㈠ 中国人造太阳
还在安徽的实验室
〖聚焦创新〗中国“人造太阳”即将放电
--------------------------------------------------------------------------------
2006-8-24 9:05:10 中国工业报
8月中旬,由中国自行设计、研制的世界上第一个全超导托卡马克EAST(原名HT-7U)核聚变实验装置(又称“人造太阳”)将在安徽合肥中国科学院等离子体物理研究所进行首次正式放电实验。记者了解到,这次放电实验,已引起了国内外科学界的高度关注。实验一旦成功,意味着安徽将成为世界上第一个建成此类核聚变实验装置并能实际运行的地方。
如何解决能源危机
自从第一次石油危机以来,世界各国都在竞相发展节能技术,力图掌握能源命脉,维护国家安全。但是人类目前可利用的能源资源非常有限,主要能源将在未来几十年至100多年的时间内枯竭。据日本权威机构专家测算,按目前世界已探明能源储量和可开采年限计算,石油资源的储量为10195亿桶,可供开采43年,高成本油田可供人类开采240年;天然气埋藏量为144万亿立方米,可开采63年,高成本气田可供开采452年;煤炭埋藏量10316亿吨,可开采231年。同时传统能源还会带来环境问题,如温室气体的增加可引起气候变化等。而世界上已有的核电站,都是利用原子核裂变反应的电站,主要原料铀的储量仅够维持数百年之用,况且核电站有着放射性物质泄漏事故、核燃料埋藏处理等重要隐患。
无奈,科学家将最终解决能源危机的希望,寄托在了受控核聚变的实现和推广身上。核工业西南物理研究院钟学儒高速记者,其原理类似太阳发光发热,即在上亿摄氏度的高温条件下,利用氢的同位素氘、氚的聚变反应释放出核能。核聚变能源使用的氘、氚可从海水中提取,也不产生室温气体及高放射性核废料,可以像太阳一样,为人类提供一种无限、清洁和安全的能源。据了解,1升海水提取的氘,在全完的聚变反应中释放的能量,相当于燃烧300升汽油释放的能量。
其实,人来早已实现了氘氚核聚变--氢弹爆炸,但那种不可控制的瞬间能量释放只会给人类带来灾难。驯服核能使核聚变在人为控制下发电,是件异常艰难的事,国际间联合攻关势在必行。
钟学儒告诉记者,经过几十年的准备和酝酿,今年5月,欧盟、美国、中国、日本、韩国、俄罗斯和印度7方参与的国际热核聚变实验反应堆(ITER)项目正式启动。该计划前期投资约50亿美元,计划用8~10年的时间完成,预计最终总投资将超过100亿美元。其中,欧盟承担50%的费用,其余6方分别承担10%,超出预计总花费10%的费用将用于支付建设过程中由于物价等因素造成的预算超支。此外,参与各方完全平等地享有项目的所有科研成果和知识产权。据悉,这是国际空间站之后,国际间最庞大的科研合作项目之一。
中国任重道远
中国工程院院士彭士禄告诉记者,我国在20世纪50年代中期就开始进行核聚变研究主要由核工业西南物理研究院和中国科学院等离子体物理研究所来进行。
20世纪80年代核工业西南物理研究院就建成了中国环流器一号装置,为我国在国际核聚变研究领域赢得了一席之地;20世纪90年代,该院又建成了中国环流器新一号装置,达到国际上同类型、同规模装置的先进水平,研究成果得到世界核聚变界的关注和肯定。2002年,该院成功建成了中国第一个具有偏滤器位形的托卡马克装置--中国环流器二号A装置。
中国科学院等离子体物理研究所万元熙透露,科学院等离子所于1994年底建成中国的一台全超导托卡马克装置HU-7U后被命名为EAST,从2003年开始,EAST开始进入总装。据介绍,该所耗资1.65亿元人民币的全超导托卡马克研究计划为,建成一个以具有非圆小截面的全超导托卡马克为核心的核聚变实验系统,并在其上实现近堆芯高参数,长脉冲和稳态运行。
万元熙认为,我国进行的与未来聚变堆相关的工程和物理问题的探索性实验研究,将为未来稳态、安全、高效先进聚变堆的物理和工程技术基础做出重要贡献,从而使中国在开发清洁而又无限的核聚变能的研究领域进入国际先进水平,做出更大贡献。他说,成功设计和建造EAST的经验构成了中国参加ITER的重要基础,同时EAST的成功建造和运行将为中国磁约束核聚变研究的下一步计划奠定坚实的物理、工程技术和人才队伍基础。
不过,跟踪国际聚变能科技动态40余年时间的西南物理研究院科技委主任严建成坦承:“目前,英国、美国、日本等少数几个国家的大型装置,已经在秒量级(几秒钟之内)下达到了亿度温度。中国和国际最先进的水平还有差距。”
严建成透露,中国将在ITER装置建设期间,提供总造价10%、也就是40多亿元人民币的核部件,并承担了两大核心技术的攻关任务:中子屏蔽技术、超导技术。前者是聚变反应中避免污染环境的关键技术,后者则将提供反应所需的强磁场。“预计本世纪中叶,聚变核电站就将步入商用阶段。我国三大动力等转北制造巨头有着开发新产业的良机。”
__________________________________
中国"人造太阳"下月放电 如获成功将成世界之最
【来源:南方日报报业集团-南方日报】
合肥消息 8月15日前后,俗称“人造太阳”的全超导托卡马克EAST核聚变实验装置将在合肥科学岛上进行首次等离子体放电实验。这意味着这一装置进入正式运行阶段。
科学岛上的“人造太阳”,是中国自行设计、研制的世界上第一个全超导托卡马克EAST核聚变实验装置。
其运行原理就是在这台装置的真空室内加入少量氢的同位素氘或氚,通过类似变压器的原理使其产生等离子体,然后提高其密度、温度使其发生聚变反应,反应过程中会产生巨大的能量。在未来的核聚变电站中,反应产生的能量可以通过能量输出转换装置供人类使用。据了解,1升海水提取的氘,在完全的聚变反应中释放的能量,相当于燃烧300升汽油释放的热能。
首次放电实验,已引起国内外科学界的高度关注,而放电过程是否具有危险性更为世人所牵挂。据参与这一工作的科研人员解释,核聚变实验装置只有在放电的时候才会产生中子辐射,一旦实验结束就没有了辐射,而产生的中子辐射不会影响到大厅之外。整个核聚变实验大厅是全封闭式构造,四周墙壁的厚度达到1.5米,屋顶的厚度为1米,内部全部为钢筋捆扎,表面用水泥浇筑而成,“是非常安全的”。
目前,这一核聚变实验装置真空室内的二次总装正有条不紊地进行。实验一旦成功,将意味着合肥成为世界上第一个建成此类核聚变实验装置并能实际运行的地方。
据《新安晚报》
参考资料:http://www.mei.net.cn/page/news/news.asp?CD=176053
㈡ 什么是热核聚变与人造太阳
什么是人造太阳
所谓“人造太阳”,即先进超导托卡马克实验装置,也即国际热核聚变实验堆计划(ITER)建设工程,是当今世界迄今为止最大的热核聚变实验项目,旨在地球上模拟太阳的核聚变,利用热核聚变为人类提供源源不断的清洁能源。核聚变能以氘氚为燃料,具有安全、洁净、资源无限三大优点,是最终解决全人类能源问题的战略新能源。
多年来的热核聚变研究一直围绕着一个主题,就是要实现可控的核聚变反应,造出一个人造太阳,一劳永逸地解决人类的能源之需。
万物生长靠太阳,人类生存自然也离不开太阳。我们生火煮饭的柴草来自太阳,水力发电来自太阳,汽车里燃烧的汽油来自太阳……太阳像所有的恒星一样进行着简单的热核聚变,向外无休止地辐射着能量。
我们现今所使用的能源,有些直接来自太阳,有些是太阳能转化的能源,像水能、风能、生物能,有些是早期由太阳能转化来的一直储存在地球上的能源,像煤炭、石油这样的化石燃料。人类社会发展到今天,仅靠太阳给予的可用能源已经不够用了。人类能源消耗快速增加,水能的开发几近到达极限,风能、太阳能无法形成规模。我们今天使用的主要能源是化石燃料,再有100多年即将用尽。人们还抱怨化石燃料对大气造成了污染,增加了温室气体。要知道它们是太阳和地球用了上亿年才形成的,但只够人类使用三四百年,而且它们是不可再生的。另外,煤炭、石油等是人类重要的自然资源,作为燃料烧掉是非常可惜的。人们无不担心,煤和石油烧完了,而其他能源又接替不上该怎么办?能源危机开始困扰着人类,促使人们寻找各种可能的未来能源,以维持人类社会的持续发展。
细心的人会发现,在元素周期表中,虽然元素是由质子和中子成对增加依次构成的,但是原子的重量却不是按质子和中子的增加而等量增加的。在较轻的原子中,质子和中子的重量偏重,如果两个轻的原子合成一个重原子,两个轻原子的原子量之和往往重于合成的重原子。同样,在较重的原子中,质子和中子的重量也偏重,一个重原子分裂为两个轻原子,重原子的原子量一般重于两个轻原子之和。只是在铁元素附近的原子中,质子和中子的重量偏轻。由此可见,在原子核反应中,质量是不守恒的,即出现了所谓的质量亏损。这些质量到哪里去了呢?按照爱因斯坦的质能关系公式E=mc2,亏损的质量转换为能量,由于c2是个巨大的系数,很小的质量就可释放出巨大的能量。科学家正是基于这一点,利用重金属的核裂变制造出了原子弹,利用轻元素的核聚变制造出了氢弹。
原子弹和氢弹的巨大威力令人惧怕,同时也让人们兴奋,因为原子中蕴藏的能量太大了,能否利用这种能源是人们自然想到的问题。原子弹和氢弹中的巨大能量是在瞬间释放出来的,而要作为常规能源使用,就必须实现可控制的核裂变和核聚变。对于核裂变来说,控制起来相对比较容易,裂变核电站早已经实现商业运行。但能用来产生核裂变的铀235等重金属元素在地球上含量稀少,而且常规裂变反应堆会产生长寿命的放射性较强的核废料,这些因素限制了裂变能的发展。
对人们来说,最具诱惑力的自然是核聚变,它的单位质量产生的能量比核裂变还要大几倍。实际上,宇宙中最常见的就是氢元素的聚变反应,所有的恒星几乎都在燃烧着氢,因为氢是宇宙中最丰富的元素。氢的聚变反映在太阳上(还有少量其他核聚变)已经持续了近50亿年,至少还可以再燃烧50亿年。氢在地球上也是非常丰富的,每个水分子中都有2个氢原子,但最容易实现的聚变反应是氢的同位素——氘与氚的聚变(氢弹就是这种形式的聚变)。氘和氚发生聚变后,2个原子核结合成1个氦原子核,并放出1个中子和17.6兆电子伏特能量。就氘来说,它是海水中重水(水分子为H2O,重水为D2O,只占海水中的一小部分)的组成元素,海水中大约每6500个氢原子中有1个氘原子。每升水约含30毫克氘(产生的聚变能量相当于300升汽油),其储量就多达40万亿吨。一座1000兆瓦的核聚变电站,每年耗氘量只需304千克,海水中的氘足够人类使用上百亿年,这就比太阳的寿命还要长了,更不要说再使用氢了。另外,除氚具有放射性危险之外,氘-氚聚变反应不产生长寿命的强放射性核废料,其少量放射性废料也很快失去放射性。氘—氘反应没有任何放射性。可以说氢及其同位素的聚变反应能是一种高效清洁的能源,而且真正是用之不竭。既然恒星上都在进行着这样的核聚变,地球上也不缺这种核聚变的原料,只要实现可控的核聚变,就可以造出一个供人们永久使用的“太阳”。实际上,自从人们揭开太阳燃烧的秘密以来,就一直希望模仿太阳在地球上实现核聚变从而为人类提供无尽的能源。尽管多年过去了,人们只见到了氢弹的爆炸,而没有看到一座核聚变发电站的出现,但它诱人的前景依然是人们心中一个割舍不去的梦。
中国的人造太阳
中国科学家率先建成了世界上第一个全超导核聚变“人造太阳”实验装置,模拟太阳产生能量。
该装置从内到外一共有五层部件构成,最内层的环行磁容器像一个巨大的游泳圈,进入实验状态后,“游泳圈”内部将达到上亿度的高温,这也正是模拟太阳核聚变反应的关键部位。国家“九五”大科学工程EAST(先进超导托卡马克实验装置)建设项目总负责人万元熙解释说,在高压高温下面,太阳从里面到表面都在发生聚变反应,释放出大量能量。但是太阳上的聚变反应是不可控的,为了让这种能量释放过程变成一个稳定、持续并且可控制的过程,EAST正是起着这一转化作用,通过磁力线的作用,氢的同位素等离子体被约束在这个“游泳圈”中运行,发生高密度的碰撞,也就是聚变反应。从1升海水中提取的氢的同位素,实现完全的聚变反应,放出来的能量等同于燃烧300升的汽油所获得的能量。
制造一个装置实现受控热核聚变反应,可以得到无穷尽的清洁能源,就相当于人类为自己制造一个或数个小太阳,源源不断地从核聚变中得到能量。
“人造太阳”彻底改变世界能源格局
根据“可控热核聚变”原理研发的“人造太阳”将带来人类能源供应格局的根本性变革。一旦这一成果投入商业运行,将彻底变革世界能源供应格局。
中科院等离子体物理研究所于1994年底在合肥建成中国第一个超导托卡马克ht-7装置,在该装置的基础上,研究所研制了“east”实验装置,被称为世界上第一个全超导核聚变“人造太阳”实验装置。
2005年4月27日,EAST总装完成了难度最大的工作——三环套装。三环从里到外的顺序为真空室、内冷屏和纵场磁体,是整个装置的内三层。
2006年1月10日,EAST外杜瓦安装成功,这标志着EAST总装第一阶段的全面竣工,为EAST降温通电实验创造了良好的条件。
外真空杜瓦是EAST装置最外层的结构部件。它主要为真空室等内部部件提供真空工作环境,隔绝内部部件与环境的自由热交换,以实现对运行温度的控制,从而满足总体设计要求。
根据核聚变发生的机理,要实现可控制的核聚变实际上比造个太阳要难多了。我们知道,所有原子核都带正电,两个原子核要聚到一起,必须克服静电斥力。两个核之间靠得越近,静电产生的斥力就越大,只有当它们之间互相接近的距离达到大约万亿分之三毫米时,核力(强作用力)才会伸出强有力的手,把它们拉到一起,从而放出巨大的能量。要使它们联起手来并不难,难的是既要让它们有拉手的机会又不能让它们过于频繁地拉手。要使它们有机会拉手,就要使粒子间有足够的高速碰撞的机会,这可以增加原子核的密度和运动速度。但增加原子核的密度是有限制的,否则一旦反应加速,自身放出的能量会使反应瞬间爆发。据计算,在维持一定的密度下,粒子的温度要达到1亿~2亿摄氏度才行,这要比太阳上的温度(中心温度1500万℃,表面也有6000℃)还要高许多。但这样高的温度拿什么容器来装它们呢?
这个问题并没有难倒科学家,20世纪50年代初,前苏联科学家塔姆和萨哈罗夫提出磁约束的概念。前苏联库尔恰托夫原子能研究所的阿奇莫维奇按照这样的思路,不断进行研究和改进,于1954年建成了第一个磁约束装置。他将这一形如面包圈的环形容器命名为托卡马克(tokamak)。托卡马克是“磁线圈圆环室”的俄文缩写,又称环流器。这是一个由封闭磁场组成的“容器”,像一个中空的面包圈,可用来约束电离了的等离子体。我们知道,一般物质到达10万℃时,原子中的电子就脱离了原子核的束缚,形成等离子体。等离子体是由带正电的原子核和带负电的电子组成的气体,整体是电中性的。在磁场中,它们的每个粒子都是显电性的,带电粒子会沿磁力线做螺旋式运动,所以等离子体就这样被约束在这种环形的磁场中。这种环形的磁场又叫磁瓶或磁笼,看不见,摸不着,也不接触有形的物体,因而也就不怕什么高温了,它可以把炙热的等离子体托举在空中。人们本来设想,有了“面包炉”,只需把氘、氚放入炉内加火烤制,把握好火候,能量就应该流出来。其实不然,人们接着遇到的麻烦是,在加热等离子体的过程中能量耗散严重,温度越高,耗散越大。一方面,高温下粒子的碰撞使等离子体的粒子会一步一步地横越磁力线,携带能量逃逸;另一方面,高温下的电磁辐射也要带走能量。这样,要想把氘、氚等离子体加热到所需的温度,不是件容易的事。另外,磁场和等离子体之间的边界会逐渐模糊,等离子体会从磁笼里钻出去,而且当约束等离子体的磁场一旦出现变形,就会变得极不稳定,造成磁笼断开或等离子体碰到聚变反应室的内壁上。
托卡马克中等离子体的束缚是靠纵场(环向场)线圈,产生环向磁场,约束等离子体,极向场控制等离子体的位置和形状,中心螺管也产生垂直场,形成环向高电压,激发等离子体,同时加热等离子体,也起到控制等离子体的作用。
几十年来,人们一直在研究和改进磁场的形态和性质,以达到长时间的等离子体的稳定约束;还要解决等离子体的加热方法和手段,以达到聚变所要求的温度;在此基础上,还要解决维持运转所耗费的能量大于输出能量的问题。每一次等离子体放电时间的延长,人们都为之兴奋;每一次温度的提高,人们都为之欢呼;每一次输出能量的提高,都意味着我们离聚变能的应用更近了一步。尽管取得了很大进步,但障碍还是没有克服。到目前为止,托卡马克装置都是脉冲式的,等离子体约束时间很短,大多以毫秒计算,个别可达到分钟级,还没有一台托卡马克装置实现长时间的稳态运行,而且在能量输出上也没有做到不赔本运转。
为了维持强大的约束磁场,电流的强度非常大,时间长了,线圈就要发热。从这个角度来说,常规托卡马克装置不可能长时间运转。为了解决这个问题,人们把最新的超导技术引入到托卡马克装置中,也许这是解决托卡马克稳态运转的有效手段之一。目前,法国、英国、俄罗斯和中国共有4个超导的托卡马克装置在运行,它们都只有纵向场线圈采用超导技术,属于部分超导。其中法国的超导托卡马克Tore?Supra体积较大,它是世界上第一个真正实现高参数准稳态运行的装置,在放电时间长达120秒的条件下,等离子体温度为2000万℃,中心粒子密度每立方米1.5×1019个。中国和韩国正在建造全超导的托卡马克装置,目标是实现托卡马克更长时间的稳态运行。
多年来,全世界共建造了上百个托卡马克装置,在改善磁场约束和等离子体加热上下足了工夫。人们对约束磁场研究有了重大进展,通过改变约束磁场的分布和位形,解决了等离子体粒子的侧向漂移问题。世界范围内掀起了托卡马克的研究热潮。美国1982年在普林斯顿大学建成的托卡马克聚变实验反应堆(TFTR),欧洲1983年6月在英国建成更大装置的欧洲联合环(JET),1985年建成JT-60,前苏联1982年建成超导磁体的T-15,它们后来在磁约束聚变研究中作出了决定性的贡献。特别是欧洲的JET已经实现了氘—氚的聚变反应。1991年11月,JET将含有14%的氚和86%的氘混合燃料加热到了3亿摄氏度,聚变能量约束时间达2秒。反应持续1分钟,产生了1018个聚变反应中子,聚变反应输出功率约1.8兆瓦。1997年9月22日创造了核聚变输出功率12.9兆瓦的新纪录。这一输出功率已达到当时输入功率的60%。不久输出功率又提高到16.1兆瓦。在托卡马克上最高输出与输入功率比已达1.25。
中国的核聚变研究也有较快的发展,西南物理研究院1984年建成中国环流器一号(HL-1),1995年建成中国环流器新一号。中国科学院等离子体物理研究所1995年建成超导装置HT-7。HT-7是前苏联无偿赠送给中国的一套纵向超导的托卡马克实验装置,经等离子体物理研究所的不断改进,它已成为一个庞大的实验系统。它包括HT-7超导托卡马克装置本体、大型超高真空系统、大型计算机控制和数据采集处理系统、大型高功率脉冲电源及其回路系统、全国规模最大的低温氦制冷系统、兆瓦级低杂波电流驱动和射频波加热系统以及数十种复杂的诊断测量系统。在十几次实验中,取得若干具有国际影响的重大科研成果。特别是在2003年3月31日,实验取得了重大突破,获得超过1分钟的等离子体放电,这是继法国之后第二个能产生分钟量级高温等离子体放电的托卡马克装置。在HT-7的基础上,等离子体物理研究所研制和设计了全超导托卡马克装置HT-7U(后来名字更改为EAST(Experimental Advanced Superconcting Tokamak))。
㈢ 人造太阳是什么装置。
ITER装置是一个能产生大规模核聚变反应的超导托克马克,俗称“人造太阳”。
上世纪50年代开始,以原子核的裂变反应为基础的核电站登上世界能源舞台,但是这种核电站存在核废料的处理、核辐射、核燃料铀的开采和提料难等问题。相对来说,核聚变具有无可比拟的优点:它的原料储量极其丰富,因其主要燃料是存在于海水之中的氘和氚。一升海水提取的氘能产生的聚变能源,相当于300升汽油。另外,聚变产物没有放射性。同时,由于聚变反应需要的条件比较高,一旦发生事故,造成反应的等离子体约束破裂,聚变反应便会终止。因此聚变燃料的保存运输、聚变电站的运行都比较安全。因此,聚变研究对于开发清洁能源,意义十分重大。此外,伴随着聚变研究带来的衍生和伴随技术,比如超导磁体技术、大功率电源技术、超高真空技术、超低温技术等,都会带动相关产业发展,给民众生活带来很大改变。核聚变如果在民用上能实现可控,将彻底改写人类的能源版图。
“目前的聚变研究,功率相对来说还是比较低的。未来我们想实现聚变的可行性,需要在更好的加热功率条件下,来验证延长等离子体存在时间的科学可行性。这个挑战十分巨大,因为聚变产生有一个物理学说叫劳逊判据,意思是要想产生聚变,就要使得等离子体的温度达到上亿度,这就是我们今后的科研攻关目标。”龚先祖说。
㈣ 中国的人造太阳
中国的人造太阳即“全超导托卡马克EAST核聚变实验装置”
据了解,EAST装置是中国耗时8年、耗资2亿元人民币自主设计、自主建造而成的。
记者在实验控制室看到,这个近似圆柱形的大型物体由特种无磁不锈钢建成,高约12米、直径约5米,据介绍其总重量达400吨。
李建刚研究员说,与国际同类实验装置相比,EAST是使用资金最少、建设速度最快、投入运行最早、运行后获得等离子放电最快的先进核聚变实验装置。
“这意味着人类在核聚能研究利用领域取得重大进步,也标志着中国在这一领域进入国际先进水平”,李建刚说。
人们认识热核聚变是从氢弹爆炸开始的。氢弹爆炸时释放出极大的能量,给人类带来的是灾难。而科学家们却希望发明一种装置,可以有效地控制“氢弹爆炸”的过程,让能量持续稳定的输出,以解决人类面临的能源短缺危机。
美、法等国在20世纪80年代中期发起了耗资46亿欧元的国际热核实验反应堆(ITER)计划,旨在建立世界上第一个受控热核聚变实验反应堆,为人类输送巨大的清洁能量。这一过程与太阳产生能量的过程类似,因此受控热核聚变实验装置也被俗称为“人造太阳”。
中国于2003年加入ITER计划。位于安徽合肥的中科院等离子体所是这个国际科技合作计划的国内主要承担单位,其研究建设的EAST装置稳定放电能力为创记录的1000秒,超过世界上所有正在建设的同类装置。
EAST大科学工程总经理万元熙教授说,与ITER相比,EAST在规模上小很多,但两者都是全超导非圆截面托卡马克,即两者的等离子体位形及主要的工程技术基础是相似的,而EAST至少比ITER早投入实验运行10至15年。因此,无论从人才培养和奠定工程技术及物理基础的角度上说,EAST都将为ITER计划做出重要的、实质性的贡献,并进而为人类开发和最终使用核聚变能做出重要贡献。
不过,万元熙研究员说,虽然“人造太阳”的奇观在实验室中初现,但离真正的商业运行还有相当长的距离,它所发出的电能在短时间内还不可能进入人们的家中。但他预测,根据目前世界各国的研究状况,这一梦想最快有可能在30-50年后实现。
万元熙说,未来的稳态运行的热核聚堆用于商业运行后,所产生的能量够人类用数亿年乃至数十亿年。从长远来看,核能将是继石油、煤和天然气之后的主要能源,人类将从“石油文明”走向“核能文明”。
名词解释
核聚变反应: 核聚变反应主要借助氢同位素。核聚变不会产生核裂变所出现的长期和高水平的核辐射,不产生核废料,当然也不产生温室气体,基本不污染环境。 氘-氚聚变 氢原子最容易实现的聚变反应是其同位素氘与氚的聚变。氘和氚聚变后,2个原子核结合成1个氦原子核,并放出1个中子和17.6兆电子伏特能量。每1升海水中含30毫克氘,30毫克氘聚变产生的能量相当于300升汽油。
托卡马克装置: 托卡马克是“磁线圈圆环室”的俄文缩写,又称环流器。这是一个由封闭磁场组成的“容器”,像一个中空的面包圈,可用来约束电离子的等离子体。 EAST 又称“实验型先进超导托卡马克”,是一台全超导托卡马克装置,可能成为世界上第一个可实现稳态运行、具有全超导磁体和主动冷却第一壁结构的托卡马克。该装置有真正意义的全超导和非圆截面特性,更有利科学家探索等离子体稳态先进运行模式。
㈤ 中国人造太阳正式诞生,不过这个“太阳”到底有什么用
ITER主要目的在于模拟太阳产生能量的核聚变过程,因此其核心装置“托卡马克”被称为“人造太阳”。
ITER是当前世界规模最大、耗时最长、影响最深远的国际大科学计划之一。ITER是当前世界规模最大、耗时最长、影响最深远的国际大科学计划之一。
根据协议,欧盟、中国、美国、日本、韩国、印度和俄罗斯共同资助ITER项目,其中欧盟承担约45%,其他6方各承担约9%,资助包括资金和实物两个部分。
(5)核聚变实验装置人造太阳资料扩展阅读
28日的安装启动仪式标志着ITER进入安装阶段,由此前接收成员国部件等前期筹备工作正式转换到组装工作。到2024年年底,ITER施工方将按照工作进度表接收和安装托克马克装置的各主要大型部件及辅助设施。
完成主要部件安装后,计划2024年年底到2025年年底开始进行冷测试调试工作,并在2025年12月实现第一束等离子体,这将标志着ITER由安装阶段转入运行阶段。