① 参考文献
[1]弗化奇A P.牛顿力学.北京:人民教育出版社,1982
[2]王龙甫.弹性理论.北京:科学出版社,1979
[3]Da Vinci L.Testing the strength of iron wiresof variouslengths(Notebook,ca.1500).In:ParsonsWB.Engineersand Engineering in Renaissance.Baltimore:Williams and Wilkins,1939.661
[4]Hudson J A.Rock engineering systems:theory and practice.London:Ellis Horwood Limited.1992.4~5
[5]Galileo G.Two New Science.New York:Macmillian,1933.1~300
[6]Hudson J A,Crouch S,Fairhurst C.Soft,Stiff and Servo-controlled Testing Machines.Eng.Geol.,1972,6(3):155~189
[7]Von Karman.Festigkeitsversuche unter allseitigem,Druck.Zeitschr.Ver.Dentsch.Ing.,1911,55:1749~1757
[8]郭惠丰,伞桂兰.粗晶大理岩的三轴残余强度及蠕变原因.地下空间,1999,19(5):699~701
[9]Mogi K.Effect of the intermediate principal stress on rock failure.J.Geophys.Res.,1967,72(20):5117~5131
[10]Akai K,Mori H.Study on the failure mechanism of a sand-stone under combined compressive stresses.Trans.Jpn.Soc.Civ.Eng.,1967,147:11~24
[11]Mogi K.Failure criteria of rocks(study by a new triaxial compression technique).J.Soc.Material Sci.Jpn.,1971,20:143~150
[12]Shimada M.Mechanical behavior of rocks under high pressure conditions.Netherlands:A A Balkema,2000.4~16
[13]Griggs D T.Hydrolytic weakening of quartz and other silicates.Geophys.J.R.Astr.Soc.,1967,14:19~31
[14]Tullis T E,Tullis J.Experimental rock deformation techniques.In:Hobbs B E,Heard H C.Mineral and Rock Deformation:Laboratory Studies.Geophysics.,1986,Monograph.36:297~324.(Washington D C:American Geophysics Union.)
[15]Kern H,Karl F.Eine dreiaxial wirkende Gensteinspresse mit Heizvorrichtung.Bergbauwissenschaften,1969,19:90~92
[16]Kern H.Preferred orientation of experimentally deformed limestone,marble,quartzite and rock salt at differenttemperature and states of stress.Tectonophysics,1977,39:103~120
[17]Carter N L,Christie JM,GriggsD T.Experimental deformation and recrystallization of quartz.Journal of Geology.1964,72:687~733
[18]Shimada M.The method of compression test under high pressure in a cubic press and the strength of granite.Tectonophysics,1981,72:343~357
[19]Cook N G W,Hojem JP M.A rigid50-ton compression and tension testing machine.South Africa Mech.Eng.,1966,16:89~92
[20]Wawersik W R,Fairhurst C.A study of brittle rock fracture in laboratory compression experiments.Inter.J.Rock Mech.Min.Sci.,1970,7(6):561~575
[21]尤明庆.岩样单轴压缩的失稳破坏和试验机加载性能.岩土力学,1998,19(3):43~49
[22]葛修润,任建喜,蒲毅彬等.煤岩三轴细观损伤演化规律的CT 动态试验.岩石力学与工程学报,1999,18(5):497~502
[23]王恩元,何学秋.煤岩变形破裂电磁辐射的实验研究.地球物理学报,2000,43(1):131~137
[24]肖红飞,何学秋,冯涛等.煤岩动力灾害力电耦合.北京:地质出版社,2005
[25]Yasuhara H,Marone C,Elsworth D.Fault zone restrengthening and frictional healing:the role of pressure.Journal ofGeophysical research,110,B06310,doi:10.1029/2004JB003327
[26]岳中琦.岩土细观介质空间分布数字表述和相关力学数值分析的方法、应用和进展.岩石力学与工程学报,2006,26(5):875~888
[27]秦四清,李造鼎,张倬元等.岩石声发射技术概论.成都:西南交通大学出版社,1993
[28]First Symposium on Rock Mechanics.Quarterly of the Corolado School of Mines,1956,51(3):Foreword
[29]冯树仁,佘诗刚等译,葛修润校(布雷迪 B H G,布郎 E T著).地下采矿岩石力学.北京:煤炭工业出版社,1990
[30]郑颖人,沈珠江.岩土塑性力学原理.重庆:中国人民解放军后勤工程学院学报,1998
[31]李通林,谭学术,刘伟.矿山岩石力学.重庆:重庆大学出版社,1991.217~222
[32]谢和平.岩石和混凝土损伤力学.徐州:中国矿业大学出版社,1990
[33]华安增,张子新.层状非连续岩体稳定学.徐州:中国矿业大学出版社,1997
[34]徐小荷,余静.岩石破碎学.北京:煤炭工业出版社,1986
[35]范广勤.岩石流变学.北京:煤炭工业出版社,1993
[36]缪协兴,陈智纯.软岩力学.徐州:中国矿业大学出版社,1995
[37]何满潮,景海河,孙晓明.软岩工程力学.北京:科学出版社,2003
[38]赵阳升.岩石流体力学.北京:煤炭工业出版社,1994
[39]李贺,伊光志,许江等.岩石断裂力学.重庆:重庆大学出版社,1988.92~97
[40]冯夏庭.智能岩石力学导论.北京:科学出版社,2000
[41]唐春安.岩石破裂过程的数值试验.北京:科学出版社,2003
[42]周维垣,杨强.岩石力学数值计算方法.北京:中国电力出版社,2005
[43]杨志法,王思敬,冯紫良等.岩土工程反分析原理及应用.北京:地震出版社,2000
[44]姚卫星,余新陆,颜永平.脆性材料压拉强度比的估计.见:清华大学博士后科学论文集.北京:清华大学出版社,1992.9~16
[45]王庚荪,袁建新,吴玉山.多裂纹材料单轴压缩破坏机制与强度.岩土力学,1992,13(4):1~13
[46]孔圆波.砂岩试样裂纹扩展和宏观断裂的模型探讨.中国矿业大学学报,1991,20(4):93~98
[47]Hoek E.Brittle fracture propagation in rock under compression.Inter.J.Fract.Mech.,1965,1(2):136~155
[48]俞茂宏,李跃明等.强度理论研究新进展(论文集).西安:西安交通大学出版社,1992
[49]杨光.关于“岩土类材料统一强度理论及其应用”一文的讨论.岩土工程学报,1996,18(5):95~97
[50]俞茂宏.对“统一强度理论”讨论的答复.岩土工程学报,1996,18(5):97~99
[51]卓越,梁绍暹,张善德等.矿物岩石学.北京:煤炭工业出版社,1994
[52]卫管一,张长俊.岩石学简明教程.北京:地质出版社,1995.10~11,106~107
[53]马志先,吴国忠,马绍周译(Moorhouse W W 著).岩石薄片研究入门.北京:地质出版社,1986.187,244,309
[54]李世平,冯震海等译(巴拉G 著).岩石各向异性——理论与实验室试验.见:米勒 L.岩石力学.北京:煤炭工业出版社,1981,112~144
[55]崛部富男.岩石试料の形状が压缩强并びに引张さに及ぼす影响にっいて.东北矿山,1952,(7):21~24
[56]井上正康,木下重教等.岩石の压缩强さ测定法.日本矿业会志,1968,84(965):1462~1465
[57]International Society for Rock Mechanics Commission on Standardization on Laboratory and Field Tests.Suggested methods for determining the uniaxial compressive strength and deformability of rock materials.Inter.J.Rock Mech.Min.Sci.,1979,16(2):135~140
[58]张剑峰等.岩土工程勘探设计手册.北京:水利电力出版社,1992
[59]中华人民共和国地质矿产部.岩石物理力学性质试验规程.北京:地质出版社,1995
[60]中华人民共和国水利部.水利水电工程岩石试验规程.北京:水利水电出版社,2001.13
[61]中华人民共和国煤炭工业部.煤与岩石物理力学性质测定方法.北京:中国标准出版社,1988
[62]中华人民共和国建设部.工程岩体试验方法标准.北京:中国计划出版社,1999.15
[63]中华人民共和国地质矿产部.岩石物理力学性质试验规程.北京:地质出版社,1995.66
[64]Fairhurst C E,Hudson J A.Draft ISRM suggested method for the complete stress-strain curve for the intact rock in uniaxial compression.Inter.J.Rock Mech.Min.Sci.,1999,36:279~289
[65]尤明庆,苏承东.大理岩试样的长度对单轴压缩试验的影响.岩石力学与工程学报,2004,23(22):3754~3760
[66]Fairhurst C E,Hudson J A.单轴压缩试验测定完整岩石应力-应变全程曲线ISRM 建议方法草案.岩石力学与工程学报,2000,19(6):802~808
[67]Kostak B,Bielenstein H U.Strength distribution in hard rock.Inter.J.Rock Mech.Min.Sci.,1971,8(4):501~521
[68]尤明庆,苏承东,周英.不同煤块的强度特性及回归方法.岩石力学与工程学报,2003,22(12):2081~2085
[69]山口梅太郎.花こぅ岩の强度试验にぉける试验片の数につぃて.材料,1966,16(160):520~528
[70]郑雨天,傅冰骏等译(国际岩石力学学会实验室和现场试验标准化委员会著).岩石力学试验建议方法.北京:煤炭工业出版社,1979
[71]Barton N.Scale effects or sample bias? In:Proceedings of the first international workshop on scale effects in rock masses.Netherlands:A A Balkema,1990.31~58
[72]Thuro K,Plinninger R J,Zäh S,et al.Scale effects in rock properties(Part1).In:Särkkä & Eloranta(eds.).Rock Mechanics-a challenge for society.Swets& Zeitlinger Lisse,2001.169~174
[73]齐庆新,毛德兵,范绍刚.直接单轴拉伸条件下煤的弹脆塑性分析.见:中国岩石力学与工程学会第七次学术大会论文集.北京:科学技术出版社,2004.181~185
[74]Okubo F,Fukui K.Complete stress~strain curves for various rock types in uniaxial tension.Inter.J.Rock Mech.Min.Sci.Geomech.Abstr.,1996,33(6):549~556
[75]王思敬,杨志法,傅冰骏.中国岩石力学与工程世纪成就.南京:河海大学出版社,2004
② 地铁露天轨道雨天不漏电 没有东西遮掩的地铁轨道,在雨天时轨道为什么不漏电的
因为绝缘效果好了,我知道南京地铁头顶送电的是铜轨,虽然是高压电,它都在两端分别做了,防电装置,另外它有接地导线,你注意看看铁轨连接地面的地方.
麻烦采纳,谢谢!
③ 车辆年检下雨天可以吗
不可以,因为下雨天会影响车辆的状况。
拓展材料:
车辆年检也就是我们平时所说的验车,《道路交通安全法实施条例》有关规定[1]:
第十六条:机动车应当从注册登记之日起,按照下列期限进行安全技术检验:
(一)营运载客汽车5年以内每年检验1次;超过5年的,每6个月检验1次;
(二)载货汽车和大型、中型非营运载客汽车10年以内每年检验1次;超过10年的,每6个月检验1次;
(三)小型、微型非营运载客汽车6年以内每2年检验1次;超过6年的,每年检验1次;超过15年的,每6个月检验1次;
(四)摩托车4年以内每2年检验1次;超过4年的,每年检验1次;
(五)拖拉机和其他机动车每年检验1次。营运机动车在规定检验期限内经安全技术检验合格的,不再重复进行安全技术检验。
(六)超过报废年限的车辆不可以再过户(买卖),但可以继续使用;买卖的话可以先到车管所办理该车的报废单(注销该车的档案),然后买卖。
2014年5月17日上午,公安部、国家质检总局联合下发《关于加强和改进机动车检验工作的意见》,其中规定公安、质监等政府部门不得开办车检机构,已开办的,9月底前必须彻底脱钩;自9月1日起,试行非营运轿车6年内免检;不得指定检验机构,推动机动车异地年检。
网络——车辆年检
④ 雨天防滑鞋套需要检测防滑度吗
当然要检测防滑度了,如果太滑的话,滑倒人这个东西是需要,索赔的
⑤ 下雨天电动车充电充电器如何防雨
不要在下雨的时候给电动车充电。 电动车商家出产的时候会对防水做些处理,没有长时间在水里,没什么影响。雨水含酸,对铁会有一定的腐蚀,最好把水处理干,最好雨天换用别的交通工具比较安全可靠。
电动自行车的电瓶防雨问题一般成品车辆已经具有相应措施,如电瓶装在电池盒内,只有充电及用电使用同一个插座的电瓶,其插座是外露的,如果要防止水渗入,可以有塑料袋临时包扎一下,让水往下流动即可。
1、电动车36V电瓶的“终止充电电压”为43V左右,所以36V充电器的空载输出电压不应该超过终止充电电压的。
2、终止充电电压由充电器的控制电路控制。空载输出电压过高,说明控制电路存在故障需要检修,不要勉强使用,否则会造成电瓶过量。
⑥ 雨天自动关窗系统怎么做
1、实现功能不难,目前非智能方式及智能方式都可以实现,这个取决于布置方案及产专品成本。
2、现有市场属传感器一般采用PCB薄铜栅格或者湿度感应模块,这个的采用也是取决于成本。
3、一般的单片机例如arino等均可检测传感器状态并实现动作,非智能方式采用的是8050之类的三极管触发。arino扩展功能非常方便,市场也有成熟的模块可以选取。例如PM2.5的检测模块可以采用夏普的模块,精度尚可,批量采购大概也就20来块成本。
4、目前影响雨天关窗系统普及的因素有:①产品成本过高,结构复杂(市面上的关窗装置一般几百块往上)②安装困难(一般需要布设专用线路及钻洞)③体积庞大,外观难优化(现有产品看上去就一铁疙瘩~~~)
5、目前的优化方向:简化结构降低产品成本优化安装方式
6、个人觉得这是一个大项目,窗户的扩展贴合未来人们对环境的需求。
⑦ 防雷检测在下雨天可以检测吗
防雷检测是不能在雨雪天气和存在冻土状况下进行检测的。
雨天检测到的数值往往不准确,同时下雨天外出作业也不安全啊
⑧ 防雷地网足够大监测电阻偏大有影响吗
当然有影响,不能超过规范、标准规定的限值。
防雷检测中接地电阻的重要性及其影响因素
作者: 宋威王友利张艳龙秦冬旭刘建国
【关键词】防雷检测;接地电阻;气象;设备
一、接地电阻的定义
接地电阻实际指电流从接地装置流向大地然后再流向另一接地体或向远处扩散所遇到的电阻。接地电阻分为工频接地电阻与冲击接地电阻。工频接地电阻是把接地体的流经电流作为工频电流从而得到的接地电阻;而冲击接地电阻是把接地体的流经电流作为冲击电流进而得到的接地电阻值,这在有雷电电流流过的情况下非常有研究价值。我们在平时工作中测得的接地电阻值数值为工频接地电阻值,所以通常若没有指明是哪一种接地电阻,都是指的工频接地电阻。我可以通过计算公式来转换接地电阻以衡量其是不是符合规程要求。转换计算公式为:R=ARi。
二、防雷检测中接地电阻的重要性分析
检测接地装置优劣的重要指标即为接地电阻的大小,一般来说,接地电阻越小,雷电发生时,其流散的速度越快,一旦物体被雷击中,其产生的高电位持续的时间也就越短,防雷装置上产生的雷击高电位也就相应的越低,降低了对人及各种设备的威胁。
根据有关的电学原理,当发生雷击时,产生的雷电流在通过防雷装置时,接地电阻上的高压与接地电阻的关系呈正比,也就是冲击接地电阻的值越小,电压(电压反击跨步电压和接触电压)对人或物的威胁性就越小,由此可以看出,接地电阻可作为重要指标对接地装置的优劣进行衡量。在各类有关的防雷规范中,在用途不同时对接地电阻的要求较明确。如在《防雷技术标准规范汇编》(以下简称《规范汇编》)中,分别对防雷类型为一、二、三类的防雷建筑物的接地电阻进行了具体规定,一、二类的电阻应小于10Ω,三类的电阻应不小于30Ω,而电力变压器或发电机的工作接地电阻不得大于4Ω。因此,应高度重视接地电阻的相关检测工作。
目前,随着防雷及接地技术的逐渐发展,在对接地电阻进行检测的过程中,应该对其他因素进行综合考虑,如还需要对等电位连接措施及接地装置的结构属性等是否符合规范要求进行详细检测。根据《规范汇编》的有关规定,在土壤电阻率高的地区,对当地的经济条件及该地区的施工难度进行综合考虑,应重点对铁架与霹雷针之间及公共接地系统的连接状况进行检查,而对于医疗设备、计算机系统就要重点考虑等电位连接状况。
三、防雷检测中接地电阻的影响因素及其解决对策
(一)影响因素
1.气象条件。由于在规范汇编里没有具体规定在进行接地电阻的检测时应该具备的气象条件,所以当进行实际的电阻检测时,要对当地的气象条件(例如湿度,温度等)有所了解,然后根据这些来明确接地电阻和气象条件之间存在的关联。接地电阻和土壤的电阻率之间的关系呈正比,换句话说就是当土壤的电阻率越高,接地电阻的阻值也越大。土壤中的化学成分,相对湿度和温度,以及土质的紧密程度等都会对土壤的电阻率产生影响,在这些因素里,会给电阻率造成最为严重影响的因素就是土壤的相对湿度和温度。
2.检测设备。在规范汇编中要求检测的电阻是冲击接地电阻,而在大多数的气象台站中用的是日本生产的摇表式地阻仪,通过这种地阻仪所检测出的叫做工频接地电阻,与规范汇编中要求的不符合。因此在进行电阻仪的测试时,重点测试土壤中的电位梯度近似为0的地方,也就是将电阻仪放置在零点的区域内,以避免出现误差,从而使测试出的接地电阻值更为精确和有效,但是在实际的测试中很难做到。我国大部分的防雷检测机构在进行接地电阻的检测时,较常使用钳形接地电阻仪来检测,这种电阻仪的检测速度相对更快并且无须用到辅助接地棒,更加易于使用。在现实的接地体电阻的检测中,不能测量出被作为测试极的接地体和要进行测试的接地体间的距离,在一些特殊情况里,这两个接地体间的距离十分短,不能达到测量的标准,并且在还没掌握接地装置的内部结构的情况下,这两个接地体己经和地下电气沟通,在这个时候测试出的电阻值不具备可靠险,所产生的误差也很大。
3.随机因素。在实际检测接地体的电阻值过程中,一定要保证没有不利因素的干扰,使测量出的数据更加精确,有效。在进行接地电阻的测试时,会随机出现一些不利因素给检测过程带来影响,例如检测时使用的地阻仪在测量过程中产生的电流量较小,会使测量出的数据不够准确。除了这些干扰因素外,还会出现一些人为因素对检测过程造成影响,对于这些因素一定要有足够的重视,一定要最大限度的保障测量过程不被影响因素干扰。
另外,在接地电阻的检测中,会出现给高层建筑物的防雷设备的接地电阻进行检测的情况,在检测时会用到很长的测试线,而这也会使检测误差偏大,例如一些高层建筑物的防雷工程做得很好,但是在检测接地电阻时出现了较高的误差。所以为了避免这种情况的发生,工作人员要考虑到超过标准长度的测试线所产生的电阻和感抗以及电流量带来的干扰电动势等因素。
(二)解决对策
1.接地电阻值在很大程度上受检测人员的操的影响,在检测时应注意:检测仪的三极要在一条直线上并且与地网垂直;地网测试点和测试仪的连接线长度最好小于5m。若需加长,应把实测接地电阻值与加长线阻值相减,然后填人表格等。
2.接地电阻受检测环境的影响较大,检测时,接地电阻测试仪的接地引线及其他导线应将高、低压供电线路避开,防止造成危险和干扰;若地网带电对检测产生影响,应其原因查明,把带电问题解决后再测量,或者换个检测位置测量;若在测量时因为高频干扰、工频漏流、杂散电流等因素,以至于接地电阻表读数不稳定,可以把地网测试点和测试仪的连线改为屏蔽线,或选用能够改变测试频率、具有窄带滤波器或选频放大器的接地电阻表检测,使其抗干扰的能力得以提高;按DL475-92《接地装置工频物性参数的测量导则》规定,当大型接地装置或地网对角线D≥60m需要采用大电流测量,施加电流极上的工频电流应≥30A,以排除干扰使误差减少。
3.根据实际检测对象对接地电阻的要求精确度选定检测方法。通常可采用三极法,但若有较高的接地电阻精确度的要求,就必须采用四极法,并进行方位、多点测试。
4.在检定合格有效使用期的检测仪器才能使用,测量仪器与测试仪器要符合国家计量法规的规定,检测仪器见《建筑物防雷装置检测技术规范》GB/T21431―2008附录E。同时检测仪器的选用要依据实际检测对象的接地方式进行,在检测时要注意要测地网是不是单点接地,被测地线与设备是不是已连接,有没有可靠的接地回路,从而选择相应的测量仪器。
5.接地电阻值的检测应在土壤未冻结和非雨天时进行,天气气候条件要能够使正常检测得以进行。
四、结语
综上,接地电阻是衡量防雷检测中的接地装置性能和防雷工程质量的主要指标,在实际的检测过程中,会出现各种因素对检测数据造成干扰,从而使得检测出的接地电阻不够准确,真实。而接地电阻能够达到要求,是确保防雷装置可靠性的关键,因此从中可以看出,防雷检测中接地电阻起着十分重要的作用。
参考文献
[1]应征,王挥蜃,刘春.接地电阻的测量与降低[J].移动电源与车辆,2012(01).
[2]徐传洋.接地电阻试验技术要点分析[J].中国科技信息,2012(24).
[3]霍广勇,周雄伟,徐广玲,杨新.接地电阻的测量与异常现象的分析[J].沙漠与绿洲气象,2009(S1).
⑨ 关于论文的参考文献,用[A]还是[M]
参考文献(即引文出处)的类型以单字母方式标识,具体如下:
[M]——专著,著作
[A]——文章:很少用,主要是不属于以上类型的文章。