1. 继电保护中这个“备投”是什么意思
两路电源互为备用。
例如:当1号进线失压时,2号进线自动投入
2. 什么是备自投
备自投是备用电源自动投入使用装置的简称。当主电源故障,继电接触器控制系统的控制触头自动闭合,自动将蓄电池与应急照明电路接通。
一般有双电源自动转换开关,一备一用,一路出现问题,另外一路自动投入,有电网对电网模式, 有电网对发电机模式。
备自投的条件:
首先应该有备用电源或备用设备。其次,当工作母线电压下降时,由备自投跳开工作电源的断路器后才能投入备用电源或设备;
另外一种情况是工作电源部分系统故障,保护动作跳开工作电源的断路器后才投入备用电源或设备。第三个条件是备用电源的母线电压满足要求。
3. 国家电网有电的情况下如何转换到自发电装置上
冷切换,也叫做停电切换,不利用装置的话,用电设备会短时停止。采用接触器延时2.5S切换,95-100%的几率带负载切换成功,成本也比较低。快速切换器价格很高,一般MW级以下小负载用的少,当然主要还是看负载的重要程度哈
4. 双电源自动切换开关的CB级和PC级的区别
两者主要在转换结构模式、基础控制器、保护功能上面有区别。具体区别如下:
1、PC级ATS采用一体式转换结构,励磁驱动,简单可靠,动作时间快,一般100-200MS。触头为银合金,触头分离速度大,有专门设计的灭弧室。体积小,只有CB级的1/2.具有耐短时电流。
2、CB级ATS是由两台断路器为基础,由控制器控制带有机械连锁的电动传动机构来实现2路电源的自动转换。切换时间1-2s。
3、pc级有无短路保护功能,而cb级有短路保护功能。
(4)国家电网备用电源自动投切装置扩展阅读:
分类:
一、接触器类
1、此类电源切换系统以接触器为切换执行部件,切换功能用中间继电器或逻辑控制模块组成二次回路完成控制功能。
2、因为是非标产品,其组成元器件较多,产品质量受元器件、制造工艺制约,故障率较高,现已逐渐被新产品代替。
二、塑壳断路器类
1、此类电源切换系统以塑壳式断路器为切换执行部件,切换功能用ATS自动控制单元完成,有机械和电气连锁,功能完善,操作性能好,使用寿命高,组成元器件较少,安装方便。
2、该类属CB级转换开关电器,由两个断路器作为电流分断单元,并配备电流脱扣器 ,具备一定的保护能力,断路器的接通/分断能力比继电器高很多。
5. 电力系统中的“备自投装置”是什么什么原理有什么作用
备自投装置全称微机线路备自投保护装置一种保护装置。
核心部分采用高性能单片机,包括CPU模块、继电器模块、交流电源模块、人机对话模块等构成,具有抗干扰性强、稳定可靠、使用方便等优点。
其液晶数显屏和备自投面板上所带的按键使得操作简单方便,也可通过RS485通讯接口实现远程控制。
原理
装置采用交流不间断采样方式采集到信号后实时进行傅立叶法计算,能精确判断电源状态,并实施延时切换电源。
备自投具有在线运行状态监视功能,可观察各输入电气量、开关量、定值等信息,其有可靠的软硬件看门狗功能和事件记录功能。
产品在不同的电压等级如110kV、10kV、0.4kV系统的供配电回路中使用时需要设定不同的电气参数,在订货时必须注明。
作用
在选择备自投功能时则一定不可以投入低电压保护,以免冲突引起拒动或误动。
由于在现代电力系统中广泛使用了微机线路备自投保护装置,使得不间断供电的需求有了更加可靠的保证,在电力自动化的进程中发挥了不小的作用。
(5)国家电网备用电源自动投切装置扩展阅读
备自投装置的使用条件:
首先应该有备用电源或备用设备。
其次,当工作母线电压下降时,由备自投跳开工作电源的断路器后才能投入备用电源或设备;另外一种情况是工作电源部分系统故障,保护动作跳开工作电源的断路器后才投入备用电源或设备。
第三个条件是备用电源的母线电压满足要求。电压互感器应该安装在母线处。如果是双母线,都应该安装。在有的地方为了实现重合闸,在线路侧也安装电压互感器。
6. 国家电网公司继电保护培训教材的目录
前言
上册
第一章 专业基础理论
第一节 单相交流电路分析与计算
一、正弦交流电的基本概念
二、正弦交流电的相量表示法
三、单一元件的交流电路
四、RLC串并联交流电路
五、交流电路的功率及功率因数的提高
第二节 三相交流电路分析与计算
一、对称三相交流电源
二、三相交流电源的连接
三、三相交流电路分析
第三节 非正弦周期电流电路
一、非正弦周期信号
二、非正弦周期函数的分解
三、非正弦周期量的有效值、平均值及电路的平均功率
四、对称三相电路中的高次谐波
第四节 线性动态电路的时域分析
一、换路定律及初始值计算
二、RC串联电路的过渡过程
三、RL串联电路的过渡过程
四、一阶电路的三要素法
五、RL串联电路的正弦响应
第五节 电磁与磁路分析计算
一、磁场及基本物理量
二、铁磁物质的磁化
三、磁路及磁路定律
四、交流铁芯线圈
第六节 微机保护基础
一、简单逻辑元件介绍
二、微机保护装置硬件系统
三、微机保护算法介绍
第二章 电力系统运行及故障分析
第一节 电力系统正常运行时的电压、电流及功率传输
一、正常运行时的电流、K点电压
二、功率传输
三、电压降落
与电压损失
四、传输功率与电流、电压间的相量关系
五、测量阻抗
第二节 标幺制
一、标幺值
二、三相系统基准值选取
三、三相系统中标幺值计算特点
第三节 对称分量法应用
第四节 电力系统各元件序阻抗及其相应等值电路
一、同步发电机
二、变压器
三、输电线路
四、电抗器
五、异步电动机
六、综合负荷
第五节 电力系统横向短路故障分析
一、三相短路故障分析
二、两相短路故障分析
三、单相接地故障分析
四、两相接地短路故障分析
五、正序等效定则
第六节 三绕组自耦变压器接地中性点电流
一、自耦变电器中压侧接地故障
二、自耦变压器高压侧接地故障
第七节 电力系统纵向不对称故障分析
一、单相断线分析
二、两相断线分析
第八节 不对称短路故障时YN,d接线变压器两侧电流、电压关系
一、基本概念
二、YN,d11接线变压器d侧ab相短路
三、YN侧B相接地短路
四、YN侧AC相短路
第九节 电力系统稳定和电力系统振荡
一、电力系统稳定概念
二、提高电力系统暂态稳定水平的主要措施
三、电力系统振荡时电气量特点
第三章 输电线路保护及重合闸
第一节 零序电流方向保护
一、零序电流方向保护的基本原理
二、零序方向继电器的原理、实现方法、性能评述
三、零序方向继电器在非全相运行期间和在有串联补偿电容线路上的动作行为分析
四、零序电流和零序电压的获取
第二节 距离保护
一、距离保护的作用原理和时限特性
二、短路时保护安装处电压计算的一般公式及阻抗继电器的接线方式
三、过渡电阻产生的附加阻抗及对阻抗继电器工作的影响
四、阻抗继电器的工作电压
五、阻抗继电器的动作方程和动作特性
六、以正序电压为极化电压的阻抗继电器
七、方向阻抗继电器的暂态动作特性
八、工频变化量的阻抗继电器
九、分支电流(助增电流和外汲电流)对阻抗继电器工作的影响
十、交流失压对距离保护工作的影响以及断线闭锁原理
十一、系统振荡对距离保护的影响及振荡闭锁原理
十二、YN,d11接线变压器三角侧短路,星侧阻抗继电器的测量阻抗
十三、阻抗继电器在有串联补偿电容线路上发生短路时的动作行为分析及其对策
第三节 纵联保护
一、概述
二、闭锁式纵联方向保护
三、闭锁式纵联距离保护
四、超范围与欠范围允许式的纵联保护
五、光纤纵联电流差动保护
六、工频变化量方向继电器
七、基于暂态分量的能量积分方向元件
八、平行线路线间互感对纵联零序方向保护的影响
第四节 自动重合闸
一、自动重合闸的作用及应用
二、自动重合闸方式及动作过程
三、自动重合闸的起动方式
四、自动重合闸动作时间整定中应考虑的问题
五、双侧电源线路三相跳闸后的重合闸检查条件
六、重
合闸的前加速和后加速
七、重合闸的充电与闭锁
八、3/2接线方式对重合闸和断路器失灵保护的要求
九、220kV及以上电压等级同杆并架双回线路的按相自动重合闸方式
第五节 选相元件
一、概述
二、两相电流差突变量选相元件
三、工作电压突变量选相元件
四、比较零序电流与A相负序电流的相位结合阻抗元件动作行为的选相元件
五、比较零序电流与A相负序电流的相位结合阻抗元件动作行为的选相元件性能评述
六、低电压选相元件
第六节 过电压保护及远方跳闸保护装置
一、概述
二、超高压远距离输电线路产生过电压的机理
三、工频过电压保护和过电压起动远跳
四、远方跳闸保护装置
第七节 继电保护通道
一、纵联保护的载波通道及高频通道衰耗简介
二、继电保护专用收发信机
三、光纤通道与接口
参考文献
下册
第四章 元件保护
第一节 变压器保护
一、变压器的故障和保护配置
二、纵差动保护
三、变压器纵差动保护需要解决的问题
四、其他差动保护
五、复合电压闭锁的(方向)过电流保护
六、零序电流(方向)保护
七、阻抗保护
八、变压器过励磁保护
九、变压器中性点间隙保护和零序电压保护
十、非电量保护
第二节 母线保护
一、概述
二、母线差动保护
三、母联死区保护、母联失灵保护、母联充电保护、母联过流保护
四、非全相运行保护
五、断路器失灵保护
第三节 断路器保护
一、断路器保护装置的配置与应用范围
二、3/2接线方式的断路器失灵保护
三、3/2接线方式的自动重合闸
四、充电保护
五、死区保护
六、断路器三相不一致保护
七、瞬时跟跳回路
八、交流电压断线判别
九、跳闸位置异常告警
第四节 并联电抗器保护
一、并联电抗器的纵差保护和电流速断保护
二、并联电抗器匝间短路和单相接地短路保护
三、主电抗器的过负荷保护及过电流、零序电流后备保护
四、中性点电抗器的过电流保护、过负荷保护
五、干式空心并联电抗器的保护
第五节 并联电容器组保护
一、电容器组与断路器之间连接线、电容器组内部连线上的相间短路故障保护
二、电容器内部故障保护
三、多台电容器切除后的过电压保护
四、电容器组为双星形接线时常用中性线不平衡电流保护
五、电容器组的过负荷保护
六、电容器组的过电压保护
七、电容器组的低电压保护
八、其他保护
九、电容器组在系统运行中异常问题
参考文献
第五章 电力系统安全自动装置
第一节 备用电源自动投入装置
一、概述
二、对备用电源自动投入装置的要求
三、微机式备用电源自动投入装置
第二节 微机型自动按频率减负荷装置
一、概述
二、电力系统低频运行的危害
三、限制频率下降的措施
四、电力系统负荷的静态频率特性
五、电力系统频率动态特性
六、自动按频率减负荷装置
第三节 电力系统安全稳定控制装置
一、电力系统稳定控制的概念
二、电力系统稳定控制的三道防线
三、电力系统紧急控制的类型及其作用
四、分布式稳定控制装置
第四节 故障录波器及故障信息管理系统
一、故障录波器
二、故障信息管理系统概述
参考文献
第六章 二次回路
第一节 概述
第二节 二次回路的接线图
一、二次回路图纸的分类
二、二次回路的读图方法
三、二次回路标号
四、二次回路连接导线截面的选择
第三节 继电保护用电流互感器
一、电流互感器的一次参数
二、电流互感器的二次额定电流
三、电流互感器的额定输出容量
四、电流互感器的10%误差校核
五、电流互感器的其他参数
第四节 继电保护用电压互感器
……
第七章 继电保护整定计算基础
第八章 继电保护相关知识
附录 事故分析案例
7. 电力专业英语翻译:备用电源自投装置
备用电源自投装置:auto back-up power switching device
自投方式 automatic-switching mode
8. 继电保护,自动装置,直流电源装置都是属于二次设备吗
所谓二次设备,就是对一次设备进行控制、测量、监察、保护及调节的设备,它包括控制和信号器具、测量仪表、继电保护装置、自动装置、远动装置、操作电源及二次电缆等。
反应二次部分的图纸有原理与和接线图:原理图主要反映二次装置的工作原理(通常使用展开图);接线图主要用于安装维护。
控制回路:对断路器进行合、跳闸操作以及监视断路器位置状态的的电路。按监视回路完好性的方式不同分为灯光监视和音响监视两种。
中央信号:由事故信号和预告信号组成,主要通过跳闸及发信号的方式反映电力系统的故障与不正常,由灯光和音响两部分组成。
测量监视系统:主要由电流、电压变换装置和各种测量仪表等构成,其主要作用是通过对运行参数的测量来监视一次设备的运行情况,以便运行人员调整、控制运行状态、分析处理运行中的问题。
同期回路:电力系统中的发电机并列运行的条件电压幅值相等;频率相同;相位差为零,为此在电力系统的发电厂与变电所中均有同期装置,以进行并列操作
操作电源:在发电厂、变电站中为二次设备提供工作电能的电源。现常用的有:
(1)蓄电池组直流系统:可靠性高,容量大,电压平稳,在系统中普遍应用,但附属设备多,维护工作量大。
(2)整流直流系统:利用变换装置将交流变为直流供二次部分使用,根据工作原理分为电容储能整流系统及复式直流系统,因可靠性较差,只适用于中、小型变电所中。
继电保护的作用
反映电力系统故障,自动、可靠、快速而有选择地通过断路器将故障元件从系统中切除,保证无故障部分继续运行,这是继电保护的首要任务
反映电力系统不正常工作状态,是继电保护的另一任务,此保护一般作用于信号,有时也作用于跳闸,但要带有一定的延时。
继电保护的基本构成
测量:反映被保护元件运行参数的变化,并与保护的整定值进行比较,若达到整定值,则向逻辑部分发出信号;
逻辑部分:对测量部分传送来的信号进行综合判断,决定保护装置是否动作
执行部分:根据保护装置的性质与作用,向断路器发出跳闸脉冲或发出信号。
电力系统中常用的保护分析:
过电流保护:利用短路时电流增大的现象实现的保护。为保证选择性与快速性,通常设为三段,Ⅰ段为速断,只保护线路的一部分;Ⅱ段保护线路全长,但要加一时间延时;Ⅲ段作为后备保护。在双侧有电源的线路中通常加入功率方向来保证动作的可靠性。其缺点是受系统运行方式以及短路类型的影响较大,一般应用于110KV以下线路。
低电压保护:电力系统短路时另一个现象是电压降低,由此构成的继电保护就称为低电压保护。由于电压信号一般取自母线,所以低电压保护往往与别的保护配合使用,如低压闭锁的过流保护。
距离保护:线路正常运行时,电压与电流的比值(阻抗)较大,而系统发生短路时,此比值将降低,利用电压与电流比值降低而动作的保护,称为距离保护(或阻抗保护),该保护的优点是受系统运行方式影响较小,其缺点是不能全厂速动,通常也设为三段。一般作为110KV线路的主保护以及220KV线路的后备保护
差动保护:线路正常运行时,流过线路两端的电流方向相反,而线路内部短路时电流的方向相同,利用此原理构成的保护称为差动保护。其优点是不受系统运行方式及短路类型的影响,主要作为主要设备及重要线路的保护,有纵差动和横差动之分。
高频保护:利用高频信号比较线路两端的电气量的差动保护称为高频保护,根据比较的信号分为方向高频保护(功率方向)及相差高频保护(电流相位)。作为220KV线路的主保护以及500KV线路的后备保护。
光纤差动:其造价高,一般作为500KV线路的主保护。
为避免保护故障造成的影响,一般电力系统的元件都有多重保护,分为:
主保护:能按要求的速度切除被保护线路(或元件)范围内的某种短路故障
辅助保护:一般用于弥补主保护某些性能的不足而设
后备保护:当主保护或断路器拒绝动作时起作用的继电保护,有近后备和远后备之分
继电保护技术发展历史过程中经历了四个时期:(1)电磁型:(2)晶体管型:(3)集成电路型:(4)微机型:
微机保护装置的特点:
维护调试方便
可靠性高
动作正确率高
易于获得各种附加功能
保护性能易得到改善
使用方便灵活
具有远方监控特性
我国微机保护发展概况
1972年世界上第一台微机保护样机——PRODAR-70投入试运行,1978~1980年前后我国在一些高校(华北电力大学、华中理工大学等)展开了微机保护的研究,我国首台微机保护样机MDP-1(距离保护)投入试运行,第二代“11”型微机保护装置于1990年投入试运行,其代表产品WXH-11和WXB-11,第三代产品是CS系列,如CSL-101、CST-200等。国家电力公司自动化研究院的LFP-900系列突破了我国快速保护的现状。
微机保护装置的硬件结构
信号输入电路:对开关量和模拟量信号进行处理。
微机系统:由单片机和扩展芯片构成的控制系统,以完成数值测量、计算、逻辑运算、控制和记录等智能化任务,此外微机保护还具有远方功能。
人机接口部分:如键盘、显示器、打印机等,完成整定值的输入、工作方式的变更、系统状态的检查等
输出通道:对控制对象实现控制操作
电源
为了提高供电可靠性、保证电能质量、提高电能生产和分配的经济性、减轻运行人员的劳动强度,电力系统中还广泛装设有自动装置。
电力系统自动化一般有两方面的内容:
(1)常规自动装置:重合闸装置、备用电源自动投入装置、发电机的自动励磁调节装置、自动按频率减负荷装置、自动准同期装置;
(2)电力系统调度自动化:即电力系统的实时调度,对电力系统的运行状态实时监视和控制,以提高系统安全、经济运行水平,提高电能质量。主要通过远动装置、利用四遥(遥测、遥控、遥信、遥调)技术实现。
传统变电站存在的问题:安全性、可靠性不能满足现代电力系统高可靠性的要求;供电质量缺乏科学的保证;占地面积大;不是应电力系统快速计算和实时控制的要求;维护工作量大
变电站综合自动化是将变电站的二次设备(包括测量、信号、继电保护、自动装置、远动装置等)经功能组合与优化,利用先进的计算机技术、现代电子技术、通信技术、信号处理技术,实现对全变电站的主要设备和输、配电线路的自动监视、测量、自动控制和微机保护,以及与调度通信等综合性的自动化功能。是自动化技术、计算机技术与通信技术在变电站领域的综合应用。因此变电站综合自动化系统具有功能综合化、结构微机化、操作监视屏幕化、运行管理职能化等特征。
9. 为什么发电厂要装设备用电源自投装置
发电厂或重要的抄负荷一般都有两套或三套独立的电源装置。在用的电源通常称为工作电源,其他的称为备用电源。当工作电源失去后,应及时的将备用电源投入,以保证负荷的供电。但是要人为操作时间长,还需要有人值守。备用电源自动投入装置的作用是不需要人为操作,当工作电源失去后,自动将备用电源投入运行,保证负荷的供电。
10. 低压备用电源自投互投工作原理是什么
自投——自动投切,一般是对备用电源而言,常用电源无电时,备用电源自动投入(当然,常规电源也要先自动切断);
互投——切换,一般指自备发电机电源与市电互相切换。
自投的条件:首先应该有备用电源或备用设备。其次,当工作母线电压下降时,由备自投跳开工作电源的断路器后才能投入备用电源或设备;另外一种情况是工作电源部分系统故障,保护动作跳开工作电源的断路器后才投入备用电源或设备。第三个条件是备用电源的母线电压满足要求。
互投的条件:当工作电源发生故障或者断电时,由自动转换装置介入备用电源。
进线自投:两个进线开关,互为备用,当任一段失压无流后,跳失压段开关,合有压段开关;
母联备自投:两个进线开关,一个分段开关;一般两个进线开关同时工作,任一段失压无流后,跳失压段开关,和分段开关。