表工业得到迅速发展,取得了令人瞩目的成绩。1955年由天津、上海试制出第一批国产手表。经过三十多年来不断地进行技术改造和技术改进,我国手表行业已形成具有相当生产能力和配套完整的工业体系。1988年手表产量达6700多万只,其中石英电子表2900多万只,手表产量居世界第四位。在品种方面,已成批生产机械男表、女表、日历表、双历表、自动表、怀表、秒表、数字式和指针式石英表等。在质量上,手表的走时精度已达到国际同类产品的水平,现较为出名的有东风、上海、宝石花、海鸥等牌号。