Ⅰ 插电式混合动力汽车动力系统结构及工作原理
简单的说就是用电动机取代燃油机,用电池蓄能方式取代油箱储油方式。简单原理就是通过驾驶者控制电子油门踏板,给出模拟电子信号给控制器或处理器,再由控制器或处理器将模拟信号处理后控制电动机的输出功率、转速及正反转等。
Ⅱ 串联式混合动力汽车的工作原理及特点是什么
一、工作原理
串联式混合动力系统一般由内燃机直接带动发电机发电,产生的电能通过控制单元传到电池,再由电池传输给电机转化为动能,最后通过变速机构来驱动汽车。
在这种联结方式下,电池就象一个水库,只是调节的对象不是水量,而是电能。电池对在发电机产生的能量和电动机需要的能量之间进行调节,从而保证车辆正常工作。
二、工作特点
发动机启动后持续工作在高效区,通过发电机给电池发电,而驱动电机作为整车的动力源驱动整车运行。
由此可见,串联混合动力技术,需要将机械能转化为电能(Engine->Generator->Battery),然后再将电能转化为机械能(Battery->Traction),因为需要两次能量转换,所以整体的效率会比较低。
同时需要驱动电机(Traction)用来代替传统的发动机(Engine)达到牵引的目的,所以电池容量,发电机,驱动电机的功率都不能太小,因而串联模式大多数应用在大型车(Bus,Dumping etc.)中。
(2)新型混合动力车用机电耦合传动装置扩展阅读
串联式混合动力电动汽车是由发电机、发动机、整流器、蓄电池组、牵引电动机、机械传动装置等组成。如果蓄电池组可以外插电网充电,则属于插电式串联混合动力电动汽车。
发动机和发电机之间是机械连接的,牵引电机与机械传动装置(主减速器、差速器)之间也是机械连接的,燃油箱与发动机之间是管路连接,其余部分是电缆连接。
从燃油箱、发动机、发电机、整流器流出的能量是单向的,可以经电动机控制器、牵引电动机直到机械传动装置,提供车辆行驶所需要的能量,也可以经过 DC/DC 转换器到达蓄电池组,提供维持蓄电池组 SOC 的能量。
从蓄电池组、DC/DC 转换器、电动机控制器、牵引电动机直到机械传动装置,能量流动可以是双向的。根据路况及控制策略,牵引电动机被控制为电动机或发电机,在驱动时,作为电动机使用,提供整车行驶所需要的动力;
在制动减速时,作为发电机使用,将整车动能的一部分转化为电能,经 DC/DC 转换器给蓄电池充电,这样,就实现了能量的双向流动。
Ⅲ 混合动力汽车一般是怎样实现两种动力耦合的谁能给我介绍一下,最好有图。
它是由两个部分组成,一个是发动机,一个是大型电机! 发动机燃烧汽油,把多余的电冲入大电瓶里面,供电机使用!现在由于那个电瓶太贵了,和有高压电,所以现在油电混合的车比较贵
Ⅳ 一种新型混合动力汽车基本原理是:混合动力汽车启动时,内燃机并不工作,蓄电池通过某种方式向车轮输送能
(1)蓄电池储存的电能:
W=UQ=300V×100A×3600S=1.08×108J;
(2)由v=
s |
t |
W机 |
Q放 |
Ⅳ 混合动力汽车的变速器和现有燃油汽车变速器有什么差异
传统燃油车变速器传动变化和控制过程均基于齿轮的物理连接和驱动,而混合动力汽车的变速器机构既有基于发动机的物理连接,又有基于电信号的结构模式
Ⅵ 混合动力电动汽车机电耦合装置如何分类
混合动力车辆的三大类型将机电耦合系统分为串联混合、并件的不同,将耦合系统分为变速箱耦合、传动系耦。
Ⅶ 混合动力汽车的动力传动系统的结构类型有哪几种
混合动力,动力传输分两种。一种是单独电力传输动力,只配一个无级变速器。发动机为电池充电。第二种是发动机和电池都可以提供动力,这个就要配两个变速箱了
Ⅷ 并联式混合动力汽车连接驱动轴的部件是什么
混合动力汽车中,常见的为并联式,该车辆行驶系统的驱动力由电机及发动机同时或者单独供给。其根据电机位置的不同,可分为P0、P1、P2、P3、P4等构型,其中P代表Position(位置)
P0:电机安装在发动机前端,以传动带与发动机相连,又称为BSG。由于传动带柔性连接的效率和转矩有限,BSG常常以微混和轻混为主,实际往往与其它构型配合使用,如P3+P0等。
P1:电机位于发动机后,离合器之前,也称为ISG,其取代了传统的飞轮,并且由于其为机械连接,传动效率高,除微混和轻混外,还可用于中混系统。但是其电机必须与发动机同步转动,电机由于尺寸约束和转矩、转速需求,成本较高,且电机单独驱动车轮难度大,不适合强混系统。目前跟国内公交车很多都采用的是P1构型。混合动力汽车是以先进控制技术为纽带的传统内燃机汽车与纯电动汽车的结合,具有内燃机汽车和纯电动汽车两者的优点。
P2:电机位于发动机和变速箱之间,离合器之后,其双离合器的设计可以实现纯电驱模式,且变速箱的所有挡位均可被电机利用,可降低电机成本和体积,是目前市场上混动车型采用最多的构型。但是P2结构的集成难度大,模式切换的平顺性等问题一直困扰这国内的整车厂。P3:电机位于变速箱的输出端。其纯电驱和动能回收效率高,急加速表现好。但其电机直接与车轴相连,无法用于起动发动机,常常配合P0使用,以优化能量管理和用户体验
Ⅸ 串联式混合动力汽车的驱动装置是什么
混合动力汽车来的系统包括发源动机、电动机等动力装置,蓄电池等蓄能装置,变速器、减速器、万向传动器及传动轴等传动装置。
串联式混合动力电动汽车的基本驱动方式是电动机动,发动机/发电机组起辅助动力单元的作用。由此可见,发动机的功率应能满足汽车的起步、加速、爬坡等动力性能。因此,串联式混合动力汽车电动机功率的选择与纯电能驱动汽车电动机的选择方式类似。可根据汽车的最高车速、最大爬坡度以及最佳加速性能进行估算,并选择其中的最大值作为初选值。
并联式混合电能驱动型汽车由发动机、电动机、电动机控制器、蓄电池组(或其它类型的动力电池)、动力合成器、机械传动装置等组成。如果蓄电池组可外插电网充电,则属于插电式并联混合动力型电能驱动汽车。发动机与电动机的输出轴分别与动力合成器输入端进行机械连接,输出动力通过动力合成器输出轴传递到机械传动装置(变速器、主减速器、差速器等),驱动车辆行驶。燃油箱与发动机之间是管路连接,电动机与电动机控制器、电动机控制器与蓄电池组之间均是电缆连接。
并联式混合动力汽车与串联式混合动力汽车的最大区别在于发动机与机械传动装置存在机械连接。
Ⅹ 混合动力汽车动力耦合的几种类型
1.转矩耦合方式 转矩耦合系统的输出转速与发动机及电机转速之间成固定比例关系,而系统的输出转矩是发动机和电动汽车电机转矩的线性组合。转矩耦合方式可以通过齿轮耦合、磁场耦合、链或带耦合等多种方式实现,如东风公司EQ7200 HEV车型是基于机械式自动变速器(AMT)的耦合系统,日本五十铃公司小型混合动力载货车ELF是基于动力输出轴的耦合系统,福特汽车公司开发了基于主减速器的动力耦合系统。利用电机进行动力耦合也是目前采用较多的动力耦合方式,即利用电机磁场实现动力耦合,最为典型的是本田Insight混合动力汽车的IMA系统,长安汽车公司的ISG系统等也属于这类耦合方式。 转矩耦合方式的特点是发动机的转矩可控,而发动机转速不可控。通过控制电机转矩的大小来调节发动机转矩,使发动机工作在最佳油耗曲线附近。转矩耦合方式结构简单,传动效率高,而且无需专门设计耦合机构,便于在原车基础上改装。 2.转速耦合方式 北京理工大学与华沙工业大学联合研制的紧凑型行星传动混合动力装置属于转速耦合方式。转速耦合系统的输出转矩与发动机和电机转矩成固定比例关系,系统的输出转速是发动机和电机转速的线性组合,其特点是发动机的转矩不可控,发动机的转速可以通过对电机的转速调整而得到控制。 在行驶过程中采用转速耦合方式的混合动力汽车,可以通过调整电机转速来调节发动机转速,使发动机在最佳油耗曲线附近工作。即使在发动机的工作点不变的情况下,通过连续调整电动汽车电机转速,也可以使车速连续变化,因此采用转速耦合方式的混合动力汽车无需无级变速器便可以实现整车的无级变速。 3.功率耦合方式 丰田普锐斯混合动力汽车采用的单/双行星排混合动力系统、雷克萨斯RX400h混合动力汽车采用的双行星排混合动力系统,及中国汽车技术研究中心开发的双行星排混合动力系统和双转子电机耦合系统,能同时满足转矩耦合条件和转速耦合条件,因此它们都属于功率耦合方式。功率耦合方式的输出转矩与转速分别是发动机与电机转矩和转速的线性和,因此发动机的转矩和转速都可控。 在采用功率耦合方式的混合动力汽车中,发动机的转矩和转速都可以自由控制,而不受汽车工况的影响。因此,理论上可以通过调整电机的转速和转矩,使发动机始终处在最佳油耗点工作。但实际上,频繁调整发动机工作点也可能会使经济性有所下降,因此通常的做法是将发动机的工作点限定在经济区域内,缓慢调整发动机的工作点,使发动机工作相对稳定,经济性能提高。采用功率耦合方式的混合动力电动汽车理论上不需要离合器和变速器,而且可实现无级变速。与前两种耦合系统相比,功率耦合方式无论是对发动机工作点的优化,还是在整车变速方面,都更具优越性。