⑴ 离心泵的平衡盘装置的构造和工作原理如何
多级离心泵在正常工作运行的过程中,一般都会产生多种性质的轴向力,这些轴向力按照其形成方式的不同可以分为以下几类。
其一,由于多级离心泵在进行工作时,其叶轮会根据设定发生不同程度的旋转,这就导致其驱动端口和自由端口的压力不相等,因此相应的就会产生一种指向离心泵驱动端的力,这个力就被划为轴向力的范畴内;
其二,当液体从离心泵的吸入口到排出口需要改变运行方向时,也会产生一个作用在叶片上的作用力;
其三,离心泵内的转子本身也具有一定的重力势能,因此也会产生一个向下的轴向力;
其四,由于多级离心泵在运行的过程中,其内在的压强与外界大气压强相比,会存在很大的差异,这就使得其内部轴端上会产生一定的压力,这也是离心泵轴向力的一种表现形式。
由于现代多级离心泵在正常工作运行的过程中,会存在多种形式的轴向力,这就需要相关操作工作者需要为离心泵配置一定的轴向力平衡装置,将相关轴向力进行平衡处理,以减少轴向力对离心泵设备的损耗,增加设备的使用周期和寿命。对于轴向力平衡装置的使用,需要相关部门在安装前进行充分的设计工作,将实际运行和工作过程中的一切影响因素考虑全面,并根据生产使用者的使用要求,做好相关轴向力平衡装置的设计工作,在确保多级离心泵能够正常稳定运行的同时,将企业的经济效益保持在最高的状态。
⑵ 平衡式防倒吸装置的相关原理,越详细越好,我一窍不通
防倒吸装置的结构特点和工作原理
1.隔离式:原理是导气管末端不插入液体中,导气管与液体呈隔离状态。
2.肚容式:原理是由于漏斗容积较大,当水进入漏斗内时,烧杯中液面显著下降而低于漏斗口,液体又流落到烧杯中。
3.接收式:原理是使用较大容积的容器将可能倒吸来的液体接收,防止进入前端装置(气体发生装置等)
4.平衡式:原理是导气管末端不插入液体中,导气管与液体呈隔离状态。与大气相连的导气管起到平衡内外气压的作用。
5.分液式:原理是导气管末端插入气体溶解度小的液体中,不会发生倒吸。气体进入到上层液体被充分吸收。
⑶ 两轮车自动平衡原理研究
赛格威 思维车 (Segway ) 是一种电力驱动、具有自我平衡能力的个人用运输载具,是都市用交通工具的一种。由美国发明家狄恩·卡门(Dean Kamen)与他的DEKA研发公司(DEKA Research and Development Corp.)团队发明设计,并创立赛格威责任有限公司(Segway LLC.),自2001年12月起将赛格威商业化量产销售。虽然曾经一度被认为是划时代的科技发明前景一片看好,但由于诸多现实因素所致,赛格威的产品并没有在上市后获得原本预期的回响。
赛格威的运作原理主要是建立在一种被称为“动态稳定”(Dynamic Stabilization)的基本原理上,也就是车辆本身的自动平衡能力。以内置的精密固态陀螺仪(Solid-State Gyroscopes)来判断车身所处的姿势状态,透过精密且高速的中央微处理器计算出适当的指令后,驱动马达来做到平衡的效果。假设我们以站在车上的驾驶人与车辆的总体重心纵轴作为参考线。当这条轴往前倾斜时,赛格威车身内的内置电动马达会产生往前的力量,一方面平衡人与车往前倾倒的扭矩,一方面产生让车辆前进的加速度,相反的,当陀螺仪发现驾驶人的重心往后倾时,也会产生向后的力量达到平衡效果。因此,驾驶人只要改变自己身体的角度往前或往后倾,赛格威就会根据倾斜的方向前进或后退,而速度则与驾驶人身体倾斜的程度呈正比。原则上,只要赛格威有正确打开电源且能保持足够运作的电力,车上的人就不用担心有倾倒跌落的可能,这与一般需要靠驾驶人自己进行平衡的滑板车等交通工具大大不同。 如果以第一款赛格威产品,赛格威 思维车(Segway HT,HT是Human Transporter、人类运输器的缩写)为例,这辆车上装置了五个固态陀螺仪。事实上,车辆只需要三个陀螺仪就可以完全掌控车身的前后倾与侧倾程度,因此多出的两个陀螺仪其实是用来确保行车安全的备用装置。车辆的能量来源是两个镍氢(NiMH)充电电池,较后期的车款上也可以选配蓄电量更大的锂充电电池。除了前后倾修正与前进后退外,赛格威的转向可透过两种不同的方式达到,其中一种是如同大部分的脚踏车类或摩托车类交通工具一般,驾驶人在车辆持续前进(或者后退,这就是只有赛格威办得到的动作)的状态中将自己的身体重心往左右倾斜,利用自身重量所产生、与车身纵轴垂直的分量,作为转弯时的向心力而达到转向的目的。除此之外驾驶人也可以扭转赛格威的龙头(把手)部份,使车辆左右两个车轮产生转速差,例如当龙头向左转时,右轮的转速会比左轮快,达到向左转的效果。必要时,赛格威甚至可以做出一轮向前一轮向后的动作,达到原地转向的效果,因此大幅提升这种交通工具的机动性。因为这种高度的机动性,再加上玻璃纤维材料制成的车轮,其踏面面积其实不比人类的双脚大上多少,因此理论上赛格威可以到达得了人类所能走到的大部分地方,甚至包括路边的人行道或落差不会太大的阶梯(虽然部分地区的交通法规,禁止赛格威在这类地点行驶)。
⑷ 动平衡机的工作原理
根据平衡机测出的数据对转子不平衡量进行校正,可改善转子相对于轴线质量分布,使转子旋转时产生的振动或作用于轴承上振动力减少到允许的范围之内。因此,平衡机是减小振动、改善性能和提高质量的必不可少设备。
通常,转子平衡包括不平衡量的测量和校正两个步骤,平衡机主要用于不平衡量的测量,而不平衡量的校正则往往借助于钻床、铣床和点焊机等其他辅助设备,或用手工方法完成。有些平衡机已将校正装置做成为平衡机的一个部分。
重力式平衡机和离心力式平衡机是两类典型的平衡机。重力式平衡机一般称为静平衡机。它是依赖转子自身的重力作用来测量静不平衡的。
被平衡的转子放在用静压轴承支承的支座上,在支座的下面嵌装一片反射镜。当转子不存在不平衡量时,由光源射出的光束经此反射镜反射后,投射在不平衡量指示器的极坐标原点。如果转子存在不平衡量,则转子支座在不平衡量的重力矩作用下发生倾斜,支座下的反射镜也随之倾斜并使反射出的光束偏转,这样光束投在极坐标指示器上的光点便离开原点。根据这个光点偏转的坐标位置,可以得到不平衡量的大小和位置。
重力式平衡机仅适用于某些平衡要求不高的盘状零件。对于平衡要求高的转子,一般采用离心式单面或双面平衡机。
离心式平衡机是在转子旋转的状态下,根据转子不平衡引起的支承振动,或作用于支承的振动力来测量不平衡。其按校正平面数量的不同,可分为单面平衡机和双面平衡机。单面平衡机只能测量一个平面上的不平衡(静不平衡),它虽然是在转子旋转时进行测量,但仍属于静平衡机。双面平衡机能测量动不平衡,也能分别测量静不平衡和偶不平衡,一般称为动平衡机。
离心力式平衡机按支承特性不同,又可分为软支承平衡机和硬支承平衡机。平衡转速高于转子一支承系统固有频率的称为软支承平衡机。这种平衡机的支承刚度小,传感器检测出的信号与支承的振动位移成正比。平衡转速低於转子一支承系统固有频率的称为硬支承平衡机,这种平衡机的支承刚度大,传感器检测出的信号与支承的振动力成正比。
根据大批量生产的需要,对特定的转子能自动完成平衡测量和平衡校正的自动平衡机,以及平衡自动线,现代已大量的装备在汽车制造、电机制造等工业部门。
⑸ 平衡式防倒吸装置的相关原理,越详细越好,我一窍不通
防倒吸装置的结构特点和工作原理
1.隔离式:原理是导气管末端版不插入液体中,导气管与液体呈隔离权状态.
2.肚容式:原理是由于漏斗容积较大,当水进入漏斗内时,烧杯中液面显著下降而低于漏斗口,液体又流落到烧杯中.
3.接收式:原理是使用较大容积的容器将可能倒吸来的液体接收,防止进入前端装置(气体发生装置等)
4.平衡式:原理是导气管末端不插入液体中,导气管与液体呈隔离状态.与大气相连的导气管起到平衡内外气压的作用.
5.分液式:原理是导气管末端插入气体溶解度小的液体中,不会发生倒吸.气体进入到上层液体被充分吸收.
⑹ 说明双层平衡装置的原理
离心泵的平衡盘装置主要由由平衡盘、平衡座和调整套(有的平衡盘和调整套为一体)组成。平版衡盘装置利权用轴向间隙的变化,能够自动调节过水量,完全平衡轴向力。轴向间隙正常工作时一般是0.1~0.2mm,但是要求转子有轴向窜动量,平衡盘是易损件。
平衡盘装置(见图)中有两个间隙,一个是由平衡套和轴套外圆形成的间隙b1,另一个是平衡盘内端面形成的轴向间隙b2,平衡盘后面的平衡室与泵吸入口连通。径向间隙前的压力是叶轮后泵腔的压力P3,通过径向间隙b1下降为p4,又经过轴向间隙b2下降为p5,平衡盘后面的压力为p6,由于平衡盘后面的平衡室通过平衡水管与泵吸入口联通,p6就等于多级泵吸入口的压力加平衡水管的管阻损失。由于平衡盘前面的压力p4远大于后面的压力p6,其压差在平衡盘上产生平衡力F,用以平衡作用在转子上的轴向力A。
⑺ 防跑偏-防跑偏装置(自平衡校正器)的工作原理是什么
【皮带机自平衡校正器】技术特点
中间托辊控制皮带运行方向,两侧托辊不会损伤皮带边缘。
利用皮带跑偏趋势所产生的反作用力进行校正,使其达到重新平衡。
快速随即校正,同步响应,并且不需要动力执行元件。
既可上下两层同时校正,又可分别单独使用。
自平衡,安装简单,调整便捷,性能可靠,使用寿命长。
⑻ 全自动洗衣机脱水时自动找平衡原理
洗衣机有其固定的洗涤程序,在进入脱水环节之前,脱水桶会反复均匀来回旋转,让洗涤物尽量舒展开来,以便在进入脱水前的排水后,洗涤物尽量均匀地分布于桶底,避免脱水时高速旋转的脱水桶发生剧烈震动,这就是调节平衡的原理。
洗涤物过多、水位过低、调整平衡时间不够,都会使脱水桶在调节平衡时,洗涤物无法展开,导致脱水桶偏心晃动,如果内筒晃动过大而触动了安全位置开关,洗衣机则进入保护状态,停机并注水,返回洗涤程序后期的依次调节平衡环节,继续按程序脱水,直至脱水正常。所以脱水时需要打开进水阀子,洗衣机才会自动调整平衡。
(8)自动平衡装置原理图扩展阅读
脱水时,如果衣物分布不均匀,洗衣机对衣物进行重新抖散、分布,当衣物均匀后再脱水;如果在规定的时间内,衣物仍然没有分布均匀,为避免洗衣机的剧烈震动,洗衣机将不脱水,此时需要检查衣物是否打结,缠绕,并对衣物进行重新整理,再选择“单脱水”程序进行脱水。
当衣物较少时,由于偏心保护可能会使洗衣机不脱水,可增加部分衣物,使衣物分布均匀,再进行脱水;另外,洗衣机对衣物重新分布、抖散,使时间延长,属于正常现象。
⑼ 离心泵自动平衡的工作原理
离心其实是物体惯性的表现,比如雨伞上的水滴,当雨伞缓慢转动时,水滴会跟随雨伞转动,这是因为雨伞与水滴的摩擦力做为给水滴的向心力使然。
但是如果雨伞转动加快,这个摩擦力不足以使水滴在做圆周运动,那么水滴将脱离雨伞向外缘运动,就像用一根绳子拉着石块做圆周运动,如果速度太快,绳子将会断开,石块将会飞出.这个就是所谓的离心。
主要工作原理:
(1)叶轮被泵轴带动旋转,对位于叶片间的流体做功,流体受离心作用,由叶轮中心被抛向外围。当流体到达叶轮外周时,流速非常高。
(2)泵壳汇集从各叶片间被抛出的液体,这些液体在壳内顺着蜗壳形通道逐渐扩大的方向流动,使流体的动能转化为静压能,减小能量损失。所以泵壳的作用不仅在于汇集液体,它更是一个能量转换装置。
(3)液体吸上原理:依靠叶轮高速旋转,迫使叶轮中心的液体以很高的速度被抛开,从而在叶轮中心形成低压,低位槽中的液体因此被源源不断地吸上。
气缚现象:如果离心泵在启动前壳内充满的是气体,则启动后叶轮中心气体被抛时不能在该处形成足够大的真空度,这样槽内液体便不能被吸上。这一现象称为气缚。
为防止气缚现象的发生,离心泵启动前要用外来的液体将泵壳内空间灌满。这一步操作称为灌泵。为防止灌入泵壳内的液体因重力流入低位槽内,在泵吸入管路的入口处装有止逆阀(底阀);如果泵的位置低于槽内液面,则启动时无需灌泵。
(4)叶轮外周安装导轮,使泵内液体能量转换效率高。导轮是位于叶轮外周的固定的带叶片的环。这些叶片的弯曲方向与叶轮叶片的弯曲方向相反,其弯曲角度正好与液体从叶轮流出的方向相适应,引导液体在泵壳通道内平稳地改变方向,使能量损耗最小,动压能转换为静压能的效率高。
(5)后盖板上的平衡孔消除轴向推力。离开叶轮周边的液体压力已经较高,有一部分会渗到叶轮后盖板后侧,而叶轮前侧液体入口处为低压,因而产生了将叶轮推向泵入口一侧的轴向推力。这容易引起叶轮与泵壳接触处的磨损,严重时还会产生振动。
平衡孔使一部分高压液体泄露到低压区,减轻叶轮前后的压力差。但由此也会引起泵效率的降低。
(6)轴封装置保证离心泵正常、高效运转。离心泵在工作是泵轴旋转而壳不动,其间的环隙如果不加以密封或密封不好,则外界的空气会渗入叶轮中心的低压区,使泵的流量、效率下降。严重时流量为零——气缚。通常,可以采用机械密封或填料密封来实现轴与壳之间的密封。
(9)自动平衡装置原理图扩展阅读
离心泵的汽蚀:
离心泵发生汽蚀是由于液道入口附近某些局部低压区处的压力降低到液体饱和蒸汽压,导致部分液体汽化所致。所以,凡能使局部压力降低到液体汽化压力的因素都可能是诱发汽蚀的原因。产生汽蚀的条件应从吸入装置的特性,泵本身的结构以及所输送的液体性质三方面加以考虑。
1)结构措施:采用双吸叶轮,以减小经过叶轮的流速,从而减小泵的汽蚀余量;在大型高扬程泵前装设增压前置泵,以提高进液压力;叶轮特殊设计,以改善叶片入口处的液流状况;在离心叶轮前面增设诱导轮,以提高进入叶轮的液流压力。
2)泵的安装高度,泵的安装高度越高,泵的入口压力越低,降低泵的安装高度可以提高泵的入口压力。因此,合理的确定泵的安装高度可以避免泵产生汽蚀。
3)吸液管路的阻力,在吸液管路中设置的弯头、阀门等管件越多,管路阻力越大,泵的入口压力越低。因此,尽量减少一些不必要的管件或尽可能的增大吸液管直径,减少管路阻力,可以防止泵产生汽蚀。
4)泵的几何尺寸,由于液体在泵入口处具有的动能和静压能可以相互转换,其值保持不变。入口液体流速高时,压力低,流速低时,压力高,因此,增大泵入口的通流面积,降低叶轮的入口速度.可以防止泵产生汽蚀。
5)液体的密度。输送密度越大的液体时泵的吸上高度就越小,当用已安装好的输送密度较小液体的泵改送密度较大的液体时,泵就可能产生汽蚀,但用输送密度较大液体的泵改送密度较小的液体时,泵的入口压力较高,不会产生汽蚀。
6)输送液体的温度。温度升高时液体的饱和蒸气压升高。在泵的入口压力不变的情况下,输送液体的温度升高时,液体的饱和蒸气压可能升高至等于或高于泵的入口压力,泵就会产生汽蚀。
7)吸液池液面压力。吸液池液面压力较高时,泵的入口压力也随之升高,反之,泵的入口压力则较低,泵就容易产生汽蚀。
8)输送液体的易挥发性在相同的温度下较易挥发的液体其饱和蒸汽压较高,因此,输送易挥发液体时的泵容易产生汽蚀。
9)其他措施:采用耐汽蚀破坏的材料制造泵的过流部分元件;降低泵的转速。
参考资料:离心泵的网络
⑽ 对数控加工中心的升降台系统需要自动平衡装置,简其原理
在磨削加工过程中,砂轮的振动是产生工件已加工表面振纹、影响加工质量的重要因素。引起这种振动的原因有工件和刀具传动系统的扰动以及砂轮不平衡引起的主轴振动两个方面。前者一般可以通过磨床的减振设备有效地消除,而后者则主要通过对砂轮进行平衡校正来解决。砂轮的平衡技术按自动化程度可分为人工平衡、半自动平衡和自动平衡3类。目前人们在研究半自动平衡的同时正致力于自动平衡的研究。日本开发的一种Balanceeye/norilake半自动平衡装置,通过振动测试分析,指出平衡块的安放位置,停机后人工稳定平衡配重块,再开车进行平衡测定。它基本代表了半自动平衡的水平。在自动平衡中,机械式增重平衡器是发展最早、应用最广的一类。自动平衡目前在国外已发展为液体平衡(日本)和利用氟里昂作为平衡介质的液汽平衡(美国)。本文研究的是一种利用增重平衡原理,根据振幅大小的变化规律,通过调整配重相对位置实现砂轮动态平衡校正的方法和装置。
2 平衡原理和平衡头结构
平衡原理
平衡装置简图如图1所示,磨床砂轮属于刚性转子。刚性转子由于其质心与回转中心不重合所引起的振动响应即旋转失衡是磨床主轴振动的重要因素。若磨床主轴部件总质量为M,不平衡质量为m,等效不平衡质点与回转中心的距离(偏心距)为e,则由此引起的稳态受迫振动的振幅为 (1)
可见在一定的转速和阻尼条件下,由于偏心所引起的主轴振幅与偏心质量的质径积me成正比。
砂轮的偏心质量可以用给定质径积的偏心质量来进行平衡补偿。若砂轮及给定质径积的补偿偏心质量(偏重齿圈)的轴向宽度b与其直径D之比b/D<1/5,则可以认为偏心质量和偏重齿圈的补偿质量形成的惯性力构成以转子回转轴为汇交点的平面汇交力系,如图2所示,其中Fm,F1,F2分别为砂轮偏心质量及补偿质量形成的惯性力。
由平面汇交力系的平衡条件可知,转子平衡时有,即 (2)
若e1=e2=eb,m1=m2=mb则F1=F2=Fba1=......More↓↓↓