导航:首页 > 装置知识 > 传动装置的机械间隙会造成什么误差

传动装置的机械间隙会造成什么误差

发布时间:2021-10-17 18:03:44

『壹』 分析影响机械传动装置传递运动平稳性因素有哪些

(1)结构简单、操作抄方便、自动化程度高数控机床需要根据数控系统的指令,自动完成对进给速度、主轴转速、刀具运动轨迹以及其他机床辅助功能(如自动换刀、自动冷却等)的控制。

(2)高的静、动刚度及良好的抗振性能。

(3)采用高效、高精度无间隙传动装置数控机床进行的是高速、高精度加工。

(1)传动装置的机械间隙会造成什么误差扩展阅读

(1)齿廓偏差:为了齿轮质量分等,只需检验齿廓总偏差即可。

(2)切向综合偏差:主要反映由刀具好分度蜗杆的安装及制造误差所造成的,齿轮上齿形、齿距等各项短周期综合误差,是综合性指标。

(3)一齿径向综合误差:在齿轮与测量齿轮双面啮合一整圈时,对应一个齿距的径向综合偏差值。

(4)单个齿距偏差:单个齿距精度的检测,常用两种装置,一种是齿距比较仪,另一种是角度分度仪。沿齿轮圆周上同侧齿面间的实际齿距与理论齿距做比较测量。

(5)基圆齿距偏差:由于单个齿距PT与基圆齿距pb有固定关系,故可用基圆齿距偏差做检测项目。基圆齿距偏差时在沿基圆切平面上测量,与齿轮轴线无关。

『贰』 机械设备零件制造误差的产生原因有哪些

机械零件是在由机床、刀具、夹具和工件组成的工艺系统内完成的,零件表面的几何尺寸、几何形状和表面之间的相互位置关系取决于工艺系统间的相对运动关系。由于在零件制造过程中,机床、夹具、刀具的制造误差及磨损、工件的装夹误差、测量误差、工艺系统的调整误差以及加工中的各种力和热所引起的误差等,最终导致机械零件成品误差的产生。下面分别介绍下产生误差的常见原因:
一、工艺原理误差
工艺原理误差是指采用了近似的刀刃轮廓或近似的传动关系进行而产生的误差,常见的工艺如下:
(1)渐开线齿轮用的齿轮滚刀,为使滚刀制造方便,采用了阿基米德基本蜗杆或法向直廓基本蜗杆代替渐开线基本蜗杆,使齿轮渐开线齿形产生了误差。
(2)车削模数蜗杆时由于蜗杆的螺距等于蜗轮的周节,但是车床的配换齿轮的齿数是有限的,这就将引起刀具对于工件成形运动的不准确,造成螺距误差。
二、工艺几何误差
由于工艺系统中各组成环节的实际几何参数和位置,相对于理想几何参数和位置发生偏离而引起的误差,统称为工艺系统几何误差。工艺系统几何误差只与工艺系统各环节的几何要素有关。
三、工艺受力误差
工艺系统在切削力、夹紧力、重力和惯性力等作用下会产生变形,从而破坏了已调整好的工艺系统各组成部分的相互位置关系,导致误差的产生并影响稳定性。
四、工艺受热误差
由于受切削热、摩擦热以及工作场地周围热源的影响,工艺系统的温度会产生复杂的变化。在各种热源的作用下,工艺系统会发生变形,导致改变系统中各组成部分的正确相对位置,导致误差的产生。
五、工艺应力误差
内应力是工件自身的误差因素。工件冷热处理后会产生一定的内应力。通常情况下内应力处于平衡状态,但对具有内应力的工件进行切削时,工件原有的内应力平衡状态被破坏,从而使工件产生变形。
六、工艺测量误差
在工序调整及工艺过程中测量工件时,由于测量方法、量具精度等因素对测量结果准确性的影响而产生的误差,统称为测量误差。
七、切削油品误差
切削油是金属切削工艺必须采用的一种介质,在加工过程中主要起到润滑、冷却、清洗等作用。当使用菜籽油、机械油及再生油等作为切削油使用时,可能会引起刀具磨损、切削精度差等问题导致误差,并且会因其稳定性不达标而对设备、人体、环境等产生危害。

『叁』 滚珠丝杠螺母副传动时的正反向间隙会造成哪些影响

如果没有光栅尺,非闭环系统,会造成振动大,噪声大,并且会影响定位精度,并会进一步劣化;
如果有光栅尺,闭环系统,会造成振动大,噪声大,并且可能振动会非常严重,因为间隙造成丝杠行走误差,实际行走位置与光栅尺读书不一致的话,在小的范围内可能会反复纠正,从而造成振动更加严重。

『肆』 机械加工产生误差主要原因有哪几点

机械加工精度通常包括尺寸精度、形状精度和位置精度等方面的内容,根据我司多年回的加工经验总结,机答械加工产生误差主要原因有下面10点:
(1)主轴回转误差,机床主轴跳动精度带来一定程度的影响。
(2)导轨误差,机床中导轨精度而导致工件形状的误差。
(3)传动链的误差,包括齿轮、螺母、蜗杆、丝杆等传动元件。影响工件表面加工精度的误差因素中,主要因素就是机床的传动链误差。
(4)刀具、夹具的误差,刀具种类的不同,对于加工精度的影响程度也不同。
(5)切削过程中受力点位置变化引起的,引起系统变形的差异,使被加工表面产生形状误差。
(6)切削力大小变化引起的加工误差。
(7)工艺系统受热变形导致的误差,机械加工过程中,工艺系统会在各种热源的作用下产生一定的热变形。
(8)机床热变形。
(9)刀具热变形。
(10)工件热变形,工件热变形主要是由切削热所导致的。

『伍』 机械加工有哪些常见误差

1、主轴回转误差。主轴回转误差是指主轴各瞬间的实际回转轴线相对其平均回转轴线的变动量。产生主轴径向回转误差的主要原因有:主轴几段轴颈的同轴度误差、轴承本身的各种误差、轴承之间的同轴度误差、主轴挠度等。
2、导轨误差。导轨是机床上确定各机床部件相对位置关系的基准,也是机床运动的基准。导轨的不均匀磨损和安装质量,也是造成导轨误差的重要因素。
3、传动链误差。传动链的传动误差是指内联系的传动链中首末两端传动元件之间相对运动的误差。传动误差是由传动链中各组成环节的制造和装配误差以及使用过程中的磨损所引起。
4、刀具的几何误差。任何刀具在切削过程中,都不可避免要产生磨损,并由此引起工件尺寸和形状的改变。
5、定位误差。一是基准不重合误差。在零件图上用来确定某一表面尺寸、位置所依据的基准称为设计基准。在工序图上用来确定本工序被加工表面加工后的尺寸、位置所依据的基准称为工序基准。在机床上对工件进行加工时,需选择工件上若干几何要素作为机械加工时的定位基准,如果所选用的定位基准与设计基准不重合,就会产生基准不重合误差。二是定位副制造不准确误差。
6、工艺系统受力变形产生的误差。一是工件刚度。工艺系统中如果工件刚度相对于机床、刀具、夹具来说比较低,在切削力的作用下,工件由于刚度不足而引起的变形对加工精度的影响就比较大。二是刀具刚度。外圆车刀在加工表面法线方向上的刚度很大,其变形可以忽略不计。镗直径较小的内孔,刀杆刚度很差,刀杆受力变形对孔加工精度就有很大影响。三是机床部件刚度。机床部件由许多零件组成,机床部件刚度迄今尚无合适的简易计算方法,目前主要还是用实验方法来测定机床部件刚度。

『陆』 齿轮齿条传送磨损后间隙增大会有什么影响

床身上的齿轮和小车上的齿条在安装时较难保证其齿侧的间隙,而床身上轨道的加工和安装误差容易导致齿轮的受力不均,造成齿的局部磨损;长期运行会导致轨道、车轮或齿轮齿条的严重磨损;在锯切钢管时小车的弹跳等都会破坏齿轮齿条的正常啮合关系;如果齿轮齿条磨损严重,就会导致齿侧的间隙过大,当小车往复运动时会产生过大的冲击;轨道、车轮磨损严重会使小车下移,导致齿侧间隙变小,从而破坏齿面的润滑,造成齿面过早失效;磨损严重时可使齿轮卡死,影响正常生产。确定的位置,并缓解启动和制动时对齿的冲击。
固定齿轮浮动齿条传动这种传动形式,齿轮固定在床身上,齿条与小车采用浮动连接,即运动方向由定位块定位,而齿条在齿轮径向可相对移动。弹簧的作用是将齿条以一定的预紧力压在齿条导向架,导向架上的导向轮,对齿条进行上下左右方向的定位,以确保齿轮齿条正确的啮合关系。这种传动装置因齿条与小车非刚性接触,故锯切的振动不会波及到齿条,安装时齿侧间隙容易保证。轨道及车轮的磨损不影响正常的啮合。但近3m的齿条需57个齿条导架支撑和导向,而各导向架又独立地安装在床身上,故安装精度较难保证。由于小车往复工作,齿条与导向架之间的间断接触使得其间的冲撞经常发生,再加上冷却水的冲刷及锯屑的影响,致使导向架的导向轮频繁损坏,失去导向作用而影响正常工作。

『柒』 机械零件的检测与误差原因解析

对压缩机单螺杆专用加工机床的介绍更新时间

摘要:本文从四个方面介绍了国内现有单螺杆加工机床的布局和结构,并把优缺点一一列举出来,由于压缩机生产厂的单螺杆加工机床和机床资料对外保密,以上介绍难免有片面、不妥之处,因此仅供单螺杆压缩机生产厂参考。
一、介绍机床的布局
压缩机排气量的大小决定了星轮、螺杆直径的大小和啮合中心距的大小,因此螺杆直径的不同,机床的主轴与刀具的回转中心也不同。为满足加工不同直径的螺杆,目前国内单螺杆加工机床的布局大致有以下几种方案。
第一种:机床的主轴与刀具回转中心的中心距为固定式
机床的主轴与刀具回转中心的中心距为固定式,中心距不可调整。加工几种直径的螺杆就需要几种中心距规格不同的机床。
优点:机床的结构简单。
缺点:每种机床只能加工一种规格的螺杆,当市场上某种规格的压缩机螺杆需要量大时,造成一台机床加工,其他机床闲置。
第二种:机床的主轴箱为可回转式
机床可根据加工螺杆直径的大小在加工前把主轴箱旋转一个角度。这种主轴箱能够回转的机床是对上述第一种机床在使用方法上的改进,与第一种机床的结构基本相同。
优点:机床的结构简单,能适应多种规格螺杆的加工。
缺点1:主轴箱旋转后主轴回转中心线与刀具回转中心线间的距离不易精确测量。
缺点2:主轴箱旋转后主轴前端面与刀具的回转中心线间的距离减少,因此加工较大直径的螺杆受到限制。
第三种:机床的主轴箱为横向移动式
主轴箱底部与底座之间布置有矩形滑动导轨,主轴箱移动的方向垂直于主轴回转中心线并垂直于刀具回转中心线。主轴箱的动力通过花键轴传给底座内的刀具进给机构。
根据加工螺杆直径的大小,在加工前用手轮丝杠进给机构把主轴箱移动到适当位置,然后用螺钉将主轴箱固定在底座上。主轴箱的移动距离可用光栅尺检测,位置误差±0.005mm。
采用主轴箱可横向移动的一个机床就可以加工直径φ95~φ385mm之间任何一种规格的螺杆。
由于加工φ95~φ385mm直径的螺杆,造成主轴前端面与刀具回转中心线间的距离差值过大,因此在实际应用时设计成两种规格的机床,一个机床加工φ95~φ205mm直径的螺杆,另一个机床加工φ180~φ385mm直径的螺杆。
优点:机床能适应多种规格螺杆的加工,每种规格的螺杆不需要配备相应的加工机床。
缺点:机床的结构和机床的装配较前二种机床复杂,机床的造价也较前二种机床高。
二、介绍机床的主轴结构
机床主轴箱的水平主轴和底座上的立式的主轴精度的高低决定了被加工螺杆的精度,同时螺杆在压缩机中以几千转的速度高速旋转时,精度较差的螺杆会使压缩机产生发热、振动、效率低、磨损快等现象。
国内目前现有的单螺杆加工机床主轴结构大致有以下两种方案。
第一种:轴承径向游隙不可调的主轴结构
主轴前轴承采用1个双列圆柱滚子轴承和两个推力球轴承组合,该主轴使用双列圆柱滚子轴承承受径向切削力,使用两个推力球轴承承受轴向切削力。
主轴后轴承一般采用1个双列圆柱滚子轴承或采用1个向心球轴承。
这种主轴结构的优点:主轴的加工和装配简单,造价较低。
缺点1:由于主轴轴承的径向游隙不可调整,所以主轴精度较差。虽然可以利用轴承的内径和轴径的过盈配合来消除轴承的径向游隙,但每个轴承的内径和径向游隙不是一个固定值,因此设计和加工时很难给准轴径与轴承内径的配合公差。
缺点2:在市场上很难买到国产或进口的C、D级或P4、P5级的推力球轴承,机床生产厂常用普通级轴承替代使用,此举也影响了主轴精度的提高。
轴承径向游隙不可调的主轴结构适用于一般精度的普通机床,不适用于对主轴精度要求较高的机床。
第二种:轴承径向游隙可调的主轴结构
主轴前轴承采用一个P4级圆锥孔的双列圆柱滚子轴承和1个P4级的双列向心推力球轴承组合。该主轴使用圆锥孔的双列圆柱滚子轴承承受径向切削力,使用双列向心推力球轴承承受轴向切削力和部分径向切削力。
主轴后轴承一般采用1个P5级圆锥孔的双列圆柱滚子轴承。
圆锥孔双列圆柱滚子轴承的内圈和配合轴径均为1:12圆锥,用圆螺母锁紧轴承则使轴承在轴向产生一个位移并使轴承的内圈膨胀,从而达到减少或消除轴承径向游隙的目的。
这种主轴结构的优点:主轴精度较高。在主轴前端面φ230mm直径上测量主轴的端面跳动值为0.010mm。在主轴前端φ230mm外圆上测量主轴的径向跳动值为0.005mm。第二种结构的主轴精度比第一种主轴精度提高50%左右。
这种主轴结构的缺点:
主轴的加工工艺较复杂,主轴的装配也需要有经验的工人操作才能使主轴精度达到理想数值。
三、刀具进给深度的控制
不同直径的螺杆需要加工螺旋槽的深度也不同,螺旋槽的深度从几十毫米到一百多毫米不等,刀具进给机构大约需要旋转进刀几千圈才能完成一个螺杆零件的加工。
由于刀具进给机构在刀具旋转的同时还要完成进刀动作,所以一些在普通机床上常用的机械、电气控制切深的方法都不适用于单螺杆加工机床。
单螺杆加工机床的刀具进给机构采用以下不同的方法都可以达到控制进刀深度的目的。
第一种:摩擦离合器和电气开关控制刀具进给深度
它的控制原理是刀具切深增大时刀具进给机构的负载扭距增大,使刀具进给机构传动链中的摩擦离合器打滑,一个机械连杆机构触发电气开关并发出声、光信号提示操作者,此时操作者人工操作断开刀具进给机构的动力。
这种控制方法的优点是:控制方法简单及零件加工和操作不受突然断电的影响。
缺点是:加工不同直径的螺杆需要调整摩擦离合器压紧碟簧的预紧力。
由于每个螺杆材质的密度、硬度存在细微差异及刀具锋利程度也存在差异,因此使这种控制方法的精度不太准确,可能导致螺杆螺旋槽的深度公差过大。
第二种:用电磁离合器、编码器组合控制刀具进给深度
刀具进给系统中,装有电磁离合器及一对用于检测刀具转动圈数的测速齿轮和一个编码器。

结论:本文从四个方面介绍了国内现有单螺杆加工机床的布局和结构,并把优缺点一一列举出来,由于压缩机生产厂的单螺杆加工机床和机床资料对外保密,以上介绍难免有片面、不妥之处,因此仅供单螺杆压缩机生产厂参考。

近年来,PLC在工业自动控制领域应用愈来愈广,它在控制性能、组机周期和硬件成本等方面所表现出的综合优势是其它工控产品难以比拟的。随着PLC技术的发展, 它在位置控制、过程控制、数据处理等方面的应用也越来越多。在机床的实际设计和生产过程中,为了提高数控机床加工的精度,对其定位控制装置的选择就显得尤为重要。永宏FBs系列PLC的NC定位功能较其它PLC更精准,且程序的设计和调试相当方便。本文提出的是如何应用永宏PLC的NC定位控制实现机床数控系统控制功能的方法来满足控制要求,在实际运行中是切实可行的。整机控制系统具有程序设计思路清晰、硬件电路简单实用、可靠性高、抗干扰能力强,具有良好的性能价格比等显著优点,其软硬件的设计思路可供工矿企业的相关数控机床设计改造借鉴。

2 数控机床组成结构及工作过程

本例数控机床由输入、输出装置、数控装置、可编程控制器、伺服系统、检测反馈装置和机床主机等组成,如图1所示。

图1 数控机床组成机构图

输入装置可将不同加工信息传递于计算机。在数控机床产生的初期,输入装置为穿孔纸带,现已趋于淘汰;目前,使用键盘、磁盘等,大大方便了信息输入工作。输出指输出内部工作参数(含机床正常、理想工作状态下的原始参数,故障诊断参数等),一般在机床刚工作状态需输出这些参数作记录保存,待工作一段时间后,再将输出与原始资料作比较、对照,可帮助判断机床工作是否维持正常。数控装置是数控机床的核心与主导,完成所有加工数据的处理、计算工作,最终实现数控机床各功能的指挥工作。它包含微计算机的电路,各种接口电路、CRT显示器等硬件及相应的软件。可编程控制器对主轴单元实现控制,将程序中的转速指令进行处理而控制主轴转速;管理刀库,进行自动刀具交换、选刀方式、刀具累计使用次数、刀具剩余寿命及刀具刃磨次数等管理;控制主轴正反转和停止、准停、切削液开关、卡盘夹紧松开、机械手取送刀等动作;还对机床外部开关(行程开关、压力开关、温控开关等)进行控制;对输出信号(刀库、机械手、回转工作台等)进行控制。检测反馈装置由检测元件和相应的电路组成,主要是检测速度和位移,并将信息反馈于数控装置,实现闭环控制以保证数控机床加工精度。数控机床的工作过程如图2所示。

图2 数控机床的工作过程框图

数控加工的准备过程较复杂,内容多,含对零件的结构认识、工艺分析、工艺方案的制订、加工程序编制、选用工装及使用方法等。机床的调整主要包括刀具命名、调入刀库、工件安装、对刀、测量刀位、机床各部位状态等多项工作内容。程序调试主要是对程序本身的逻辑问题及其设计合理性进行检查和调整。试切加工则是对零件加工设计方案进行动态下的考察,而整个过程均需在前一步实现后的结果评价后再作后一步工作。试切成功后方可对零件进行正式加工,并对加工后的零件进行结果检测。前三步工作均为待机时间,为提高工作效率,希望待机时间越短越好,越有利于机床合理使用。该项指标直接影响对机床利用率的评价(即机床实动率)。

3 机床数控系统需要解决的几个问题

机床是由机械和电气两部分组成,在设计总体方案时应从机电两方面来考虑机床各种功能的实施方案,数控机床的机械要求和数控系统的功能都很复杂,所以更应机电沟通,扬长避短。机床控制系统选件、装配、程序编制及操作都应该比较合理,精度和稳定性都必须满足使用要求。同时为便于调试和检修,各项操作均设手动功能,如手动各轴快慢移动、主轴高低速旋转、切削液及润滑开关等。PLC按照逻辑条件进行顺序动作或按照时序动作,另外还有与顺序、时序无关的按照逻辑关系进行联锁保护动作的控制,PLC发展成了取代继电器线路和进行顺序控制的主要产品,在机床的电气控制中应用也比较普遍。

在实际控制中如何既能提高定位速度,同时又能保证定位精度是一项需要认真考虑并切实加以解决的问题。精度是机床必须保证的一项性能指标。位置伺服控制系统的位置精度在很大程度上决定了数控机床的加工精度。因此位置精度是一个极为重要的指标。为了保证有足够的位置精度,一方面是正确选择系统中开环放大倍数的大小,另一方面是对位置检测元件提出精度的要求。因为在闭环控制系统中,对于检测元件本身的误差和被检测量的偏差是很难区分出来的,反馈检测元件的精度对系统的精度常常起着决定性的作用。高精度的控制系统必须有高精度的检测元件作为保证。当现场条件发生变化时,系统的某些控制参数必须能作相应的修改,为满足生产的连续性,要求对控制系统可变参数的修改应在线进行。尽管使用编程器可以方便快速地改变原设定参数,但编程器一般不能交现场操作人员使用;所以,应考虑开发其他简便有效的方法实现PLC的可变控制参数的在线修改。另外为了防止电压过高损坏PLC,电源输入端加上压敏电阻。为了防止过热, PLC不许安装在变压器等发热元件的正上方,变频器与PLC、伺服驱动器等保持一定距离。在元件间留有适当的空隙,以便散热,并且在配电箱上安装风扇降温。此外,为保证控制系统的安全与稳定运行,还应解决控制系统的安全保护问题,如系统的行程保护、故障元件的自动检测等。

4 永宏FBs系列PLC的NC机床定位伺服控制系统分析

数控机床是一种高精度、高效率的自动化设备,提高数控机床的可靠性就显得尤为重要。可靠度是评价可靠性的主要定量指标之一,其定义为:产品在规定条件下和规定时间内,完成规定功能的概率。对数控机床来说,这里的功能主要指数控机床的使用功能,例如数控机床的各种机能,伺服性能等。数控机床的功能部件对机床的功能扩展和性能的提升起着极为重要的作用,因此,它不同于一般配套件和附件的选用,不仅须与数控机床的整体结构谐和协调,融入整机系统具有最佳的匹配性能,而且还能很好地彰显出该数控机床的个性化特征。用于高速化的数控系统不能仅是提高数据处理能力,而是应具备热误差补偿单元以及能实现速度前瞻控制、位置环前馈控制和加减速平稳控制等先进控制技术的功能。所以必须选择稳定可靠的控制单元才能保证数控机床正常高效运行。

鉴于以上各项要求,笔者采用台湾永宏电机股份有限公司的FBs-44MN PLC作为该机床控制主单元,该型机具有较高的性价比,体积小,使用起来非常方便,接线简捷。其编程软件WinProladder有梯形图大师之称,易学易用且功能强大,编辑、监视、除错等操作非常顺手,按键、鼠标并用及在线即时指令功能查询与操作指引,使编辑、输入效率倍增。同时配以人机界面进行程序参数修改、设定以及运行状态显示监控,可编程设置人机界面的内容。该控制系统具有可靠性高,价格便宜,结构紧凑等特点,非常适合机床的控制要求,具体控制思路如图3所示。

图3 采用永宏PLC FBs-44MN 的NC 机床定位电气控制系统图

可编程逻辑控制器是该机床各项功能的逻辑控制中心,集成于数控系统中,主要是指控制软件的集成化,而PLC硬件则在规模较大的系统中往往采取分布式结构。由图3可以看出,系统控制中心采用永宏PLC FBs-44MN控制,并配以人机界面进行程序参数修改、设定,以及运行状态显示监控,可编程设置人机界面的内容。三轴均为全数字交流伺服系统,各轴伺服电机通过连轴器带动滚珠丝杠,以移动配有直线导轨的工作台和主轴铣头,其定位准确,速度快。主轴铣头由变频器控制,根据刀具及工件和进给量,来设置主轴合理的转速,并在程序中设定它的启动停止。各轴均设二端极限传感器和原点传感器,冷却和润滑也都有异常检测,在报警灯和人机界面处显示报警信息由光栅、感应同步器等位置检测装置测得的实际位置反馈信号,随时与给定值进行比较,将两者的差值放大和变换,驱动执行机构,以给定的速度向着消除偏差的方向运动,直到给定位置与反馈的实际位置的差值等于零为止。闭环进给系统在结构上比开环进给系统复杂,成本也高,对环境室温要求严。设计和调试都比开环系统难。但是可以获得比开环进给系统更高的精度,更快的速度,驱动功率更大的特性指标。早期使用一般电机作为定位控制,由于速度不快、或者精度要求不高,所以足够应对所需场合;当机械运转为了获取效率而将速度加快时,当产品质量、精度要求越来越高时,电机停止位置的控制就不是一般电机所能达到的了。解决这一问题的最佳方法是采用NC定位控制配合步进或伺服电机作定位控制。但在过去,由于它的价格很高,而限制了它使用的普遍性,近年来由于技术的发展及成本的降低,其价位已被用户所接受,使用数量也越来越多。为配合这一趋势,永宏PLC FBs系列将目前市面上专用的NC定位控制器功能整合在PLC内部SoC芯片内,除了免掉PLC与专用NC 定位控制器之间复杂的数据交换与连结程序外,更大幅降低整体成本,为用户提供一种价廉物美、简单方便的PLC整合NC定位控制的方案。永宏PLC FBs-44MN内部的SoC芯片含有多轴高速脉冲输出以及高速硬件计数器,并且提供简易使用和设计的定位程序编辑,对于这方面的应用,更是如虎添翼、如鱼得水、得心应手了。PLC结合伺服驱动器所构成的NC闭环回路控制系统中,PLC负责发送高速脉冲命令给伺服驱动器,除了装在伺服电机的位移检测信号直接反馈到伺服驱动器外,外加位移检测器装在传动机构之后,真正反映实际位移量,并将此信号反馈到PLC 内部的高速硬件计数器,这样就可作更精确的控制,并且可避免上述半闭环回路的缺点。永宏PLC FBs系列的定位功能将市面上专用NC定位控制器整合在PLC内,使PLC与NC控制器能共享相同的数据区,而不需要作两个系统之间的数据交换与同步控制等复杂的工作,但仍可用一般常用的NC 定位控制指令(例如DRV、SPD…等)。PLC控制4轴的定位工作,并可作多轴同动控制,除了提供点对点的定位速度控制,还提供了各轴间直线插补功能。当系统应用超过4轴时还可利用永宏PLC的CPU LINK功能达到更多的定位运动控制。数控机床对位置系统要求的伺服性能包括:定位速度和轮廓切削进给速度;定位精度和轮廓切削精度;精加工的表面粗糙度;在外界干扰下的稳定性。这些要求主要取决于伺服系统的静态、动态特性。对闭环系统来说,总希望系统有较高的动态精度,即当系统有一个较小的位置误差时,机床移动部件会迅速反应。在数控机床的加工中,伺服系统为了同时满足高速快移和单步点动,要求进给驱动具有足够宽的调速范围。

单步点动作为一种辅助工作方式常常在工作台的调整中使用。伺服系统最高速度的选择要考虑到机床的机械允许界限和实际加工要求,高速度固然能提高生产率,但对驱动要求也就更高。此外,从系统控制角度看也有一个检测与反馈的问题,尤其是在计算机控制系统中,必须考虑软件处理的时间是否足够。全闭环伺服系统是将位置检测元件置于被测坐标轴的终端移动部件上,以检测机械传动链中螺距误差、间隙及各种干扰所造成的传动误差,并进行反馈补偿控制,从而提高机床的位置控制精度。在全闭环伺服控制系统中,对位置检测元件和反馈元件的选择很关键。感应同步器具有精度高、重复性好、抗干扰能力强,耐油耐污及维护简单等优点,特别适合于高精度全闭环数控机床的工作场合。数控机床要求具备稳定性、快速性和准确性,而大型数控机床的机械传动装置转动惯量较大,固有频率低,要使其大大高于系统截止频率很困难,全闭环包括了该进给系统轴几乎所有不稳定的非线性因素,调整不当很容易使机床产生抖动现象。

因此数控机床全闭环伺服系统在保证快速性的基础上主要是解决机床进给运动的稳定性而获得比半闭环伺服系统高的位置精度。伺服电机的编码器将位移检测信号反馈到伺服驱动器,驱动器将输入信号的脉冲频率和脉冲数与回馈信号的频率和脉冲数,经内部的偏差计数器与频率转电压电路处理后,得到脉冲偏差值与转速误差值,这样使控制伺服电机实现高速、精密的速度与位置闭环回路处理系统。伺服电机的转速与输入信号的脉冲频率成正比,而电机的移动量则由脉冲数决定。图4是PLC控制下的伺服电机工作示意图。

图4 数控机床伺服电机工作示意图

5 相关程序设计与操作

PLC通过编程器输入程序,达到控制目的。由于PLC工作过程是循环,所以程序执行速度很快。另外软件故障检测设计在采用硬件设计的基础上采用软件检测外部行程开关状态,当行程开关失灵后,通过程序控制停止机床的运行,有效地减少了机床因元件失灵造成的事故。

图5是使用编程软件WinProladder编辑定位程序参数设定指令图,图6是具体操作加工程序图。

图5 定位程序参数设定指令图

图6 加工程序图

6 结束语

我国是一个机床生产和应用大国,但数控技术的应用水平还不高,严重制约着我国制造业水平的提高。国际上的相关开发计划对我国的数控技术的发展提出了严峻的挑战,同时也带来了机遇。只有选择合适的PLC才能使定位达到预期的效果。永宏FBs系列PLC的NC定位功能在机床数控系统设计中占有重要的地位,该机床经过长期运行表明,整个系统设计合理,控制精度高,运行可靠,提高了生产的自动化水平,减小了操作人员的劳动强度。

由于采用了PLC控制,使电气部分的抗干扰能力增加,提高了机床的运行可靠性,因而增加了设备的柔性,提高了设备的使用效率。

『捌』 机械原理,齿轮传动比误差是什么怎么算跪求🙏🙏🙏

传动比误差主要是由于制造误差、齿轮间隙等因素造成的,这个误差很小,平常实际设计计算基本不考虑,主要关心的是齿轮传动的效率损失,这里面也包含有传动比误差的成分。

『玖』 传动间隙对系统性能的影响有哪些

1:对需要定位的环节传动间隙将大大影响其定位精度。包括轴向和角向。2:系统的传动刚性降低,将造成额外的震动,磨损等。

『拾』 机电一体化系统设计中,机械传动间隙的存在影响是什么

动作精度下降,传动有噪音,零件使用寿命缩短!

阅读全文

与传动装置的机械间隙会造成什么误差相关的资料

热点内容
铸造牙用什么材料最好 浏览:219
办公设备的净残值如何 浏览:736
腾亚南京塑料五金制品有限公司 浏览:744
购机工具箱 浏览:720
注塑后机械手用来干什么 浏览:50
水表阀门s代表什么意思 浏览:533
博世电动工具木工专用 浏览:38
8匹柴油机飞轮轴承怎么拆下 浏览:884
收割机轴承拿不下来怎么弄 浏览:634
电疗仪器指哪些 浏览:134
病房测心跳的仪器叫什么 浏览:191
大型设备上岗证怎么打印 浏览:86
诺信数控机床控制系统怎么连网 浏览:839
直播卖货用什么设备清晰度好 浏览:190
机械装置拆装工具 浏览:888
防护阀门用字母怎么代表 浏览:115
影视器材设备包括哪些 浏览:802
空冷轴承运行中内外温差多少 浏览:769
matlab安装遗传算法工具箱 浏览:367
冰柜为什么制冷频繁 浏览:474