⑴ 气体分离膜的分离系数是固定的吗
高分子分离膜(一高分子为材料,而不是分离高分子),是一种高分子薄层物。膜有固态,也有液态。1846年,德国学者会拜思用硝基纤维素制成第一张高分子膜。1920年,麦克戈达开始观察和研究反渗透现象。30年代,人们将纤维素膜用于超滤分离。40年代,离子交换膜开发和利用及电渗析方法建立。50年代,加拿大学者萨里拉简研究反渗透。1960年,洛伯和萨里拉简成功地制备具有完整表皮和高度不对称的第一张高效能的反渗透膜,为该法奠定了基础。70年代以来,超滤膜、微滤膜成功地开发和应用,有支撑的液膜和乳液膜及气体分离膜也相继问世。
用于分离膜的高分子材料主要有聚酸胺类、聚酸亚胺类、聚砜类、聚乙烯酸类、丙烯类衍生物聚合物及纤维素类等,有关的共聚物和共混物也可作为膜材料用。各种高分子分离膜已广泛用于核燃料及金属提炼,气体及烃类分离,海水及苦咸水淡化,纯水及超纯水制备,环境保护和污水处理,人工脏器的制造,生物制品提纯以及医、食品、农业、化工等各个领域中。(摘自《国民科普大课堂》)
⑵ 请问小型陶瓷膜实验设备,过滤面积一般是多大小试,中试到底是按什么划分的谢谢
应该各个厂家机型存在区别的,以南京博滤工业小型实验机为例,最常用的小试实验设备面积就是0.1平米,除此之外还有更小的0.05平米算是微型的,还有0.2平米,0.5平米,1.0平米,1.5平米以及3.0平米。另外小试和中试就是一个规模大小问题。比如小试设备通常3平米以内,而中试设备一般是10-30平米范围样子。食品制药,发酵植提等行业一般小试之后就能确定运行数据,可以作为大生产设备参考值。但有的高端行业,复杂的化工领域等,经过小试时候还要做中试。附上常规型号表格给你参考吧:
规格型号 可选精度 工作压力 工作温度 PH范围 材质 工作电压 最小循环体积
0.05m2 50-500nm 2-4bar 0-80℃ 1-14 S.S316L 220/380ACV 10L
0.1m2 5-1200nm 2-4bar 0-90℃ 1-14 S.S316L 220/380ACV 25L-30L
0.2m2 5-1200nm 2-5bar 0-90℃ 1-14 S.S316L 220/380ACV 25L-30L
0.5m2 5-1200nm 2-5bar 0-90℃ 1-14 S.S316L 220/380ACV 25L-30L
1.0m2 5-1200nm 2-5bar 0-90℃ 1-14 S.S316L 220/380ACV 30L-50L
3.0 m2 5-1200nm 2-5bar 0-90℃ 1-14 S.S316L 220/380ACV 50L
⑶ 气体分离设备都有哪些系统组成
气体分离设备,将气体液化、精馏、最终分离成为氧、氮和其他有用气体的设备。气体分离设备是由多种机械和设备组成的成套设备,常按空气压力来分类。常用的有高压、中压和低压3种。
气体分离设备主要系统组成:
低压气体分离设备由空气压缩系统、杂质净化和换热系统、制冷系统和液化精馏4个主要系统组成。相应的机械设备有空气透平压缩机、空气冷却塔、透平膨胀机和分馏塔等。
低压气体分离设备的工作原理建立在液化循环和精馏理论基础上进入的空气先经空气过滤器,而后由透平压缩机空气冷却塔压缩和冷却到压力为0.5兆帕、温度为303K左右,再进入切换式换热器(E1、E2)两换热器能清除空气中的水和二氧化碳,并进行热交换,把空气冷却到接近液化温度(101K)后送入下塔,从下塔抽出一部分空气送到换热器(E2)加热。加热的空气与下塔来的少量冷空气汇合后进入透平膨胀机绝热膨胀,产生需要的冷量,然后被送往上塔精馏。余下的空气在下塔初步精馏。
在底部得到含氧38%的液化空气,在下塔的顶部得到含氮99.99%的纯液氮,在中部获得含氮约95%的污液氮。液化空气、纯液氮、污液氮分别从下塔抽出通过节流阀减压到约0.05兆帕,送入上塔作回流液,在此进行第二次深低温精馏,在上塔底部得到含氧99.6~99.8%的高纯度氧气,流经换热器(E4、E2、E1)与空气进行热交换,升温到大气温度后排出塔外。在上塔顶部获得含氮99.999%的高纯度氮气,在上塔中部得到含氮约96%的污氮,均经换热器(E3、E4、E2、E1)复热到大气温度后排出装置。
⑷ 膜分离设备的类型
由有机合成膜构成的膜分离设备,主要类型为:①板框式装置。在尺寸相同的片状膜组之间,相间地插入隔板,形成两种液流的流道。由于膜组可置于均匀的电场中,这种结构适用于电渗析器。板框式装置也可应用于膜两侧流体静压差较小的超过滤和渗析。②螺卷式装置。把多孔隔板(供渗透液流动的空间)夹在两张膜之间,使它们的三条边粘着密合,开口边与用作渗透液引出管的多孔中心管接合。再在上面加一张作料液流动通道用的多孔隔板,并一起绕中心管卷成螺卷式元件(图1)。料液通道与中心管接合边及螺卷外端边封死。多个螺卷元件装入耐压筒中,构成单元装置。操作时料液沿轴向流动,可渗透物透过膜进入渗透液空间,沿螺旋通道流向中心管引出。该设备适用于反渗透和气体渗透分离,不能处理含微细颗粒的液体。③管式装置。用管状膜并以多孔管支撑,构成类似于管壳式换热器的设备,分内压式和外压式,各用多孔管支撑于膜的外侧或内侧。内压式的膜面易冲洗,适用于微过滤和超过滤。④中空纤维式装置。中空纤维不需要支撑而能承受较高的压差,在各种膜分离设备中,它的单位设备体积内容纳的膜面积最大。用中空纤维构成类似于管壳式换热器的设备(图2)。中空纤维直径约0.1~1mm,并列达数百万根,纤维端部用环氧树脂密封,构成管板,封装在压力容器中。中空纤维式适用于反渗透和气体渗透分离。
⑸ 实验室膜分离设备的一些相关材料和介绍,谁有啊
结构设计紧凑,体积小,安装使用方便;操作简单,设备运行稳定;循环体积小,分离效果好内;清洗方便,容膜芯、膜片可长期循环使用。膜分离实验设备专为高校、科研机构及企业研发中心设计,可帮助客户通过实验得到关键工艺参数以及相应清洗方案,为科研及工业应用提供参考,同时也可作为小型生产设备从事小批量生产。本设备主要用于确定料液分离纯化的参数并确定其所能达到的效果及所得产品性能的优劣等,为工业化系统提供设计依据。系统可适用于多种规格型号的卷式膜。本系统可以提供相当广的流量、压力范围。最高压力40bar,具有自动蓄能缓冲及卸压的安全功能。可根据实验需要换装反渗透,纳滤,超滤,微滤等各类卷式膜元件,用于料液的浓缩,脱盐,分离,提纯,澄清,除菌等工艺实验,可广泛应用于制药,食品饮料,化工,植物提取,环保水处理等领域。
⑹ 气体分离膜是用什么材料制作的怎样制作的!高分悬赏!
高分子分离膜(一高分子为材料,而不是分离高分子),是一种高分子薄层物。膜有固态,也有液态。1846年,德国学者会拜思用硝基纤维素制成第一张高分子膜。1920年,麦克戈达开始观察和研究反渗透现象。30年代,人们将纤维素膜用于超滤分离。40年代,离子交换膜开发和利用及电渗析方法建立。50年代,加拿大学者萨里拉简研究反渗透。1960年,洛伯和萨里拉简成功地制备具有完整表皮和高度不对称的第一张高效能的反渗透膜,为该法奠定了基础。70年代以来,超滤膜、微滤膜成功地开发和应用,有支撑的液膜和乳液膜及气体分离膜也相继问世。
用于分离膜的高分子材料主要有聚酸胺类、聚酸亚胺类、聚砜类、聚乙烯酸类、丙烯类衍生物聚合物及纤维素类等,有关的共聚物和共混物也可作为膜材料用。各种高分子分离膜已广泛用于核燃料及金属提炼,气体及烃类分离,海水及苦咸水淡化,纯水及超纯水制备,环境保护和污水处理,人工脏器的制造,生物制品提纯以及医药、食品、农业、化工等各个领域中。(摘自《国民科普大课堂》)
⑺ 高中常见气体的实验室和工业制法 请分开写 最好有装置图片
1.氢气
(1)工业制法:
①水煤气法:(高温条件下还原水蒸气)
单质+化合物化合物+单质: C+H2O(g) = CO+H2 ;
化合物+化合物化合物+单质:CO+ H2O(g) =CO2+H2
②氯碱工业的副产物:(电解饱和食盐水)
溶液A+B+C :2NaCl+2H2O=NaOH +H2↑+ Cl2↑,
(2)实验室制法:
①金属与非氧化性强酸的置换反应:
单质+化合物化合物+单质:Zn+H2SO4=ZnSO4+H2↑
②金属与强碱溶液的置换反应:
单质+化合物化合物+单质:2Al+2NaOH+2H2O=2NaAlO2+3H2↑,
2.乙烯
(1)工业制法:
石油裂解制乙烯:高碳烷烃低碳烷烃+低碳烯烃:
C4H10=C2H6+C2H4 ;C8H18=C6H14+C2H4
(2)实验室制法:
乙醇的消去反应: CH3CH2OH = CH2=CH2 ↑+H2O
3.乙炔
(1)工业制法:
煤干馏得到焦炭,煅烧石灰石得到生石灰,在高温电弧炉中生石灰和焦炭反应生成电石和一氧化碳,电石和饱和食盐水反应生成熟石灰和乙炔。
3C+CaO = CaC2+CO↑ ;CaC2+2H2O=Ca(OH)2+C2H2 ↑
(2)实验室制法:电石水解法:CaC2+2H2O=Ca(OH)2+C2H2 ↑
4.一氧化碳
(1)工业制法:
①水煤气法:(高温条件下还原水蒸气)
单质+化合物化合物+单质: C+H2O(g)=CO+H2 ;
②焦炭还原二氧化硅(工业制备粗硅的副产物):2C+SiO2=Si+2CO↑
③工业制备电石的副产物:3C+CaO = CaC2+CO↑ ;
(2)实验室制法:
①草酸分解法:H2C2O4 = CO↑ +CO2 ↑+H2O ;混合气体通过碱石灰得到一氧化碳。
②甲酸分解法:HCOOH = CO↑ +H2O
5.二氧化碳
(1)工业制法:
①高温分解,煅烧大理石:CaCO3=CaO+CO2 ↑
②玻璃工业副产物:SiO2+Na2CO3=Na2SiO3+CO2 ↑;SiO2+CaCO3=CaSiO3+CO2 ↑
③联碱工业小苏打制纯碱的副产物:2NaHCO3=Na2CO3+H2O+CO2 ↑
(2)实验室制法:
复分解反应:碳酸钙与盐酸的反应:CaCO3+2HCl=CaCl2+H2O+CO2↑
6.氨气
(1)工业制法
化合反应:合成氨工业N2+3H2 = 2NH3
(2)实验室制法
①氯化铵和消石灰混合受热分解制备氨气: 2NH4Cl+Ca(OH)2=CaCl2+2NH3 ↑+2H2O
②浓氨水滴入到生石灰(烧碱或碱石灰)表面快速产生氨气。
7.一氧化氮
(1)工业制法
①氨气催化氧化制备一氧化氮(硝酸工业的第一步反应):4NH3+5O2=4NO+6H2O
②二氧化氮溶于水制硝酸的副产物:3NO2+H2O=2HNO3+NO
(2)实验室制法
铜和稀硝酸反应制备一氧化氮:3Cu+8 HNO3(稀)=3Cu(NO3)2+2NO↑+4H2O
8.二氧化氮
(1)工业制法
一氧化氮氧化制二氧化氮:(硝酸工业的第二步反应):2NO+O2=2NO2
(2)实验室制法
铜和浓硝酸反应制备二氧化氮:Cu+4 HNO3(浓)=Cu(NO3)2+2NO2↑+2H2O
9.氧气
(1)工业制法:
①分离液态空气
②电解氧化铝得到副产物氧气:2Al2O3=4Al+3O2 ↑
③冶炼金属汞、银时得到副产物氧气:2HgO=2Hg+O2↑;2Ag2O=4Ag+O2↑
(2)实验室制法
①高锰酸钾受热分解:2KMnO4=K2MnO4+MnO2+O2↑
②双氧水催化分解:2H2O2=2H2O+O2↑
10.二氧化硫
(1)工业制法
①高温煅烧硫铁矿得到二氧化硫:4FeS2+11O2=2Fe2O3+8SO2
②火法炼铜得到副产物二氧化硫:Cu2S+O2=2Cu+SO2
③燃烧硫磺得到二氧化硫:S+O2=SO2
(2)实验室制法
①在加热条件下铜还原浓硫酸:Cu+2H2SO4(浓) =CuSO4+SO2↑+2H2O
②亚硫酸钠和硫酸发生复分解反应:Na2SO3+ H2SO4=Na2SO4+H2O+SO2 ↑
11.氯气
(1)工业制法
①电解饱和食盐水得到烧碱、氢气和氯气:2NaCl+2H2O=2NaOH +H2↑+ Cl2↑
②冶炼钠时得到钠和氯气:2NaCl(熔融)=2Na + Cl2↑
③冶炼镁时得到镁和氯气:MgCl2=Mg + Cl2↑
(2)实验室制法
①常温氧化浓盐酸:2KMnO4+16HCl(浓)=2KCl+2MnCl2+5Cl2↑+8H2O
②加热氧化浓盐酸:MnO2+4HCl(浓)= MnCl2+Cl2↑+2H2O
12.氯化氢
(1)工业制法
氢气在氯气中燃烧产生氯化氢:H2+Cl2=2HCl
(2)实验室制法
①复分解反应制备氯化氢气体:2NaCl+H2SO4(浓)= Na2SO4+2HCl ↑
②浓硫酸滴入到浓盐酸中快速制备氯化氢气体。
⑻ 膜分离设备的介绍
膜分离设备是利用膜分离技术而在生产工厂按照其膜分离的技专术参数标准制造的大属型机械设备,其设备能够起分离的作用,效果远远超出传统的分离方式。
膜分离设备的核心技术就是膜分离技术,分离膜是具有选择性分离功能的材料,工作原理是物理机械筛分原理,分离过程是利用膜的选择性分离机理实现料液的不同组分间的分离或有效成分浓缩的过程。
膜分离技术设备与传统的过滤不同在于:膜可以在分子范围内进行选择性地分离,膜的错流式运行工艺可以解决污染堵塞问题,是一种科学先进的分离技术和工艺。
膜分离的工艺应用开发需以物料体系特性和工艺要求为基准,结合实验开展科学验证,在解决物料精制难题的同时,还要保证工艺的可行性,并适合于工业化的清洁生产为标准。
用于超过滤、反渗透、气体渗透分离、渗析、电渗析以及液膜分离等一系列膜分离操作的设备。由于膜的构型和分离过程各具特点,设备也有多种类型。有时根据过程目的或用途,分别称为超过滤器、渗透器、渗析器、电渗析器或淡化器等,其未来发展趋势为自动化,简洁化。