❶ 电力电子器件在变流装置中的实际效能取决于哪两方面的因素
力电子器件再别再别流装置中的实际效能取决于两方面的因素。
❷ 电力电子变流技术是什么
电力电子变流是个交叉的学科,它是指用现代电力电子技术(电力版学、电子学、控制论)来权实现交流变直流,和直流变交流。他对于现在科技的发展、节能、机车的运行等有着重要的作用
如果你打算从事这方面的工作或者这方面的学习及研究,还是不错的
❸ 电力电子模块在各行业中的作用是什么原理是什么
电力电子模块有很多种。常见的有整流模块、逆变(变频)模块以及斩波模块。整版流模块主要是是用来权将交流电变换成直流电,逆变模块主要是用来将直流电变换为交流电,而斩波模块是用来进行直流变换的。原理不是一句话、两句话能说清楚的,你要找点专业书看看。
但愿对你有所帮助。
❹ 介绍电力电子装置在调速系统中的位置及作用,希望越详细越好
秋学期我们也有这门课,但我没选这门课,所以没办法提出具体建议,下面这是我们学校这门课的教学大纲,你参考一下,希望有帮助! 课程编号:1011022 课程名称:电力电子技术在电力系统中的应用 英文名称:Application of Power Electronics in Power System 学分学时:2学分,36学时 开课学期:第二学期 开课单位:电气工程学院 先修课程:电力电子技术基础 授课教师:吴为麟教授 课程内容与基本要求: 对目前在电力系统中实用的电力电子装置(静止无功补偿、静态励磁、固态开关、有源滤波、高压直流输电系统)分析着手,亦对已有广泛应用的电力电子工业装置、民用设备作一概述。对新近的灵活输电技术和用户电力技术,以及在新能源系统和能量储存系统中的应用进行较为详尽的阐述。着重介绍了装置的应用现状、问题、展望,也可了解国际上电力电子技术的一些前沿信息。 主要章节: 一、 绪论 二、 实用电力电子装置 静止无功补偿装置、固态励磁装置、固态开关投切技术、有源滤波装置、高压直流输电 三、 工业应用 四、 民用设备 五、 灵活输电技术和用户电力技术 六、 新能源系统与能量储存系统中应用 主要参考书 1. Power Electronic-Converters Applications and Design , Mohao . Undeland 1989 2. 半导体电力变换 田野良男 1987 6718 Application of Power Electronics Sem.2 Class 2 , cr.2. Wu Weilin Professor SVC (Static Var-Compensator),AF(Active Filter), HVDCTS(High-Voltage DC Transmission System), which are applications of power Electronics in Power System , are analysed in the text; it also has the sketch of Power Electronics instrial devices, civil application which have already widely used. Flexible AC transmission System technology, customer power technology, and application in the new energy source system, energy storage system are presented in detail; and focuses on introcing the problem, Prospect, which occurs in the application. From studying this text, the information of the front field of international Power Electronics Technology can be got. Preresquisit: 06311
❺ 电力电子变换器的定义是什么,作用和原理是什么
所谓电力电子变换器实际就是变频器,通过改变逆变器的输出频率来调节输出的电能,现在应用较多的是脉冲整流器,也叫PWM整流器,可以实现能量双向流动。
❻ 电力电子变流技术的简介
本书可作为高等院校电类、机类专业的教学用书,也可作为工程技术人员的培训教材或参考书。
❼ 电力电子器件的缓冲电路有哪些主要作用
1、 缓冲电路的作用与基本类型
电力电子器件的缓冲电路(snubber circuit)又称吸收电路,它是电力电子器件的一种重要的保护电路,不仅用于半控型器件的保护,而且在全控型器件(如GTR、GTO、功率MOSFET和IGBT等)的应用技术中起着重要的作用。
晶闸管开通时,为了防止过大的电流上升率而烧坏器件,往往在主电路中串入一个扼流电感,以限制过大的di/dt,串联电感及其配件组成了开通缓冲电路,或称串联缓冲电路。晶闸管关断时,电源电压突加在管子上,为了抑制瞬时过电压和过大的电压上升率,以防止晶闸管内部流过过大的结电容电流而误触发,需要在晶闸管的两端并联一个RC网络,构成关断缓冲电路,或称并联缓冲电路。
GTR、GTO等全控型自关断器件在实际使用中都必须配用开通和关断缓冲电路;但其作用与晶闸管的缓冲电路有所不同,电路结构也有差别。主要原因是全控型器件的工作频率要比晶闸管高得多,因此开通与关断损耗是影响这种开关器件正常运行的重要因素之一。例如,GTR在动态开关过程中易产生二次击穿的现象,这种现象又与开关损耗直接相关。所以减少全控器件的开关损耗至关重要,缓冲电路的主要作用正是如此,也就是说GTR和功率MOSFET用缓冲电路抑制di/dt和/dt,主要是为了改变器件的开关轨迹,使开关损耗减少,进而使器件可靠地运行。
没有缓冲电路时GTR开关过程中集电极电压uCE和集电极电流iC的波形,开通和关断过程中都存在uCE和iC同时达到最大值的时刻;因此出现了瞬时的最大开关损耗功率Pon和Poff,从而危及器件的安全。所以,应采用开通和关断缓冲电路,抑制开通时的di/dt,降低关断时的/dt,使uCE和iC的最大值不会同时出现。
GTR开关过程中的uCE和iC的轨迹,其中轨迹1和2是没有缓冲电路的情况,开通时uCE由UCC(电源电压)经矩形轨迹降到0,相应地iC由0升到ICM;关断时iC由ICM经矩形轨迹降到0,相应地uCE由0升高到UCC。不但集电极电压和电流的最大值同时出现,而且电压和电流都有超调现象,这种情况下瞬时功耗很大,极易产生局部热点,导致GTR的二次击穿而损坏。加上缓冲电路后,uCE和iC的开通与关断轨迹分别如3和4所示,由可见,其轨迹不再是矩形,避免了两者同时出现最大值的情况,大大降低了开关损耗,并且最大程度地利用于GTR的电气性能。
GTR的开通缓冲电路用来限制导通时的di/dt,以免发生元件的过热点,而且它在GTR逆变器中还起着抑制贯穿短路电流的峰值及其di/dt的作用。GTO的关断缓冲电路不仅为限制GTO关断时再加电压的/dt及过电压,而且对降低GTO的关断损耗,使GTO发挥应有的关断能力,充分发挥它的负荷能力起重要作用。
IGBT的缓冲电路功能更侧重于开关过程中过电压的吸收与抑制,这是由于IGBT的工作频率可以高达30~50kHz;因此很小的电路电感就可能引起颇大的LdiC/dt,从而产生过电压,危及IGBT的安全。PWM逆变器中IGBT在关断和开通中的uCE和iC波形。在iC下降过程中IGBT上出现了过电压,其值为电源电压UCC和LdiC/dt两者的叠加。
为开通时的uCE和iC波形,增长极快的iC出现了过电流尖峰iCP,当iCP回落到稳定值时,过大的电流下降率同样会引起元件上的过电压而须加以吸收。逆变器中IGBT开通时出现尖峰电流,其原因是由于在刚导通的IGBT负载电流上叠加了桥臂中互补管上反并联的续流二极管的反向恢复电流,所以在此二极管恢复阻断前,刚导通的IGBT上形成逆变桥臂的瞬时贯穿短路,使iC出现尖峰,为此需要串入抑流电感,即串联缓冲电路,或放大IGBT的容量。
综上所述,缓冲电路对于工作频率高的自关断器件,通过限压、限流、抑制di/dt和/dt,把开关损耗从器件内部转移到缓冲电路中去,然后再消耗到缓冲电路的电阻上,或者由缓冲电路设法再反馈到电源中去。此缓冲电路可分为两在类,前一种是能耗型缓冲电路,后一种是反馈型缓冲电路。能耗型缓冲电路简单,在电力电子器件的容量不太大,工作频率也不太高的场合下,这种电路应用很广泛。
❽ 什么是电力电子变流技术
电力电子变流是个交叉的学科,它是指用现代电力电子技术(电力学、电子学、控制论)来实现交流变直流,和直流变交流。他对于现在科技的发展、节能、机车的运行等有着重要的作用应用于电力领域的电子技术,使用电力电子器件(Power Electronic Device)对电能进行变换和控制的技术.电力电子技术主要用于电力变换(Power Conversion). 1.2电力电子技术的两个分支: 电力电子变流技术(Power Electronic Conversion Technique) 用电力电子器件(Power Electronic Device)构成电力变换电路(Power Conversion Circuit)和对其进行控制的技术,及构成电力电子装置(Power Electronic Equipment)和电力电子系统(Power Electronic System)的技术.电力电子技术的核心,理论基础是电路理论(Theory of Electric circuit). 电力电子器件制造技术(Manufacture Technique of Power Electronic Device)电力电子器件制造技术的基础,理论基础是半导体物理(Semiconctor Physics)。 1.3 电力变换变换器分为四大类: 交流→直流——整流 直流→交流——逆变 直流→直流——斩波 来源: http://tede.cn交流→交流——交流调压,变频 1.4 电力电子技术和电子技术的关系 电力电子器件制造技术和电子器件(Electronic Device)制造技术的理论基础是一样的,大多数工艺也相同。现代电力电子器件制造大都使用集成电路(Integrate Circuit-IC)制造工艺,采用微电子(Micro-electronics)制造技术,许多设备都和微电子器件制造设备通用,说明二者同根同源. 电力电子电路(Power Electronic Circuit)和电子电路(Electronic Circuit)许多分析方法一致,仅应用目的不同.广义而言,电子电路中的功放和功率输出也可算做电力电子电路.电力电子电路广泛用于电视机,计算机等电子装置中,其电源部分都是电力电子电路. 器件的工作状态: 信息电子,既可放大,也可开关;电力电子,为避免功率损耗过大,总在开关状态 ——电力电子技术的一个重要特征. 1.5电力电子技术与电气工程的关系 主要关系:电力电子技术广泛用于电气工程(Electrical Engineering)中. 电力电子装置广泛用于高压直流输电(High-Voltage DC Transmission),静止无功补偿(Static VAR Compensate),电力机车牵引(Electrical Power Motorcycle Driving),交直流电力传动(AC/DC Power Driving),电解(Electrolyze),励磁(Excitation),电加热(Electric Power Heating),高性能交直流电源(High-Performance AC/DC Power Supply)等电力系统(Electric Power System)和电气工程(Electrical Engineering). 请登陆:输配电设备网 浏览更多信息 通常把电力电子技术归属于电气工程学科 电力电子技术是电气工程学科中一个最为活跃的分支,其不断进步给电气工程的现代化以巨大的推动力 1.6 电力电子技术与控制理论的关系 1)控制理论广泛用于电力电子技术,使电力电子装置和系统的性能满足各种需求; 2)电力电子技术可看成"弱电控制强电"的技术,是"弱电和强电的接口",控制理论是实现该接口的强有力纽带; 3)控制理论和自动化技术密不可分,而电力电子装置是自动化技术的基础元件和重要支撑技术. 2、电力电子技术的发展史 电力电子器件的发展对电力电子技术的发展起着决定性的作用,因此,电力电子技术的发展史是以电力电子器件的发展史为纲的. 1904年出现了电子管(Vacuum tube),能在真空中对电子流进行控制,并应用于通信和无线电,从而开了电子技术之先河 20年代末出现了水银整流器(Mercury Rectifier),其性能和晶闸管(Thyristor)很相似.在30年代到50年代,是水银整流器发展迅速并大量应用的时期.它广泛用于电化学工业,电气铁道直流变电所,轧钢用直流电动机的传动,甚至用于直流输电 来源: www.tede.cn 1947年美国贝尔实验室发明晶体管(Transistor),引发了电子技术的一场革命 1957年美国通用电气公司研制出第一个晶闸管(Thyristor) 1960年我国研究成功硅整流管(Silicon Rectifying Tube/Rectifier Diode) 1962年我国研究成功晶闸管(Thyristor) 70年代出现电力晶体管(Giant Transistor-GTR),电力场效应管(Metallic Oxide Semiconctor Field Effect Transistor-MOSFET) 80年代后期开始:复合型器件. 以绝缘栅极双极型晶体管(Insulated -Gate Bipolar Transistor-IGBT)为代表,IGBT是电力场效应管(MOSFET)和双极结型晶体管( Bipolar Junction Transistor-BJT)的复合.它集MOSFET的驱动功率小,开关速度快的优点和BJT通态压降小,载流能力大的优点于一身,性能十分优越,使之成为现代电力电子技术的主导器件.与IGBT相对应,MOS控制晶闸管(MOS Controlled Transistor-MCT)和集成门极换流晶闸管(Intelligent Gate-Commutated Thyristor-IGCT)等都是MOSFET和GTO的复合,它们也综合了MOSFET和GTO两种器件的优点. 90年代主要有: 功率模块(Power Mole):为了使电力电子装置的结构紧凑,体积减小,常常把若干个电力电子器件及必要的辅助元件 做成模块的形式,这给应用带来了很大的方便. 请登陆:输配电设备网 浏览更多信息 功率集成电路(Power Integrated Circuit-PIC):把驱动,控制,保护电路和功率器件集成在一起,构成功率集成电路(PIC).目前其功率都还较小,但代 表了电力电子技术发展的一个重要方向 . 智能功率模块(Intelligent Power Mole-IPM)则专指IGBT及其辅助器件与其保护和驱动电路的单片集成,也称智能IGBT(Intelligent IGBT). 高压集成电路(High Voltage Integrated Circuit-HVIC):一般指横向高压器件与逻辑或模拟控制电路的单片集成. 智能功率集成电路(Smart Power Integrated Circuit-SPIC):一般指纵向功率器件与逻辑或模拟控制电路的单片集成.
❾ 变流技术中,续流二极管在电路里起什么作用
在电子变流电路中,整流部分单相桥式整流是实际应用最多的单相整流电专路。而属三相桥式整流是电力系统特别是发电机励磁系统应用最多的方式。这两种电路都要接入续流二极管。其作用大致是一样的,以单相桥式电路为例说明:当可控整流桥接入感性负载时,由于电感电流不能突变,在可控硅关断期内,必须在负载两端接入续流二极管以保持电感电流的通路,以防止可控硅关断时在电感负载两端产生危险的过电压和可控硅能够换相导通。
然而发电机励磁系统应用较多的三相桥式整流电路有三相半控桥与三相全控桥电路之分。因此为了保证整流元件可靠换流,半控桥需要在感性负载两端并联续流二极管,而全控桥不需要这样做。当导通角改变时,半控桥的平均电压和线电流的变化较全控桥慢。
在现如今使用较多的如变频器等设备中包含有整流和逆变等变流电路,其中用到的续流二极管,一般都是在变频器内部的直流母线上加续流二极管,那是因为如果负载是电感元件时当母线上大容量的逆变器发生故障时,直流母线上会产生巨大的反向浪涌能量,此时,我们需要给这些能量提供一个泻放通道,否则巨大的能量将击穿或烧毁小逆变器. 而这个通道就需要二极管来构成,故应为续流二极管.