① 初二物理的简单实验装置
1、市面上来激光笔不源贵,还挺好玩,买一个,由于激光笔射出光线 平行度好,可近似认为是平行光
找三个点(三点一线的),顺着射过去,演示光直线性原理,检测你家地面、墙壁、家具等的直线度(这个是(3)要求的解决实际问题的)。
找个小镜子,可以演示各种反射原理
向鱼缸里照射(用手机拍下照片)可以演示各种折射原理,
找个小孔(很小的孔,或者卖的专门的图形接头),射到墙上,可以演示光衍射原理,
找个放大镜射过去,光斑大小变化,演示折射原理,位置不同光斑大小变化,演示放大镜物像间关系。
等等,凡是做过的物理题都可以拿来试试仿真下....
2、物态变化
最简单的是小药店(大药店不卖)买个,注射针管,
吸点水,里面没有气泡的情况下,用手堵住吸孔,继续拔,会看到水像沸腾一样冒泡,
原理是压力越低,液体沸点越低, 属于【气化】过程
重要的是你在以后的生活中自己注意观察思考,你会发现很多身边有意思的东东。
② 实验装置图在电脑上怎么画
用一些工具软件能画出你要的形状,调整距离等工作也会耗费大量时间(我深有回体会),不如扫描后当答作插图,自己动手也比较容易达到满意的标准。
绘图工具,大众化一点的就是office里面VISIO,功能全,不过对一些专业的图支持不算很好。其他的,工业设计用的最多的就是CAD了,不过免费的功能都很很少,最多拿来画画房屋平面图就不错了,而且用盗版的要被查的,其中专业制图较多的有AutoCAD、SolidWorks
下载一个 chemdraw 软件,这个是专门针对一些化学装置图和复杂的化学结构式的,使用也非常简单 。
③ 高中物理实验在家可以做吗
可以做
高考要求的学生实验(19个)按广东高考考点编制
113长度的测量
会使用游标卡尺和螺旋测微器,掌握它测量长度的原理和方法.
114. 研究匀变速直线运动
右图为打点计时器打下的纸带。选点迹清楚的一条,舍掉开始比较密集的点迹,从便于测量的地方取一个开始点O,然后(每隔5个间隔点)取一个计数点A、B、C、D …。测出相邻计数点间的距离s1、s2、s3 … 利用打下的纸带可以:
⑴求任一计数点对应的即时速度v:如
(其中T=5×0.02s=0.1s)
⑵利用“逐差法”求a:
⑶利用上图中任意相邻的两段位移求a:如
⑷利用v-t图象求a:求出A、B、C、D、E、F各点的即时速度,画出如右的v-t图线,图线的斜率就是加速度a。
注意事项 1、每隔5个时间间隔取一个计数点,是为求加速度时便于计算。
2、所取的计数点要能保证至少有两位有效数字
115.探究弹力和弹簧伸长的关系(胡克定律)探究性实验
利用右图装置,改变钩码个数,测出弹簧总长度和所受拉力(钩码总重量)的多组对应值,填入表中。算出对应的弹簧的伸长量。在坐标系中描点,根据点的分布作出弹力F随伸长量x而变的图象,从而发确定F-x间的函数关系。解释函数表达式中常数的物理意义及其单位。
该实验要注意区分弹簧总长度和弹簧伸长量。对探索性实验,要根据描出的点的走向,尝试判定函数关系。(这一点和验证性实验不同。)
116.验证力的平行四边形定则
目的:实验研究合力与分力之间的关系,从而验证力的平行四边形定则。
器材:方木板、白纸、图钉、橡皮条、弹簧秤(2个)、直尺和三角板、细线
该实验是要用互成角度的两个力和另一个力产生相同的效果,看其用平行四边形定则求出的合力与这一个力是否在实验误差允许范围内相等,如果在实验误差允许范围内相等,就验证了力的合成的平行四边形定则。
注意事项:
1、使用的弹簧秤是否良好(是否在零刻度),拉动时尽可能不与其它部分接触产生摩擦,拉力方向应与轴线方向相同。
2、实验时应该保证在同一水平面内
3、结点的位置和线方向要准确
117.验证动量守恒定律
由于v1、v1/、v2/均为水平方向,且它们的竖直下落高度都相等,所以它们飞行时间相等,若以该时间为时间单位,那么小球的水平射程的数值就等于它们的水平速度。在右图中分别用OP、OM和O /N表示。因此只需验证:m1OP=m1OM+m2(O /N-2r)即可。
注意事项:
⑴必须以质量较大的小球作为入射小球(保证碰撞后两小球都向前运动)。要知道为什么?
⑵入射小球每次应从斜槽上的同一位置由静止开始下滑
(3)小球落地点的平均位置要用圆规来确定:用尽可能小的圆把所有落点都圈在里面,圆心就是落点的平均位置。
(4)所用的仪器有:天平、刻度尺、游标卡尺(测小球直径)、碰撞实验器、复写纸、白纸、重锤、两个直径相同质量不同的小球、圆规。
(5)若被碰小球放在斜槽末端,而不用支柱,那么两小球将不再同时落地,但两个小球都将从斜槽末端开始做平抛运动,于是验证式就变为:m1OP=m1OM+m2ON,两个小球的直径也不需测量了。
讨论此实验的改进方法:
118.研究平抛物体的运动(用描迹法)
目的:进上步明确,平抛是水平方向和竖直两个方向运动的合成运动,会用轨迹计算物体的初速度
该实验的实验原理:
平抛运动可以看成是两个分运动的合成:
一个是水平方向的匀速直线运动,其速度等于平抛物体的初速度;
另一个是竖直方向的自由落体运动。
利用有孔的卡片确定做平抛运动的小球运动时的若干不同位置,然后描出运动轨迹,
测出曲线任一点的坐标x和y,利用
就可求出小球的水平分速度,即平抛物体的初速度。
此实验关健:如何得到物体的轨迹(讨论)
该试验的注意事项有:
⑴斜槽末端的切线必须水平。 ⑵用重锤线检验坐标纸上的竖直线是否竖直。
⑶以斜槽末端所在的点为坐标原点。(4)每次小球应从斜槽上的同一位置由静止开始下滑
(5)如果是用白纸,则应以斜槽末端所在的点为坐标原点,在斜槽末端悬挂重锤线,先以重锤线方向确定y轴方向,再用直角三角板画出水平线作为x轴,建立直角坐标系。
119.验证机械能守恒定律
验证自由下落过程中机械能守恒,图示纸带的左端是用夹子夹重物的一端。
⑴要多做几次实验,选点迹清楚,且第一、二两点间距离接近2mm的纸带进行测量。
⑵用刻度尺量出从0点到1、2、3、4、5各点的距离h1、h2、h3、h4、h5,
利用“匀变速直线运动中间时刻的即时速度等于该段位移内的平均速度”,
算出2、3、4各点对应的即时速度v2、v3、v4,验证与2、3、4各点对应的重力势能减少量mgh和动能增加量 是否相等。
⑶由于摩擦和空气阻力的影响,本实验的系统误差总是使
⑷本实验不需要在打下的点中取计数点。也不需要测重物的质量。
注意事项:
1、先通电源,侍打点计时器正掌工作后才放纸带 2、保证打出的第一个占是清晰的点
3、测量下落高度必须从起点开始算 4、由于有阻力,所以 稍小于
5、此实验不用测物体的质量(无须天平)
120.用单摆测定重力加速度 由于g;可以与各种运动相结合考查
本实验用到刻度尺、卡尺、秒表的读数(生物表脉膊),1米长的单摆称秒摆,周期为2秒
摆长的测量:让单摆自由下垂,用米尺量出摆线长L/(读到0.1mm),用游标卡尺量出摆球直径(读到0. 1mm)算出半径r,则摆长L=L/+r
开始摆动时需注意:摆角要小于5°(保证做简谐运动);
摆动时悬点要固定,不要使摆动成为圆锥摆。
必须从摆球通过最低点(平衡位置)时开始计时(倒数法),
测出单摆做30至50次全振动所用的时间,算出周期的平均值T。
改变摆长重做几次实验,
计算每次实验得到的重力加速度,再求这些重力加速度的平均值。
若没有足够长的刻度尺测摆长,可否靠改变摆长的方法求得加速度
121.用油膜法估测分子的大小
①实验前应预先计算出每滴油酸溶液中纯油酸的实际体积:先了解配好的油酸溶液的浓度,再用量筒和滴管测出每滴溶液的体积,由此算出每滴溶液中纯油酸的体积V。
②油膜面积的测量:油膜形状稳定后,将玻璃板放在浅盘上,将油膜的形状用彩笔画在玻璃板上;将玻璃板放在坐标纸上,以1cm边长的正方形为单位,用四舍五入的方法数出油膜面
122用描迹法画出电场中平面上等势线
目的:用恒定电流场(直流电源接在圆柱形电极板上)模拟静电场(等量异种电荷)描绘等势线方法
实验所用的电流表是零刻度在中央的电流表,在实验前应先测定电流方向与指针偏转方向的关系:
将电流表、电池、电阻、导线按图1或图2 连接,其中R是阻值大的电阻,r是阻值小的电阻,用导线的a端试触电流表另一端,就可判定电流方向和指针偏转方向的关系。
该实验是用恒定电流的电流场模拟静电场。与电池正极相连的A电极相当于正点电荷,与电池负极相连的B相当于负点电荷。白纸应放在最下面,导电纸应放在最上面(涂有导电物质的一面必须向上),复写纸则放在中间。
电源6v:两极相距10cm并分为6等分,选好基准点,并找出与基准点电势相等的点。(电流表不偏转时这两点的电势相等)
注意事项:
1、电极与导电纸接触应良好,实验过程中电极位置不能变运动。
2、导电纸中的导电物质应均匀,不能折叠。
3、若用电压表来确定电势的基准点时,要选高内阻电压表
123.测定金属的电阻率(同时练习使用螺旋测微器)
被测电阻丝的电阻(一般为几欧)较小,所以选用电流表
外接法;可确定电源电压、电流表、电压表量程均不宜太大。
本实验不要求电压调节范围,可选用限流电路。
因此选用下面左图的电路。开始时滑动变阻器的滑动触头应该在右端。
本实验通过的电流不宜太大,通电时间不能太长,以免电阻丝发热后电阻率发生明显变化。
实验步骤:
1、用刻度尺测出金属丝长度
2、螺旋测微器测出直径(也可用积累法测),并算出横截面积。
3、用外接、限流测出金属丝电阻
4、设计实验表格计录数据(难点)注意多次测量求平均值的方法
原理:
124.描绘小电珠的伏安特性曲线
器材:电源(4-6v)、直流电压表、直流电流表、滑动变阻器、小灯泡(4v,0.6A 3.8V,0.3A)灯座、单刀开关,导线若干
注意事项:
①因为小电珠(即小灯泡)的电阻较小(10Ω左右)所以应该选用安培表外接法。
②小灯泡的电阻会随着电压的升高,灯丝温度的升高而增大,且在低电压时温度随电压变化比较明显,因此在低电压区域内,电压电流应多取几组,所以得出的U-I曲线不是直线。
为了反映这一变化过程,
③灯泡两端的电压应该由零逐渐增大到额定电压(电压变化范围大)。所以滑动变阻器必须选用调压接法。
在上面实物图中应该选用上面右面的那个图,
④开始时滑动触头应该位于最小分压端(使小灯泡两端的电压为零)。
由实验数据作出的I-U曲线如图,
⑤说明灯丝的电阻随温度升高而增大,也就说明金属电阻率随温度升高而增大。
(若用U-I曲线,则曲线的弯曲方向相反。)
⑥若选用的是标有“3.8V 0.3A”的小灯泡,电流表应选用0-0.6A量程;电压表开始时应选用0-3V量程,当电压调到接近3V时,再改用0-15V量程。
125.把电流表改装为电压表
微安表改装成各种表:关健在于原理
首先要知:微安表的内阻Rg、满偏电流Ig、满偏电压Ug。
步骤:
(1)半偏法先测出表的内阻Rg;最后要对改装表进行较对。
(2) 电流表改装为电压表:串联电阻分压原理
(n为量程的扩大倍数)
(3)弄清改装后表盘的读数
(Ig为满偏电流,I为表盘电流的刻度值,U为改装表的最大量程, 为改装表对应的刻度)
(4)改装电压表的较准(电路图?)
(2)改为A表:串联电阻分流原理
(n为量程的扩大倍数)
(3)改为欧姆表的原理
两表笔短接后,调节Ro使电表指针满偏,得 Ig=E/(r+Rg+Ro)
接入被测电阻Rx后通过电表的电流为 Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)
由于Ix与Rx对应,因此可指示被测电阻大小
126测定电源的电动势和内电阻
外电路断开时,用电压表测得的电压U为电动势E U=E
原理:根据闭合电路欧姆定律:E=U+Ir,
(一个电流表及一个电压表和一个滑动变阻器)
①单一组数据计算,误差较大
②应该测出多组(u,I)值,最后算出平均值
③作图法处理数据,(u,I)值列表,在u--I图中描点,最后由u--I图线求出较精确的E和r。
本实验电路中电压表的示数是准确的,电流表的示数比通过电源的实际电流小,
所以本实验的系统误差是由电压表的分流引起的。为了减小这个系统误差, 电阻R的取值应该小一些,所选用的电压表的内阻应该大一些。
为了减小偶然误差,要多做几次实验,多取几组数据,然后利用U-I图象处理实验数据:
将点描好后,用直尺画一条直线,使尽量多的点在这条直线上,而且在直线两侧的点数大致相等。这条直线代表的U-I关系的误差是很小的。
它在U轴上的截距就是电动势E(对应的I=0),它的斜率的绝对值就是内阻r。
(特别要注意:有时纵坐标的起始点不是0,求内阻的一般式应该是 。
为了使电池的路端电压变化明显,电池的内阻宜大些(选用使用过一段时间的1号电池)
127.用多用电探索黑箱内的电学元件
熟悉表盘和旋钮
理解电压表、电流表、欧姆表的结构原理
电路中电流的流向和大小与指针的偏转关系
红笔插“+”; 黑笔插“一”且接内部电源的正极
理解: 半导体元件二极管具有单向导电性,正向电阻很小,反向电阻无穷大
步骤:
①、用直流电压档(并选适当量程)将两笔分别与A、B、C三点中的两点接触,从表盘上第二条刻度线读取测量结果,测量每两点间的电压,并设计出表格记录。
②、用欧姆档(并选适当量程)将红、黑表笔分别与A、B、C三点中的两点接触,从表盘的欧姆标尺的刻度线读取测量结果,任两点间的正反电阻都要测量,并设计出表格记录。
128.练习使用示波器 (多看课本)
129.传感器的简单应用
传感器担负采集信息的任务,在自动控制、信息处理技术都有很重要的应用。
如:自动报警器、电视摇控接收器、红外探测仪等都离不开传感器
传感器是将所感受到的物理量(力热声光)转换成便于测量的量(一般是电学量)的一类元件。
工作过程:通过对某一物理量敏感的元件,将感受到的物理量按一定规律转换成便于利用的信号,转换后的信号经过相应的仪器进行处理,就可以达到自动控制等各种目的。
热敏电阻,升温时阻值迅速减小
光敏电阻,光照时阻值减小, 导致电路中的电流、电压等变化来达到自动控制
光电计数器
集成电路 将晶体管,电阻,电容器等电子元件及相应的元件制作在一块面积很小的半导体晶片上,使之成为具有一定功能的电路,这就是集成电路。
130.测定玻璃折射率
实验原理:如图所示,入射光线AO由空气射入玻璃砖,经OO1后由O1B方向射出。作出法线NN1,
则由折射定律
对实验结果影响最大的是光在波璃中的折射角 的大小
应该采取以下措施减小误差:
1、采用宽度适当大些的玻璃砖,以上。
2、入射角在15至75范围内取值。
3、在纸上画的两直线尽量准确,与两平行折射面重合,为了更好地定出入、出射点的位置。
4、在实验过程中不能移动玻璃砖。
注意事项:
手拿玻璃砖时,不准触摸光洁的光学面,只能接触毛面或棱,
严禁把玻璃砖当尺画玻璃砖的界面; 实验过程中,玻璃砖与白纸的相对位置不能改变;
大头针应垂直地插在白纸上,且玻璃砖每一侧的两个大头针距离应大一些,以减小确定光路方向造成的误差;
入射角应适当大一些,以减少测量角度的误差。
131.用双缝干涉测光的波长
器材:光具座、光源、学生电源、导线、滤光片、单缝、双缝、遮光筒、毛玻璃屏、
测量头、刻度尺、
相邻两条亮(暗)条纹之间的距离 ;用测量头测出a1、a2(用积累法)
测出n条亮(暗)条纹之间的距离a, 求出
双缝干涉: 条件f相同,相位差恒定(即是两光的振动步调完全一致) 当其反相时又如何?
亮条纹位置: ΔS=nλ;
暗条纹位置: (n=0,1,2,3,、、、);
条纹间距 :
(ΔS :路程差(光程差);d两条狭缝间的距离;L:挡板与屏间的距离) 测出n条亮条纹间的距离a
补充实验:
1.伏安法测电阻
伏安法测电阻有a、b两种接法,a叫(安培计)外接法,b叫(安培计)内接法。
①估计被测电阻的阻值大小来判断内外接法:
外接法的系统误差是由电压表的分流引起的,测量值总小于真实值,小电阻应采用外接法;内接法的系统误差是由电流表的分压引起的,测量值总大于真实值,大电阻应采用内接法。
②如果无法估计被测电阻的阻值大小,可以利用试触法:
如图将电压表的左端接a点,而将右端第一次接b点,第二次接c点,观察电流表和电压表的变化,
若电流表读数变化大,说明被测电阻是大电阻,应该用内接法测量;
若电压表读数变化大,说明被测电阻是小电阻,应该用外接法测量。
(这里所说的变化大,是指相对变化,即ΔI/I和U/U)。 (1)滑动变阻器的连接
滑动变阻器在电路中也有a、b两种常用的接法:a叫限流接法,b叫分压接法。
分压接法:被测电阻上电压的调节范围大。
当要求电压从零开始调节,或要求电压调节范围尽量大时应该用分压接法。
用分压接法时,滑动变阻器应该选用阻值小的;“以小控大”
用限流接法时,滑动变阻器应该选用阻值和被测电阻接近的。
(2)实物图连线技术
无论是分压接法还是限流接法都应该先把伏安法部分接好;
对限流电路:
只需用笔画线当作导线,从电源正极开始,把电源、电键、滑动变阻器、伏安法四部分依次串联起来即可(注意电表的正负接线柱和量程,滑动变阻器应调到阻值最大处)。
对分压电路,
应该先把电源、电键和滑动变阻器的全部电阻丝 三部分用导线连接起来,然后在滑动变阻器电阻丝两端之中任选一个接头,比较该接头和滑动触头两点的电势高低,
根据伏安法部分电表正负接线柱的情况,将伏安法部分接入该两点间。
12.伦琴射线管
电子被高压加速后高速射向对阴极,从对阴极上激发出X射线。在K、A间是阴极射线即高速电子流,从A射出的是频率极高的电磁波,即X射线。X射线粒子的最高可能的频率可由Ue=hν计算。
13.α粒子散射实验(第二册257页)
全部装置放在真空中。荧光屏可以沿着图中虚线转动,用来统计向不同方向散射的粒子的数目。观察结果是,绝大多数α粒子穿过金箔后基本上仍沿原来方向前进,但是有少数α粒子发生了较大的偏转。
14.光电效应实验(第二册244页)
把一块擦得很亮的锌板连接在灵每验电器上,用弧光灯照锌板,验电器的指针就张开一个角度,表明锌板带了电.进一步检查知道锌板带( )电.这表明在弧光灯的照射下,锌板中有一部分( )从表面飞了出去锌板中少了( ),于是带( )电.
④ 物理科技小制作,最好有图(高中水平)
做个“怪坡”装置吧,就是那种能“释放后自动向上滚动”的装置。回
材料:一张边长有40厘米答或50厘米的正方形纸板(有杂志封面两个或三个那么厚),两根直棒,橡皮筋,透明胶。
制作:1、在纸板中心为圆心画一个尽量大的圆,沿圆的边缘把圆形部分裁下来。
2、过一条直径剪开,得两个相同的半圆。
3、把两个半圆对齐,过圆心沿一条半径剪掉一小部分不要,使剩下部分的扇形的圆心角是较大的钝角(可取150度左右)。
4、把每个扇形的两条边缘半径对齐并用透明胶粘劳固定好,就得到完全一样的两个圆锥。
5、再把两个圆锥的底面对齐并用透明胶粘劳固定好,向上滚动的东西就做好了。
另外,把两根直棒的一端合拢并用橡皮筋捆绑好,使它呈“V”形,把V形捆绑端放在水平桌面,另外一端放在一个木块或其他东西上,成为V形斜面。
调整:把前面做好的装置平放到V形斜面下端稍上一些处,仔细调整V形的夹角和它的倾斜角度,使那个装置能“向上”滚动即可成功了。
原理:两个圆锥体底面对齐那个装置,放在V形斜面上后,因它的重心位置高于V形斜面,所以它就要滚动使重心降低,让人觉得它向上滚动。
⑤ 物理学经典实验装置(高中)
安培(André Marie Ampè 1775~1836年),法国物理学家,1775年1月22日生于里昂一个富商家庭。
在电磁学上的贡献:
①发现了安培定则
奥斯特发现电流磁效应的实验,引起了安培注意,使他长期信奉库仑关于电、磁没有关系的信条受到极大震动,他全部精力集中研究,两周后就提出了磁针转动方向和电流方向的关系及从右手定则的报告,以后这个定则被命名为安培定则。
②发现电流的相互作用规律
他提出了电流方向相同的两条平行载流导线互相吸引,电流方向相反的两条平行载流导线互相排斥。对两个线圈之间的吸引和排斥也作了讨论。
③发明了电流计
安培还发现,电流在线圈中流动的时候表现出来的磁性和磁铁相似,创制出第一个螺线管,在这个基础上发明了探测和量度电流的电流计。
④提出分子电流假说
他根据磁是由运动的电荷产生的这一观点来说明地磁的成因和物质的磁性。提出了著名的分子电流假说。安培认为构成磁体的分子内部存在一种环形电流——分子电流。由于分子电流的存在,每个磁分子成为小磁体,两侧相当于两个磁极。通常情况下磁体分子的分子电流取向是杂乱无章的,它们产生的磁场互相抵消,对外不显磁性。当外界磁场作用后,分子电流的取向大致相同,分子间相邻的电流作用抵消,而表面部分未抵消,它们的效果显示出宏观磁性。安培的分子电流假说在当时物质结构的知识甚少的情况下无法证实,它带有相当大的臆测成分;在今天已经了解到物质由分子组成,而分子由原子组成,原子中有绕核运动的电子,安培的分子电流假说有了实在的内容,已成为认识物质磁性的重要依据。
⑤总结了电流元之间的作用规律——安培定律
安培做了关于电流相互作用的四个精巧的实验,并运用高度的数学技巧总结出电流元之间作用力的定律,描述两电流元之间的相互作用同两电流元的大小、间距以及相对取向之间的关系。后来人们把这定律称为安培定律。
⑥安培第一个把研究动电的理论称为“电动力学”,1827年安培将他的电磁现象的研究综合在《电动力学现象的数学理论》一书中。这是电磁学史上一部重要的经典论著。为了纪念他在电磁学上的杰出贡献,电流的单位“安培”以他的姓氏命名。
安培将他的研究综合在《电动力学现象的数学理论》一书中,成为电磁学史上一部重要的经典论著。麦克斯韦称赞安培的工作是“科学上最光辉的成就之一”,还把安培誉为“电学中的牛顿”。
⑥ 急需“高中趣味物理实验” 含步骤,方法
喷泉实验的基本原理是:气体在液体中溶解度很大,在短时间内产生足够的压强差(负压),则打开活塞后,大气压将烧杯内的液体压入烧瓶中,在尖嘴导管口形成喷泉。为了解决这个问题,我们想起影响气压的几个因素。根据克拉伯龙方程:PV=nRT,推出P=(nRT)/V (R为常数)。要使P变小,可改变n、T、V中的一个变量。所以减小气压的方法有三种:①减少气体的物质的量(n);②降低气体的温度(T);③增大气体的体积(V)。减少气体的物质的量有两种方法:物理方法与化学方法。物理方法可把气体抽走或物理溶解,化学方法可通过化学反应或化学溶解;降低气体的温度,我们可以采用冷水浇注或用湿毛巾放于瓶底,也可以把装置转移入较低温的环境;而增大气体的体积,可以采取,升高温度(如,用热水浇注或热毛巾放于瓶底)或改变容器的体积的方法。
对于用化学方法来减少气体的物质的量的方法又和气体的溶解度、吸收液的种类有关。①气体溶解性大小会对喷泉的形成产生影响。如,易溶于水的气体、在水中溶解度不大的气体、难溶于水的气体;由于它们在水中的溶解度不一样,从而就使得压强的减少不一样,是喷泉能否产生以及喷泉大小的关键。②吸收液的种类也会对喷泉的形成产生影响,不同的吸收液,与气体之间能否反应、气体在其中溶解度的大小,都决定了喷泉实验的成败。
通过分析喷泉实验的原理和条件,我们总结出了喷泉实验成功的关键是:①盛气体的烧瓶必须干燥,否则甁中有液体,会使瓶口留下空气,形成的喷泉压力不大(喷泉”无力”);②气体要充满烧瓶;③烧瓶不能漏气(实验前应先检查装置的气密性);④所用气体能大量溶于所用液体或气体与液体快速反应。
1.喷泉的计算
根据充入烧瓶中液体的体积可以计算烧瓶内所盛气体的纯度或平均式量。
2.喷泉的设计
关键是如何使烧瓶内的气体大量地减少。
制作方法:取一玻璃瓶,瓶口塞入一打孔胶塞。塞孔中插入一尖嘴玻璃管,外端套一胶管.
使用方法:用注射器从瓶内抽气若干次,然后用弹簧夹夹紧胶管。将玻璃瓶倒置于水槽中。去掉弹簧夹,则见有水经胶管从玻璃管尖嘴喷出,形成喷泉.
喷泉实验是一个富有探索意义的实验,在高中化学教学中具有重要的地位。实验的基本原理是使烧瓶内外在短时间内产生较大的压强差,利用大气压将烧瓶下面烧杯中的液体压入烧瓶内,在尖嘴导管口形成喷泉(如图1)。这类实验的要求是:①装置气密性良好;②所用气体能大量溶于所用液体或气体与液体快速反应。能进行喷泉实验的物质通常有以下几组:
气体(a)
液体(b)
液体(c)
3.形成喷泉的组合
(1)UTP(常温常压下),NH3、HCl、SO2、NO2 与水组合能形成喷泉。
(2)酸性气体与NaOH(aq)组合能形成喷泉,例如CO2与NaOH,SO2与NaOH等。
(3)有机气体与有机溶剂组合也能形成喷泉。
(4)O2、N2、H2 等不溶于水的气体,设计一定实验条件将其反应掉,也能形成喷泉。
1.NH3
水
水
NH3溶解度为1:700
2.HCl
水
水
HCl溶解度为1:500
3.NO2
水
水
3NO2+H2O=2HNO3+NO(不能充满)
4.SO2
水
水
SO2+H2O←=→H2SO3
5.CO2
NaOH溶液
NaOH溶液
2NaOH+CO2=Na2CO3+H2O
6.SO2
NaOH溶液
NaOH溶液
2NaOH+SO2=Na2SO3+H2O
7.Cl2
NaOH溶液
NaOH溶液
2NaOH+Cl2=NaClO+NaCl+H2O
注意:虽然NO2与SO2在水中溶解度较小,但只要滴管中的水加多即可,就是让相同体积的气体溶与更多水中,从而使烧瓶 内外形成气压差,从而形成喷泉。
⑦ 实验在物理学中的地位以及如何自己动手自制实验仪器
自制教具,是教师在实验条件有限的情况下或者根据课本的相关实验设计自制出的能用于教育教学的器件。他不仅能提高教师的业务水平,同时也能解决传统教学当中没有实验器材时教师只是靠单纯讲解和学生想象实验情景的情况,为学生创造了感性认识的条件基础。物理学是一门以实验为基础的自然科学,没有物理实验就没有物理学,物理规律的发现和物理理论的建立都必须以严格的物理实验为基础,并受到实验的检验。传统物理教学只注重传播知识,却没有注重实验对学生的能力、技能和思想的教育。而在西部少数民族地区,课本上要求的学生实验绝大部分都是无法完成。因此,大部分学生虽然学习了物理知识,却缺乏面对实际问题时怎样解决问题的能力和技能。这样,学生走出校门之后也只能是纸上谈兵,毫无用武之地。演示实验是利用课堂时间,以教师为主要操作者的表演示范实验。把要研究的物理现象展示在学生的眼前,引导学生观察思考,配合讲授或穿插学生讨论等方式使学生认识物理概念和规律,或者通过演示引导和示范作用,为学生独立训练创造条件。然而,教师个人自制的教具不可能满足一个或几个学生用一台教具来进行实验探究。所以,自制教具在教学当中主要用于演示实验,其地位和作用主要体现在以下几个方面。1、自制教具能够促进物理教师对专业知识的研究和教师根据教具的功能使用方法在课堂上设定出许多新颖的教学情景和教学环节。在进行演示实验教学时能够激发学生的求知欲望,很多情况下学生认为物理难学,主要原因之一是太抽象。而实验具有真实、形象、生动的特点。如果教师能适当利用演示实验中的情景引导学生从正确的方向去思考,就可以把一堆抽象的概念、规律变为生动有趣的内容,多数学生都会容易的弄明白。教师非常了解自己自制的教具的功能和使用方法,教师就可以根据学生的认识规律设定教学的先后情景。首先,增强学生的感性认识,让学生注意观察实验现象。其次,在引导学生从实验当中去思考问题认识问题总结出相关规律。最后,将规律放回到实验当中来检验、应用。按照认识论的观点,就是由感性认识到理性认识再回到实践中检验、应用。演示实验直观具体、形象生动、新鲜刺激,其教学从感性到理性,从具体到抽象,从简单到复杂,符合学生的认知规律,容易激发学生浓厚的兴趣和强烈的求知欲望。2、自制教具就是在锻炼教师的思维能力,并且在演示实验教学中将思维能力很好的转移给学生,让学生思维能力得以发展。演示实验是发展学生能力的重要途径,由于演示实验中教师的可以控制特点很突出。教师能够有意识地选择和设计实验的内容和程序,得心应手地把需要观察的现象展示出来。通过演示实验,引导学生从观察和测量的结果来认识物理现象和物理过程,找出物理现象的特征以及产生这一物理现象的条件进行思考、总结。因此,教师在自制教具锻炼自己思维的同时,也在设计了演示实验中怎样对学生进行思维上的培养。3、自制教具能提高教师的创新能力,同时教师在进行演示实验时使用自制教具也能很好的培养学生的创造能力。自制教具是教师个人根据自己所设计的方案来设计的能够很好完成实验的器件,他带有教师自身的思想和一定的目的。所以,在进行演示实验时能很好的为学生进行示范和训练学生的实验技能。通过演示实验使学生对对物理现象、物理过程进行认真的观察,并在此基础上再进行分析、概括等思维活动,得出结论或验证规律,这不仅可以使学生更好的获取知识、训练实验技能。而且有利于学生学习和掌握物理学研究的基本方法,发展学生的创新能力。4、自制教具能培养教师个人严格的科学态度和良好的作风,同时也能给学生产生影响,起到很好的模范作用,在演示实验时也能培养学生严格的科学态度和良好的作风。通过教师操作过程中实事求是的态度、严肃认真、一丝不苟的作风的影响,就能够潜移默化地培养学生尊重事实、严谨认真、不怕困难、敢于创造的精神,培养学生爱护仪器、遵守纪律、团结友爱的良好作风、习惯。5、自制教具能培养教师勤俭节约的好习惯和陶冶个人情操,能从行为上影响学生和教育学生养成勤俭节约的好习惯。同时在演示实验中又能满足学生的视觉观察,还能使实验仪器的结构简单、费用低。制作教具的材料一般是日常生活中常见或废弃物品,利用这些身边常见的材料制作教具,会使学生觉得物理无处不在,物理离自己更近了,容易激发学生热爱物理、热爱科学的情感。自制演示实验装置,不仅能够充实教学仪器,而且能培养学生的自力更生精神和能力,是使学生养成勤俭节约的好习惯的重要途径和手段。
⑧ 物理实验器材的自制方法
1.三棱镜(光的折射)2.吹泡泡时的肥皂膜或积水路面的汽油膜(薄膜干涉)3.杨氏双缝干涉都学过吧
⑨ 高一物理小制作一个(附图)
水火箭
制作方法:
材料准备
2~6个2.25L的可乐瓶、剪刀、单面刀片、木塞、球类气针、圆珠笔芯、订书机、双面胶、彩色装饰纸.桌布等轻便不透风的材质
制作过程
1.增压塞制作:用小刀切下橡皮塞较粗的一端,切口直径为2.3cm,穿过小孔装上气门芯、胶管、和螺帽,将橡皮塞用力塞进瓶口内,其露在瓶口外的部分不超过约2mm;用剪刀在饮料瓶盖中间挖一个直径约12mm的孔,以便使旋紧瓶盖时仅让气门芯露在外面.
2.侧翼的制作:用硬纸片剪下侧翼四个,为了使火箭飞行时有较好的稳 定性,侧翼必须有较高的硬度,如果纸片片硬度不够,可将两片或三片粘叠在一起制作,剪好侧翼后,将“粘贴爪”交替地折回两侧,用透明胶带对称地粘贴在火箭的下部侧面.
3.取出其中一个可乐瓶,大约以1/3的间距切成三等份.如图2,留下瓶口及中段部分,将第二个可乐瓶倒过来.如图3,将第一个的瓶口盖在第二个可乐瓶的瓶底,再将第一个的中段瓶身盖在第二个可乐瓶的瓶口.盖上后,用双面胶粘紧.再找出一个硬纸板,剪出平衡翼,平衡翼的数量为4个.太大的平衡翼很重,太小的起不了平衡作用.
4.制作降落伞,将一张正方型的桌布对边折,再对边折,以中点为心,对折2次,用剪子剪下多余部分,使它成圆形,贴好线.1
准备材料.三四个2.5升的健力宝瓶或可乐瓶,
若干X光片,几个化学器材用的3号和4号软胶塞,一整套单车气门心,剪刀、小刀各一把,透明胶、双面胶和绝缘胶布,502胶水一支.
5.(1)机翼制作.用剪刀将X光片裁成大小相同的直角梯形28块,梯形长12cm,高6cm,斜腰和长底夹角约45度.另裁4个同上规格但高为8cm,短底相连接两面重叠的梯形(用作机翼的表面).用双面胶将7小块梯形紧密粘成一个厚的梯形,使之平直平坦,然后用一个大的双面梯形将其紧密包住并粘紧.为使机翼的厚面平整,可用剪刀或小刀修平修直,然后将机翼的厚面用绝缘胶封住.最后,将机翼两边长出的部分向外折成90度.这样,按上述方法将其余的X光片做成三个机.
(2)
机身制作.取一个健力宝瓶(瓶头弧线过度比较自然,作火箭头利于减小空气阻力)在离下端11cm处将其横截剪开,用绝缘胶将带瓶口的部分粘紧在另一个瓶子的底部,用绝缘胶在接口处多缠绕几圈以牢固.
(3)
气塞制作.取一个4号的软胶塞,用开洞工具在胶塞的底部正中处开一个比气门芯套筒稍小一点的平直洞,然后用小刀横切去细端约0.6cm;将气门芯套筒上一个面积较大的“戒指”(五金店有卖),从软胶塞的细端往上把气门芯装好,套上一个同样的“戒指”,拧上螺丝,稍微紧就可以.最后将气塞用磨刀石磨成圆柱体,达到刚好能够完全进入可乐瓶口或稍紧一点,装上气门芯即可使用.
(4) 炮头制作.取一个3号软胶塞用小刀将其削尖且圆滑. (5)
组装机翼.取一个健力宝瓶剪一个长比机翼长稍长的两面相通的圆柱体,然后用透明胶和绝缘胶将4个机翼4等分紧密粘好.最后,将粘好机翼的圆柱体套在水火箭的底部使其与瓶口相平(这不一定是最佳位置,可在飞行实践中上下调节寻找确定),用绝缘胶缠绕粘紧.
(6)
其他.为增大气塞和瓶口的接触面以增大瓶内气压,可用小刀将气塞大端削细一点并使之圆平粗糙.由于机身增长了一节做火箭头,火箭头部分较轻不平衡,可适当往里面塞纸以达到平衡.为尽可能减小空气阻力,将用软胶塞做成的炮头用502胶水在火箭头瓶口粘好.
按以上方法一个简单的水火箭便制作完成.根据我们研制的水火箭,通过实践的改进,水平方向飞行可达160米左右,竖直方向飞行可达40~50米.
水火箭发射方法: 1. 水量调控.水火箭用水量和火箭容气空间有一定的比例,不能太多也不能太少,最佳用水量约为火箭容气空间的1/4到2/5之间(2.5升的空间大约装600毫升左右,可多试验几次寻找确定).
2. 发射角度.水平方向飞行,由于空气的阻力,发射的最佳角度在50到55度之间,不同的水火箭可能不同,可通过控制变量的方法试验确定.(我们制作的水火箭最佳角度是53度左右).竖直方向飞行则为90度.
3.
气塞使用.气塞的使用原理是通过压缩软胶塞体积膨胀来调节气塞的松紧程度,压缩越厉害体积膨胀越大,气塞越紧,要把气塞冲出来的气压就越大,即火箭获得的动力越大.具体使用方法如下:首先拆下气塞的气门芯,将气塞在原形塞进火箭的瓶口内,然后用套筒(一种专门用来拧螺丝的工具,五金店有卖)拧紧气塞的螺丝,最后安装气门芯即可加气使用.(注:拧紧程度可按需要来调节.)
4.
发射稳定调控.仅讨论水平方向的发射.需要制作一个发射台,发射台要配有导航轨道,导航轨道不要太长也不要太短,一般长为60cm(可用三个教学用的大三角板和两根扫帚柄拼凑而成,为减少扫帚柄作导航轨道时对水火箭的摩擦,可用透明胶粘贴扫帚柄或如图例所示的模型).无风天气时,正对目标按最佳发射角度(指发射轨道与地面的夹角)发射.刮风天气时,应视风力和风向适当调偏与发射目标的方向,保持最佳发射角度发射.
5.
注意事项.发射时,确保火箭和轨道的平直一致,若偏离1~2度都会影响飞行的平稳性而呈“8”字型飞行.用气筒打气时,要尽可能平稳,打气频率不要太慢应快点.要尽可能将气塞塞紧,可通过拧紧气塞的螺丝来调节,气塞塞得越紧瓶内气压越大而火箭的动力就越大.
取第一个瓶子,称之为A瓶.在瓶子上下1-1、2-2的位置各画一条线,两条线位置的决定方法如下.1-1:选瓶上弧线曲度与火箭泡棉头曲度相近处.2-2:选瓶子下方曲线转直点的下方约0.5cm处.
自1-1线上方、2-2线下方约0.5cm处用美工刀(或剪刀)切(剪)开.
用剪刀慢慢修剪至画线处,尽量使其平整,以便与B瓶衔接时可以较为密合.
将火箭泡棉头放置於A瓶上方,由正上方看泡棉头是否对准保特瓶之正中央位置.若已放正,则使用电工胶布缠绕於相接处,加以固定.
取另一个瓶子称之为B瓶,将瓶盖卸下,然后将喷嘴由保特瓶开口处旋紧.
将A、B瓶相连接.然后至於平坦之桌面或地上滚动,看看是否连接平整,滚动是否平顺.若是,则以电工胶布加以固定.
取第三个瓶子,称为C瓶.在瓶子3-3、4-4之位置各画一条线.3-3:选瓶子上方曲线转折点的下方约0.5cm.
4-4:选瓶子下方曲线转折点的下方约0.5cm. 自3-3线上方、4-4线下方约0.5cm处用美工刀(剪刀)切(剪)开.
将厚纸板对折,然后用铅笔画出四个梯形.然后用剪刀沿线剪开.注:尾翼之尺寸、形状,可以做不同的变化,以测试 其对飞行有何影响.
同样以投影片至做出与厚纸板规格相同之梯形.
将制作好之投影片包覆於厚纸板梯形之外侧,可以先使用双面胶带将投影片及厚纸板接合在一起,然后使用电工胶布将其三边贴过.
用双面胶带贴於摺起部分之底部.此步骤为了将做好之四个尾翼年贴於C瓶. 四个尾翼完成图. 将四片尾翼年贴於C瓶上,需确定为十字对称,如此才能平衡.
先以电工胶布黏贴於尾翼两侧,黏贴时须注意电工胶布的长度须够长,上方需比尾翼高约一个胶带的高度,下方反折入C瓶内,以增加牢固程度.再以电工胶布缠绕於尾翼上方约两圈.
将C瓶与B瓶用电工胶布做连接.注:同样须注意保持水火箭箭身的笔直以确保飞行方向的准确.
制作重点
在制作过程中,喷口是最为重要的,密封一定要好,否则不能提供良好的压力.气针在木塞中,也要达到密不透水,最好用烧红的针尖穿洞.如果还有漏水情况,可以在气针上加装一个圆珠笔芯,圆珠笔芯的顶端伸出水面,可防止打气时气泡的翻滚和漏水情况.降落伞的线一定要粘牢,不然压力过大,可能会使线从伞身上掉落.[1]
⑩ 高一物理教具怎么做,求做法非常简单的
做显示微小形变那个呀,超简单,用打吊瓶那种玻璃瓶,装满分,点一滴红墨水,插根细那种吸管在橡皮塞里,OK