㈠ 故障录波的应用
随着电网规模日益扩大,就需要一个能够准确进行故障元件诊断、事故后数据分析、保护动作行为评价等功能完善的电网故障信息综合分析系统。这对于电力系统的安全可靠运行起着十分重要的作用。
电力系统的调度自动化是电网安全稳定运行的重要保证,随着其自动化水平的不断提高以及通信等技术的加盟,促进了网络层的EMS(能量管理系统)、SCADA系统(数据采集及监视控制),厂站端的SOE(事件顺序记录)、PDR(事故追忆记录)等配套设施的不断出现和改进。多年来,电力系统自动故障记录已成为分析系统事故,特别是分析继电保护动作行为的重要依据。尤其是以微机为基础的故障录波装置,能够记录电网故障发生前后电气量和状态变化过程信息,完整地反映故障后的瞬间变化及继电保护的动作行为,并有数据存档和数据再分析的能力。而且,随着通信技术的介入,电网调度端可以随时收集分布于各个厂站的故障录波器的信息,这就是故障录波器联网系统[1][2]。到目前为止,各网(省)调已相继完成以实现全网故障录波数据远传为主要目标的联网工作。其目的非常明确:提高电力系统调度和运行的水平,提高处理电力系统事故的快速反应能力,确保电力系统安全可靠供电。从而,所有上述调度自动化配套设施,都为开发电网故障信息综合分析系统提供了广阔的平台。
基于以上分析,本文开发了一种基于故障录波信息的调度端电网故障诊断系统,提出了“软保护”的诊断思想,实现了电网调度端的故障录波信息管理、电网层的故障元件诊断、以及双端测距等功能。并用电磁暂态分析程序ATP(The Alternative Transients Program)和MATLAB语言对整套软件的算法进行了仿真验证。下面将重点介绍故障诊断模块的实现。
1 电网故障诊断系统各模块及实现功能
基于调度端的电网故障诊断及信息分析系统分为几个功能模块:数据库模块、系统管理模块、故障诊断模块、故障信息分析模块、保护和开关动作行为评价模块等。各模块之间的关系如下图1所示:
(1) 数据库模块:
本文利用SQL Sever技术建立了各种信息的数据库,并通过Visual C++提供的MFC ODBC数据库类来实现对数据库的访问。这些数据表包括:
1、系统参数类:线路参数表、变压器参数表、发电机参数表等;
2、故障录波类:故障录波数据文件表、故障录波组态文件表、录波器配置表、录波文件记录表、硬件保护动作表等;
3、关系对应类:元件与软保护对应表、元件与故障录波数据接口对应表等;
4、保护配置类:软保护配置表、硬件保护配置表等
该数据模块具有永久保存的功能,方便日后随时查询历史记录;同时设有用户权限;数据库模块可以满足各种查询和浏览及打印的需要,为现场运行和管理人员服务。
下面给出了数据表之一线路参数表:
(2)系统管理模块:
系统管理模块是本系统的重要模块,包括故障信息管理等子模块,并且协调故障诊断等功能模块完成相应的任务,负责系统建立和维护工作。
(3)故障诊断模块:
该模块是本系统的重点。当系统发生简单故障时,仅利用开关和保护信息就可以定位故障元件,而且得到的诊断结果可信度高。但是当系统发生复杂故障,或者开关、保护存在较多误动、拒动以及因信道干扰发生信息丢失或错误等诸多不确定因素时,仅依靠开关和保护信息已经不可能定位到故障元件,过去开发的智能诊断系统给出的结果往往可信度不高,可疑元件较多,甚至是错误的解,要达到准确诊断必须加入新的信息源。随着继电保护及故障录波信息网的建立,丰富的录波信息为进一步诊断提供了基础。本文对在复杂故障情况下利用中心站收集的故障录波信息进一步诊断的方法进行研究,提出了软保护的诊断思想,并建立了相应的面诊断模型,有效地弥补了利用开关、保护信息诊断的局限性。
(4)故障信息分析模块:
该模块首先根据(3)故障诊断模块的诊断结果调用相应元件的录波器数据分析以确定故障类型、故障相别等。如果是线路故障,则利用以上数据结果,采用较为精确的双端故障测距方法[3],定位故障点。再次,运用微机保护中的计算机算法进行谐波含量的分析,以波形显示。最后是阻抗特性,功率方向分析等。本文利用VC++中封装的GUI(图形设备界面)类来实现各种图形的绘制.
(5)保护和开关的动作行为评判模块:
利用相关的关系数据库以及以上的分析结果,对故障元件相关保护及开关的动作行为的正确与否作出判断。本文利用专家系统的知识表示法框架法表示各种关系,用推理的思想,对其进行评价。
2 故障诊断模块
2.1软保护思想的提出
在实际的硬件保护中,由于实时性要求和通讯条件的限制等原因,势必造成保护可能不正确动作的缺陷,因此减弱了现场提供的保护信息的可靠性,所以,在离线分析的基础上,软模型的保护能充分克服以上缺陷,发挥录波信息(主要是电气量信息)的优势,完成对电网复杂故障的精确定位,并对硬件保护(考虑后备配合关系)有一定的评价能力。这样,利用故障录波器的信息,就可以来弥补故障发生时仅用保护、开关动作信息的不足。由于利用波形信息诊断的复杂性,诸多因素都将影响到诊断的性能,鉴于实际保护装置的保护功能对各种具体情况考虑得比较全面,因此,本文采用了软保护的方法来诊断系统中母线、变压器以及线路等元件。软保护就是用纯软件的方式实现实际硬件保护功能的模拟,它有着硬件保护无法比拟的优点:不受人为因素的影响、不受硬件故障的影响、不受自然条件的影响等。
2.2软保护模型的特点
由软件实现的软保护和实际硬件保护相比在功能上保证了完整性以外,实现方式比实际保护简单,诊断的可靠性更高。这是由软保护主要用来诊断的目的和其独有的特点所决定的。
(1)软保护结构模块化,一套完整的软保护模型按功能可以分成多个不同的模块,比如数据送入模块、软保护投入逻辑模块、滤波模块、保护启动模块、故障选相模块、PT/CT自检模块、振荡闭锁模块、阻抗继电器[4]模块、方向继电器模块、差动继电器模块等功能模块;
(2)不同软保护模型中相同模块可重复利用,实现模块的共享;
(3)各模块功能实现方法可以多样化,而且不同软保护采用的方法可以不同,比如选相模块中选相功能实现方法有突变量选相、序分量分区选相及它们的改进算法等;
(4)软保护的数据是静态的,在诊断中已经完全获得了整个故障过程的电流、电压录波数据,所以软保护中各个功能模块可以相互独立,结构简单;
(5)软保护搜集的数据是多端的,即信息具有全面性,这一特点是硬件保护所不具备的,利用这一特性可以对很多功能模块中的实现算法进行改进,提高软保护诊断的可靠性。
(6)软保护输入的数据窗要比实际保护长,因为它还可以加上保护出口到开关跳闸这一段时间,而且软保护在速度上要求并不高,这样可以改进滤波算法,提高结果的精度,这一点对提高软保护诊断的可靠性有直接的效果。
2.3 软保护诊断系统的设计与实现
软保护诊断过程是由故障录波数据记录的CT和PT的测量值作为保护的采样值输入,通过保护功能函数的计算与整定值比较来判断保护是否动作。诊断系统并不是给诊断元件建立所有的实际保护模型,而是按照以下原则选取:Ⅰ)保护范围不明确的保护不建立;Ⅱ)对定值不易整定的保护不建立,以此来避免整定值错误而造成实际保护误动。由上述原则,对母线选用母差保护,对变压器选用差动保护,对线路建立方向、纵差以及距离Ⅰ段保护模型。
2.4故障元件诊断流程
要实现故障录波数据的精确诊断,要求录波输出的数据在时间上同步,一方面利用GPS来实现电网故障测量同步,另外通过分析程序把故障录波所测量到的故障电流或电压突变量起始时刻作为故障分析的起始点。诊断流程以时间为坐标,用开关、保护信息诊断出的可疑故障元件集形成诊断元件链表,对每一个元件匹配相应的软保护和数据库中的数据进行诊断。下面以某线路距离I段保护为例分别说明保护诊断前的匹配过程和保护的诊断流程。
①、保护匹配过程
(1)首先判断开关、保护信息诊断后可疑故障元件链表中是否有数据,如果有,按照链表的顺序逐一取出,假设取出该线路为可疑元件;
(2) 根据该线路名称,查找元件属性参数表,读入其属性参数,并保存在元件属性数据缓冲区;
(3) 根据该线路名称,查找元件与软保护对应表,确定其所配置的软保护;
(4) 根据该线路名称,查找元件与故障录波数据接口对应表,确定其各端录波数据所在的文件,并根据COMTRADE格式读入录波数据缓冲区。
(5) 根据该线路名称和其配置的一种软保护(距离I段),查找软保护配置表,读入保护整定值缓冲区;
(6) 最后,根据该线路名称和距离I段软保护,查找软保护模块功能选择接口IID表,匹配用户所需的功能算法,这样一套完整的距离I段软保护模型就形成了,可以对该线路进行诊断。
②、保护的诊断流程
具体的软保护诊断流程是根据具体的保护模型配置的功能模块顺序进行。下面给出该线路的距离I段软保护的诊断流程,由于数据是静态的,流程按照顺序进行。
(1) 对距离保护进行参数初始化,包括标志位、过程参数等;
(2) 获取录波数据缓冲区的数据结构指针,对PT和CT进行断线自检;
(3) 调用起动模块,判断距离保护是否起动;
(4) 调用选相模块和发展性故障判断模块,确定线路的故障类型;
(5) 调用振荡闭锁模块,判断系统是否发生振荡以及振荡过程中是否又发生短路;
(6) 调用距离I段阻抗元件动作特性(即阻抗继电器)模块,将计算的阻抗值和整定值按照保护动作判据进行判断,给出保护是否动作。
2.5 综合诊断
由于元件诊断模型是单个元件的独立诊断,存在一定的局限性,可能会出现各个元件诊断信息之间发生矛盾和诊断可信度不足的情况,需要在搜集全部智能信息的基础之上,对信息做综合的诊断。比如诊断某一输电线路MN。由元件诊断获取的信息有:线路软差动保护动作,线路的M侧软距离Ⅰ段保护动作,线路的M侧软方向保护动作,线路的N侧软方向保护动作。综合诊断时首先处理两侧距离Ⅰ段信息,由于距离Ⅰ段保护范围是线路全长的80%,所以有一侧软保护动作,那么距离Ⅰ段判线路故障,此时,有M侧软距离Ⅰ段保护动作,则距离Ⅰ段判线路故障;线路软差动保护动作可直接判线路故障,因此由线路软差动保护动作可判线路故障;对软方向保护,只有两侧都动作可判线路故障,由线路的M、N两侧软方向保护都动作判线路故障。最后这三套保护中至少有两套判线路故障可最终判该线路故障,此时线路三套保护都判线路1故障,则该线路为故障元件。另外,对线路的软保护,收集了方向保护、纵差保护、距离Ⅰ段保护的保护缺陷知识,即判断该线路是否出现了知识库中列举的所有会引起上述保护不正确动作的情况,当出现上述情况时,将该保护退出,即失去诊断功能。
这样,整个诊断过程分为分布式软保护诊断和综合诊断两部分。综合诊断是利用分布式诊断的信息做全局性的诊断,得出最后诊断结果,这样做可以尽量弥补由于灵敏度不足漏诊和信息之间有矛盾而误诊的情况,相当于对智能信息进行一次过滤处理。综合诊断的示意图如图3所示:
3 结语
本文提出的这种基于故障录波信息的电网故障诊断系统,实际上兼有故障录波信息管理和故障录波信息分析的功能。在电网调度自动化的重要性日益提高的大背景下,比如三峡水电站投入正常运行以后,将改变以往中国电网区域壁垒的格局,规模剧增,给电网调度赋予了更重要的使命。电网故障诊断系统的开发顺应了电力系统发展的潮流,已是大势所趋。本文的研究经大量仿真测试,具有较高的诊断精度和很强的实用性。
㈡ ZH-5 嵌入式电力故障录波装置上导出的文件在电脑上如何打开
故障录波是采用COMTRADE,其是英文Common format for transient data exchange (COMTRADE) for power systems 的简写,中文一般称为电力系统瞬态数据交换的通用格式。IEEE为了解决数字故障录波装置、数字保护、微机测试装置之间的数据交换问题,与1991年提出了这个标准,并于1999年进行了修订和完善。该标准是一种公用的数据传输格式标准,为不同厂家生产的设备所遵循。每个COMTRADE记录最多包含四个相关的文件。这些文件的文件名相同,但是扩展名不同。四个文件分别是:1 标题文件(.hdr);2 配置文件(.cfg);3数据文件(.dat);4信息文件(.inf)。
联系该装置厂家,其有相应的解析查看软件。
㈢ 故障录波装置的作用是什么构成原理上有哪些主要特点
记录和分析电网故障。记录电网运行数据有电流、电压、开关量, 及有版关元件的有功无功,系统权频率变化及各种参数变化的准确时间等;分析电网故障主要是指分析系统动态过程各参数量的变化规律。故障录波装置必须设置故障录波的专用传输接口,以便远传调度作进一步数据分析处理。
㈣ 故障录波装置有什么作用
故障录波器用于电力系统,可在系统发生故障时,自动地、准确地记录故障前、后过程专的各种电气量属的变化情况,通过对这些电气量的分析、比较、对分析处理事故、判断保护是否正确动作、提高电力系统安全运行水平有着重要作用。
㈤ 故障录波器有什么作用
根据所记录波形,可以正确地分析判断电力系统、线路和设备故障发生的确切地点、发展过程和故障类型,以便迅速排除故障和制定防止对策。分析继电保护和高压断路器地动作情况,及时发现设备缺陷,揭示电力系统中存在的问题。积累第一手材料,加强对电力系统规律的认识,不断提高电力系统运行水平。
故障录波器在电力系统中的作用有以下3种。
1、系统发生故障,继电保护装置动作正确,可以通过故障录波器记录下来的电流量电压量对故障线路进行测距,帮助巡线人员尽快找到故障点,及时采取措施,缩短停电时间,减少损失。
2、线路不明原因跳闸,通过对故障录波器记录的波形进行分析,可以判断出开关跳闸的原因。 从而采取相应措施,将线路恢复送电或者停电检修 ,避免盲目强送造成更大的损失 ,同时为检修策略提供依据。
3、判断继电保护装置的动作行为。当系统由于继电保护装置误动造成无故障跳闸或系统有故障但保护装置拒动时,就要利用故障录波器中记录的开关量动作情况来判断保护的动作是否正确,并可以据此得出有问题的部分,对于较复杂的故障可以通过记录下来的电流电压量对故障量进行计算,从而对保护进行定量考核。
(5)故障录波装置设计资料扩展阅读
在启动判据方面,保护要求在故障当时即刻准确判定,所以对启动判据的准确性和快速性要求很高;故障录波器不需执行跳重合闸,对启动判据的准确性和快速性要求不高,较之保护其判据可大大简化。
故障录波器不仅记录故障过程还要记录故障前的波形和数据,所以在故障录波器中要开辟一定容量的环行内存缓存区,不断地以采取最新数据刷新这个环行缓存区,一旦判明故障,就首先将缓存区中的内容(包括故障前和故障过程的数据))保存起来,直到故障结束。
㈥ 故障录波是什么
电力故障录波装置(有时会简称为暂态故障录波装置TFR),可在电力系统发生故障(如线路短路、接地等,以及系统过电压、负荷不平衡等)时,自动地、准确地记录电力系统故障前、后过程的各种电气量(主要数字量,比如开关状态变化,模拟量,主要是电压、电流数值)的变化情况,通过这些电气量的分析、比较,对分析处理事故、判断保护是否正确动作、提高电力系统安全运行水平的作用。
㈦ 电力故障录波装置是什么干什么用的
电力故障录波装置(有时会简称为暂态故障录波装置TFR),可在电力系统发生故版障(如线路短路、权接地等,以及系统过电压、负荷不平衡等)时,自动地、准确地记录电力系统故障前、后过程的各种电气量(主要数字量,比如开关状态变化,模拟量,主要是电压、电流数值)的变化情况,通过这些电气量的分析、比较,对分析处理事故、判断保护是否正确动作、提高电力系统安全运行水平的作用。
㈧ 电力故障录波装置是什么
电力故障录波装置(有时会简称为暂态故障录波装置TFR),可在电力系统发生故障(如线路专短路、接属地等,以及系统过电压、负荷不平衡等)时,自动地、准确地记录电力系统故障前、后过程的各种电气量(主要数字量,比如开关状态变化,模拟量,主要是电压、电流数值)的变化情况,通过这些电气量的分析、比较,对分析处理事故、判断保护是否正确动作、提高电力系统安全运行水平的作用。
㈨ 故障录波器怎样设计
我国电压等级在110kV 及其以上的系统均为大电流接地系统,在大电流接地系统中,线路单相接地故障在电力系统故障中占有很大的比例,造成单相故障的原因有很多,如雷击、瓷瓶闪落、导线断线引起接地、导线对树枝放电、山火等。线路单相接地故障分为瞬时性故障和永久性故障两种,对于架空线路一般配有重合闸,正常情况下如果是瞬时性故障,则重合闸会启动重合成功;如果是永久性故障将会出现重合于永久性故障再次跳闸而不再重合。为帮助运行人员正确判断和分析大电流接地系统线路单相瞬时性故障,本案例选取了某地区一典型的220kV线路单相瞬时接地故障,并对相关的知识点进行分析。 说明,此案例分析以FHS变电站为主。本案例分析的知识点:(1)大电流接地系统与小电流接地系统的概念。(2)单相瞬时性接地故障的判断与分析。(3)单相瞬时性接地故障的处理方法。(4)保护动作信号分析。(5)单相重合闸分析。(6)单相重合闸动作时限选择分析。(7)录波图信息分析。(8)微机打印报告信息分析。 一、大电流接地系统、小电流接地系统的概念在我国,电力系统中性点接地方式有三种:(1)中性点直接接地方式。(2)中性点经消弧线圈接地方式。(3)中性点不接地方式。 110kV及以上电网的中性点均采用中性点直接接地方式。中性点直接接地系统(包括经小阻抗接地的系统)发生单相接地故障时,接地短路电流很大,所以这种系统称为大电流接地系统。采用中性点不接地或经消弧线圈接地的系统,当某一相发生接地故障时,由于不能构成短路回路,接地故障电流往往比负荷电流小得多,所以这种系统称为小电流接地系统。大电流接地系统与小电流接地系统的划分标准是依据系统的零序电抗X0与正序电抗X1的 比值X0/X1。我国规定:凡是X0/X1≤4~5的系统属于大接地电流系统,X0/X1>4~5的系统则属于小接地电流系统。事故涉及的线路及保护配置图事故涉及的线路和保护配置如图2-1所示,两变电站之间为双回线,线路长度为66.76km。 图2-1 FT线路及保护配置 三、事故基本情况 2001年5月24日16时42分,FHS变电站FT一回线C相瞬时性故障,C相重合闸重合成功,负荷在正常范围内,系统无其他异常,FT一回线(FT为双回线)线路全长66.76km 四、微机监控系统主要信号 FT一回SF-500收发信机动作 FT一回SF-600收发信机动作 FT一回WXH-11X保护动作 FT一回LEP-902A保护动作 FT一回C相断路器跳闸 FT一回WXH-11X重合闸动作 FT一回LEP-902A重合闸动作 FT一回WXH-11X保护呼唤值班员 FT一回LEP-902A保护呼唤值班员 3号录波器动作 5号录波器动作 1号主变压器中性点过流保护掉牌 2号主变压器中性点过流保护掉牌 220kV母线电压低本站220kV其他相关线路高频收发信机动作 五、继电保护屏保护信号 WXH-11X型微机保护:跳C、重合闸、高频收发信、呼唤灯亮。 LFP-902A型微机保护:TC、CH、高频收发信灯亮,液晶屏显示:0++、Z++。 六、微机打印报告信号(1) WXH-11X保护:WXH-11X保护动作1次,保护动作报告如表2-1所示。 表2-1 WXH-11保护动作报告 CPU号保护元件时 间含 义CPU1GBIOTX11ms高频零序方向停信GBIOCK19ms高频零序方向出口CPU21ZKJCK27ms距离Ⅰ段出口CPU4T1QDCH55ms单跳起动重合闸CHCK512ms重合闸出口CJ=33.5km测距 (2)LFP-902A保护:LFP-902A保护动作1次,保护动作报告如表2-2所示。 表2-2 LFP-902A保护动作报告 CPU号保护元件时间含义CPU1Z++27ms高频距离0++27ms高频零序方向元件C27msC相跳闸CPU2CH890 ms重合闸时间CJ=33.6km测距 最大电流(Imax):2.63×1200(A)零序电流(I0):2.28×1200(A) 七、两侧保护动作情况分析 1.两侧保护的配置情况 FT线两侧的保护配置如图2-1所示。(1) 第一套保护。WXH-11X
这个问题故障录波器怎样设计?,好难啊,辛辛苦苦回答了,给我个满意答案把
㈩ 故障录波母线电流启动的整定值为什么是115
变电站微机型故障录波装置设计方案
夏芳
刘沛
摘要:电力系统的发展对变电站故障录波装置提出了更高的要求,计算
机软硬件技术的飞速进步为微机型故障录波装置的性能改善提供了必要
条件。本文介绍了一种基于当前先进的计算机技术的高性能的变电站故
障录波装置的设计方案,较详细地分析说明了其软硬件结构和功能。
关键词:变电站;故障录波
中图分类号:
TM935.39
文献标识码:
B
文章编号:
1003-4897(2000)03-0040-04
A design of fault recorder used in substation
XIA Fang,LIU Pei
(Huazhong University of Science and Technology,Wuhan
430074,China)
Abstract:With
the
development
of
the
power
system,the
requirement
for fault recorder of substation is becoming more and more
strict.The great progress of software and hardware technology of
computer provides the essential condition for the improvement of
fault recorder.A design of multi microprocessor based fault
recorder with better performance is given in this paper.The
structure and functions of its hardware and software are
illuminated in detail.
Keywords:substation;fault recorder
1
引言
随着电力网络的扩大化复杂化和区域网互联趋势的到来,电力系统
的行为也将越来越复杂。一些原有的假设条件和简化模型的适用性都将
接受进一步的挑战与检验。在此情形下,丰富详尽的现场实测数据,尤
其是故障或非正常状态下的数据,无疑将具有越来越重要的价值。它们
不仅是分析故障原因、检验继电保护动作行为的依据,也为电力工作者
研究了解复杂系统的真实行为、发现其规律提供了宝贵资料。因此,故
障录波装置作为电力系统暂态过程的记录设备,电力系统对其要求也越
来越高了。计算机技术的不断突飞猛进,为微机型故障录波装置进一步
扩大信息量,提高可靠性、准确性、灵活性、实时性,以及共享信息资
源,提供了必要的有利条件。
本文提出了一种利用当前先进的计算机技术实现微机型故障录波装
置的方案,以提高故障录波装置的性能,使之更好地适应电力系统发展
的需要。