A. 壓縮機分類及結構
首先介紹壓縮機按結構形式的不同分類如下:
1、按其原理可分為:
往復式(活塞式)壓縮機;回轉式(旋轉式)壓縮機;(渦輪式、水環式、透平)壓縮機;軸流式壓縮機;噴射式壓縮機及螺桿壓縮機等各種型式。
2、按壓縮機的氣缸位置(氣缸中心線)可分為:
(1)卧式壓縮機,氣缸均為橫卧的(氣缸中心線成水平方向)。
(2)立式壓縮機氣缸均為豎立布置的(直立壓縮機)。
(3)角式壓縮機,氣缸布置成L 型、V 型、W 型和星型等不同角度的。
• 3、按壓縮機氣缸段數(級數)可分為:
(1)單段壓縮機(單級):氣體在氣缸內進行一次壓縮。
(2)雙段壓縮機(兩級):氣體在氣缸內進行兩次壓縮。
(3)多段壓縮機(多級):氣體在氣缸內進行多次壓縮。
4、按氣缸的排列方法可分為:
(1)串聯式壓縮機:幾個氣缸依次排列於同一根軸上的多段壓縮機,又稱單列壓縮機。
(2)並列式壓縮機:幾個氣缸平行排列於數根軸上的多級壓縮機,又稱雙列壓縮機或多列壓縮機。
(3)復式壓縮機:由串聯和並聯式共同組成多段壓縮機。
(4)對稱平衡式壓縮機:氣缸橫卧排列在曲軸軸頸互成180度的曲軸兩側,布置成 H 型,其慣性力基本能平衡。(大型壓縮機都朝這方向發展)。
5、按活塞的壓縮動作可分為:
(1)單作用壓縮機:氣體只在活塞的一側進行壓縮又稱單動壓縮機。
(2)雙作用壓縮機:氣體在活塞的兩側均能進行壓縮又稱復動或多動壓縮機。
(3)多缸單作用壓縮機:利用活塞的一面進行壓縮,而有多個氣缸的壓縮機。
(4)多缸雙作用壓縮機:利用活塞的兩面進行壓縮,而有多個氣缸的壓縮機。
6、按壓縮機的排氣壓力可分為:
(1)低壓壓縮機:排氣壓力在0.3~1.0MPa 。
(2)中壓壓縮機:排氣壓力在1~10MPa
(3)高壓壓縮機:排氣壓力在10~100MPa 表壓。
(4)超高壓壓縮機:排氣壓力在100MPa 以上。
7、按壓縮機排氣量的大小可分為:
(1)微型壓縮機:輸氣量在1m3/min以下。
(2)小型壓縮機:輸氣量在1~10m3/min以下。
(3)中型壓縮機:輸氣量在10m3/min~100m3/min。
(4)大型壓縮機:輸氣量在100m3/min。
8、按壓縮機的轉速可分為:
(1)低轉速壓縮機:在200轉/min以下。
(2)中轉速壓縮機:在200~450轉/min。
(3)高轉速壓縮機:在450~1000轉/min。
9、按傳動種類可分為:
(1)電動壓縮機:以電動機為動力者;
(2)氣動壓縮機:以蒸汽機為動力者;
(3)以內燃機為動力的壓縮機;
(4)以汽輪機為動力的壓縮機。
10、按冷卻方式可分為:
(1)水冷式壓縮機:利用冷卻水的循環流動而導走壓縮過程中的熱量。
(2)風冷式壓縮機:利用自身風力通過散熱片而導走壓縮過程中的熱量。
11、按動力機與壓縮機之傳動方法可分為:
(1)裝置剛體聯軸節直接傳動壓縮機或稱緊貼接合壓縮機。
(2)裝置撓性聯軸節直接傳動壓縮機。
(3)減速齒輪傳動壓縮機。
(4)皮帶(平皮帶或三角皮帶)傳動壓縮機。
(5)無曲軸--連桿機構的自由活塞式壓縮機。
(6)正體構造壓縮機--即摩托壓縮機動力機氣缸與壓縮機座整體製成,並用共同的曲軸的壓縮機。
此外,壓縮機根據介質不同可分為空氣壓縮機、氧氣壓縮機、氮氣壓縮機等等.
B. 往復式壓縮機的驅動機構有哪幾種
壓縮機主要部件結構簡介
1,基本部分
基本部分主要包括:機身、曲軸、連桿、十字頭,其作用是連接基礎與氣缸部分並傳遞動力。 1.1機身
曲軸箱與中體鑄成一體,組成對動型機身。兩側中體處設置十字頭滑道,頂部為開口式,便於主軸承、曲軸和連桿的安裝。十字頭滑道兩側開有方孔,用於安裝、檢修十字頭,頂部開口處為整體蓋板,並設有呼吸器,使機身內部與大氣相通,機身下部的容積做為油池,可貯存潤滑油。
主軸承採用滑動軸承,為分體上下對開式結構,瓦背為碳鋼材料,瓦面為軸承合金,主軸承兩端面翻邊,用來實現主軸承在軸承座中的軸向定位;上半軸承翻邊處有兩個螺孔,用於軸承的拆裝;軸承蓋內孔處擰入圓柱銷,用於軸承的徑向定位;安裝時應注意上下軸承的正確位置,軸承蓋設有吊裝螺孔和安裝測溫元件的光孔。
軸承蓋與軸承座連接螺栓的預緊力數值見說明書 機身在出廠時已組裝對中完成,並整體包裝出廠,用戶在安裝時應整體進行,不得隨意將對接機身解體。
1.2曲軸
曲軸的一個曲拐主要由主軸頸、曲柄銷和曲柄臂三部分組成,其相對列曲拐錯角為1800,多列時相列曲拐錯角見表3。
曲軸功率輸入端帶有聯軸法蘭盤,法蘭盤與曲軸製成一體,輸入扭矩是通過緊固聯軸盤上螺栓使法蘭盤連接面產生的摩擦力來傳遞的。曲軸軸向定位是由功率輸入端第一道主軸頸上的定位台與帶有翻邊的主軸承來完成,以防止曲軸的軸向竄動,定位端留有軸向熱膨脹間隙。
曲軸為鋼件鍛制加工成的整體實心結構,軸體內不鑽油孔,以減少應力集中現象
1.3連桿
連桿分為連桿體和連桿大頭瓦蓋兩部分,由二根抗拉螺栓將其連接成一體,連桿大頭瓦為剖分式,瓦背材料為碳鋼,瓦面為軸承合金,兩端翻邊做軸向定位,大頭孔內側表面鑲有圓柱銷,用於大頭瓦徑向定位,防止軸瓦轉動;連桿小頭及小頭襯套為整體式,襯套材料為錫青銅。
連桿體沿桿體軸向鑽有油孔,並與大小頭瓦背環槽連通,潤滑油可經環形槽並通過軸瓦上的徑向油孔實現對十字頭銷和曲柄銷的潤滑。
為確保連桿安全可靠地傳遞交變載荷,連桿螺栓必須有足夠預緊力,其預緊力的大小是通過專用液壓緊固工具實現的,打壓數值見本說明書附錄B。
連桿體、大頭瓦蓋為優質碳鋼鍛製成,連桿螺栓為合金結構鋼材料。 連桿大頭瓦蓋處螺孔為拆裝時吊裝用孔,組裝後應將吊環螺釘拆除。 連桿螺栓累計使用時間達到16000小時,必須更換新螺栓。
C. 螺桿製冷壓縮機工作原理和結構圖
2.螺桿式冷水機組的工作原理
螺桿冷水機組主要由螺桿壓縮機、冷凝器、蒸發器、膨脹閥及電控系統組成。水冷單螺桿冷水機組製冷原圖如下:
壓縮機
電櫃
蒸發器
冷凝器
天加螺桿機外型圖
(一)雙螺桿製冷壓縮機(in screw pressor)
雙螺桿製冷壓縮機是一種能量可調式噴油壓縮機。它的吸氣、壓縮、排氣三個連續過程是靠機體內的一對相互齧合的陰陽轉子旋轉時產生周期性的容積變化來實現。一般陽轉子為主動轉子,陰轉子為從動轉子。
主要部件:雙轉子、機體、主軸承、軸封、平衡活塞及能量調節裝置。
容量15~100%無級調節或二、三段式調節,採取油壓活塞增減載方式。常規採用:
徑向和軸向均為滾動軸承;開啟式設有油分離器、儲油箱和油泵;封閉式鎮掘為差壓供油進行潤滑、噴油、冷卻和驅動滑閥容量調節之活塞移動。
雙螺桿結構圖:
壓縮鋒旅滑原理:
吸氣過程:氣體經吸氣口分別進入陰陽轉子的齒間容積。
壓縮過程:轉子旋轉時,陰陽轉子齒間容積連通(V型空間),由於齒的 互相齧合,容積逐步縮小,氣體得到壓縮。
排氣過程:壓縮氣體移到排氣口,完成一個工作迴圈。
(二)單螺桿製冷壓縮機(single screw pressor)
利用一個主動轉子和兩個星輪的齧合產生壓縮。它的吸氣、壓縮、排氣三個連續過程是靠轉子、星輪旋轉時產生周期性的容積變化來實現的。
轉子齒數為六,星輪為十一齒。
主要部件為一個轉子、兩個星輪、機體、主軸承、能量調節裝置。
容量可以從10%-100%無級調節及三或四段式調節。
單螺桿結構圖:
壓縮原理:
吸氣過程:氣體通過吸氣口進入轉子齒槽。隨著轉子的旋轉,星輪依次進入與轉子齒槽齧合的狀態,氣體進入壓縮腔(轉子齒槽曲面、機殼內腔和星輪齒面 所形成的密閉空間)。
壓縮過程:隨著轉子旋轉,壓縮腔容積不斷減小,氣體隨壓縮直至壓縮腔前沿轉至排氣口。
排氣過程:壓縮腔前沿轉至排氣口後開始排氣,便完成一個工作迴圈。由於星輪對稱布置,迴圈在每旋轉一周時便發生兩次壓縮,排氣量相應是上述一周迴圈排氣量的兩倍。
螺桿式冷水機組的工作原理
螺桿冷水機組主要由螺桿壓縮機、冷凝器、蒸發器、膨脹閥及電控系統組成。水冷單螺桿冷水機組製冷原圖如下:
壓縮機
電櫃
蒸發器
冷凝器
天加螺桿機外型圖
(一)雙螺桿製冷壓縮機(in screw pressor)
雙螺桿製冷壓縮機是一種能量可調式噴油壓縮機。它的吸氣、壓縮、排氣三個連續過程是靠機體內的一對相互齧合的陰陽轉子旋轉時產生周期性的容積變化來實現。一般陽轉子為主動轉子,陰轉子為從動轉子。
主要部件:雙轉子、機體、主軸承、軸封、平衡活塞及能量調節裝置。
容量15~100%無級調節或二、三段式調節,採取油壓活塞增減載方式。常規採用:
徑向和軸向均為滾動軸承;開啟式設有油分離器、儲油箱和油泵;封閉式為差壓供油進行潤滑、噴油、冷卻和驅動滑閥容量調節之活塞移動。
雙螺桿結構圖:
壓縮原理:
吸氣過程:氣體經吸氣口分別進入陰陽轉子的齒間容積。
壓縮過程:轉子旋轉時,陰陽轉子齒間容積連通(V型空間),由於齒的 互相齧合,容積逐步縮小,氣體得到壓縮。
排氣過程:壓縮氣體移到排氣口,完成一個工作迴圈。
(二)單螺桿製冷壓縮機(single screw pressor)
利用一個主動轉子和兩個星輪的齧合產生壓縮。它的吸氣、壓縮、排氣三個連續過程是靠轉子、星輪旋轉時產生周期性的容積變化來實現的。
轉子齒數為六,星輪為十一齒。
主要部件為一個轉子、兩個星輪、機體、主軸承、能量調節裝置。
容量可以從10%-100%無級調節及三或四段式調節。
單螺桿結構圖:
壓縮原理:
吸氣過程:氣體通過吸氣口進入轉子齒槽。隨著轉子的旋轉,星輪依銀臘次進入與轉子齒槽齧合的狀態,氣體進入壓縮腔(轉子齒槽曲面、機殼內腔和星輪齒面 所形成的密閉空間)。
壓縮過程:隨著轉子旋轉,壓縮腔容積不斷減小,氣體隨壓縮直至壓縮腔前沿轉至排氣口。
排氣過程:壓縮腔前沿轉至排氣口後開始排氣,便完成一個工作迴圈。由於星輪對稱布置,迴圈在每旋轉一周時便發生兩次壓縮,排氣量相應是上述一周迴圈排氣量的兩倍。
目前,在冰箱生產中越來越多地採用旋轉式 壓縮機,尤其是具有體積小、重量輕和結構簡單 等優點的全封閉滾動活塞式壓縮機。然而,傳統滾 0#123 動活塞式壓縮機在結構上仍然存在不少缺陷 ,比 如滾動活塞和轉子均以偏心運轉的方式工作,因 此會產生很大的不平衡離心慣性力,這是造成壓 縮機振動及雜訊大的一個重要原因;另外,壓縮 機的各個運動副之間均存在有非常高的相對運動 ! 速度,比如轉子與滾動活塞之間,滾動活塞與缸 孔內壁面之間,隔離葉片與滾動活塞之間,以及 轉子、滾動活塞和隔離葉片與兩側密封端蓋之間 等等,由此不僅會產生比較大的摩擦與磨損,而 且還因為存在配合間隙而難以避免冷媒從高壓的 壓縮腔竄逸至低壓的吸氣腔,從而導致較大的泄 漏損失。 鑒於上述問題,我們對傳統全封閉滾動活塞 式壓縮機的結構進行了大膽的創新與改進,提出 了一種包含有嵌固隔離葉片、旋轉缸套和隨動端 蓋的新型旋轉式全封閉壓縮機,該壓縮機不僅保 留了以往滾動活塞式壓縮機結構簡單、零件數少 的優點,而且與之相比還具有更低的振動雜訊、 更小的摩擦損耗以及更少的泄漏損失,因此是一 種較有應用前景的新型旋轉式冰箱壓縮機。 結構設計 ! ()總體布置 # 圖 所示結構為本文設計的新型全封閉旋轉 # 式冰箱壓縮機,它採用上置壓縮機和下置電機的 圖 新型全封閉旋轉式壓縮機結構示意圖 # 立式結構布置方式,並採用吊簧式懸掛避振系統。 排氣管 支座架 卸荷腔 隨動端蓋 隔離葉片 進氣管 # ! ) $ 』 4 壓縮機部分主要由安置在一個密閉殼體內的旋轉 殼 體 旋轉缸套 轉 子 轉 柱 吸氣腔 壓縮腔 5 2 ( #" ## #! 內,它的外圓柱面與旋轉缸套的內孔壁面相切並 間產生有很大的接觸壓力,這顯然會加劇壓縮機 轉動配合,兩者於接觸處形成一條密封線,轉子 的摩擦和磨損。為了改善這一狀況,本壓縮機在 的下端做成軸頸並與電機轉子緊配合。轉子及旋 轉子的上端與上隨動端蓋之間設定有一個卸荷腔, 轉缸套均各自繞各自自身的軸線作定軸轉動,且 該卸荷腔通過轉子上的傾斜油道將高壓的潤滑油 旋轉方向相同。在旋轉缸套的兩端頭分別緊固連 (與壓縮機排氣壓力大致相等)引入其內,以此產 接有一個隨動端蓋,另外,在轉子上開設有一條 生向下的軸向力來平衡轉子。同樣道理,該卸荷 軸向圓弧槽,槽內轉動地配裝有一個包含有軸向 腔也可以減輕下隨動端蓋與支座架處的軸向推力 扁平滑槽的轉柱,隔離葉片的外端嵌固在旋轉缸 軸承的負荷。 套的內孔壁面上,其內端則插入上述轉柱的扁平 原理分析 ! 滑槽內並與之滑動配合。顯然,隔離葉片將轉子、 ()工作原理 # 轉柱、旋轉缸套和兩側隨動端蓋所圍成的密閉空 本新型旋轉式壓縮機的工作原理是:當轉子 間分隔成為了兩個容積可以周期性地發生變化的 在電機的驅動下轉動時,首先通過轉子圓弧槽帶 工作腔,其中一個為吸氣腔,另一個為壓縮腔, 動轉柱轉動,然後再由轉柱扁平滑槽帶動隔離葉 這兩個工作腔隨著轉子的轉動不斷地迴圈轉換角 片、旋轉缸套和隨動端蓋一起轉動。隨著轉子的 色。 轉動,吸氣腔的容積將逐漸增大並形成負壓,此 ()進排氣系統 ! 時氣態的工質在壓差的作用下經進氣管、支座架 為了減少對進氣的有害加熱,以便能獲得高 孔道、轉柱滑槽槽底和隔離葉片側面上的吸氣槽 的壓縮機容積效率,本壓縮機盡量縮短進氣路徑, 道進入到壓縮機的吸氣腔內;與此同時,壓縮腔 讓進氣管與支座架相連線,並通過支座架的進氣 的容積則逐漸減少,被封閉在其內的氣態工質受 道溝通轉柱滑槽的底部,最後經由開在隔離葉片 到壓縮,壓力開始逐漸增高,當壓縮壓力達到設 ! 側面上的進氣槽道連通壓縮機的吸氣腔。這樣做 定的數值時,排氣過程開始,氣體經開設在隨動 帶來的一個好處是可使進氣槽道與排氣口之間的 端蓋上的排氣口、排氣單向閥、排氣消聲器、高 夾角做得很小,由此增加有效進氣的角度,同時 壓密閉腔和排氣管最後排出壓縮機外。 還可以解決隔離葉片與轉柱扁平滑槽在槽底處的 由於本壓縮機的轉子、隔離葉片和旋轉缸套 「困氣」現象。壓縮機的排氣口直接開設在上隨動 均作定軸轉動,因此它們的偏心運動質量較小, 端蓋上並與壓縮機的壓縮腔相連通,而端蓋上則 故所產生的振動和雜訊亦小。同時,由於將隔離 設定有馬蹄型的槽道、簧片和限位器等所組成的 葉片嵌固連線在旋轉缸套和兩側隨動端蓋上,因 排氣單向閥,高壓的氣體從單向閥出來後即進入 此徹底解決了隔離葉片外端與缸孔內壁面之間、 到排氣消聲腔內,之後再進入到由壓縮機外殼體 以及隔離葉片側端與密封端蓋之間的摩擦損耗和 所圍成的封閉空間,最後經由排氣管排出壓縮機 密封可靠性的問題。另外,壓縮機的主要運動副 外。 如轉子與旋轉缸套之間、轉子與隨動端蓋之間的 ()潤滑系統 & 相對運動速度較小,結果也對減少摩擦損耗有利。 本壓縮機設計有離心式泵油潤滑系統,即在 ()機構分析 ! 轉子轉軸上開設有與軸線傾斜的油道,利用轉子 從機構學的角度看,本壓縮機的主要運動副 旋轉時產生的離心力迫使潤滑油上升並到達各個 構成了如圖 所示的滑塊轉桿機構,該機構由兩 ! 運動摩擦副。注意到壓縮機在正常工作時,轉子 個固定鉸支 和 、一個滑塊 、一個主動轉桿 』 』 ( # ! 將受到高壓氣體及油池中高壓油所產生的向上軸 以及一個從動轉桿 等所組成。其中,主動 』( 』) # ! 向推力的作用,其大小等於轉子轉軸軸頸斷面積 轉桿 由轉子簡化而成,從動轉桿 由旋轉 』( 』) # ! 與排氣壓力的乘積。該軸向推力與進氣壓力在轉 缸套和隔離葉片簡化而成,滑塊 由轉柱及轉柱 ( 子下端面形成的軸向推力一道向上推託轉子,兩 上的扁平滑槽簡化而成。固定鉸支 和 分別代 』 』 # ! 者之和遠遠大於壓縮機轉子和電機轉子的向下重 表了轉子的旋轉軸線和旋轉缸套的旋轉軸線,兩 力,因此在壓縮機轉子的上端面與上隨動端蓋之 者之間的距離即為轉子相對於旋轉缸套的偏心距。
製冷壓縮機是空調系統的核心部件,通常稱為製冷機的主機。科學技術的進步,新式空調系統不斷出現,推動了製冷壓縮機製造技術的不斷進步。從目前製冷壓縮機的發展趨勢來看,結構緊湊、高效節能以及微振低噪等特點是空調壓縮機製造技術不斷追求的目標。下面對製冷壓縮機做一個概述.
作用:
l、從蒸發器中吸m蒸氣,以保證蒸發器內一定的蒸發壓力;
2、提高壓力(壓縮),以創造在較高溫度下冷凝的條件;
3、輸送製冷劑,使製冷劑完成製冷迴圈。
一、壓縮機的種類很多,根據工作原理的不同,空調壓縮機可以分為定排量壓縮機和變排量壓縮機。
l、定排量壓縮機的排氣量是隨著發動機的轉速的提高而成比例提高的,它不能根據製冷 的需求而自動改變功率輸 ,而且對發動機油耗的影響比較大。它的控制一般通過採集蒸發器出風口的溫度訊號來實現,當溫度達到設定的溫度,壓縮機停止工作;當溫度升高後,壓縮機開始 T二作。定排量壓縮機也受空調系統壓力的控制,當管路內壓力過高時,壓縮機停止工作。
2、變排量壓縮機可以根據設定的溫度自動調節功率輸出。空調控制系統不採集蒸發器m風口的溫度訊號,而是根據空調管路內壓力變化訊號來控制壓縮機的壓縮比從而自動調節m 風口溫度。在製冷的全過程中,壓縮機始終是工作的,製冷強度的調節完全依賴裝在壓縮機內部的壓力調節閥來控制。當空調管路內高壓端壓力過高時,壓力調節閥縮短壓縮機內活塞行程以減小壓縮比,這樣就會降低製冷強度。當高壓端壓力下降到一定程度,低壓端壓力上升到一定程度時,壓力調節閥則增大活塞行程以提高製冷強度。
二、根據工作方式的不同,
可分為兩大類—— 容積型與速度型。
容積型壓縮機是靠工作腔容積的改變來實現吸汽、壓縮、排汽等過程。屬於這類壓縮機的有往復式壓縮機和回轉式壓縮機。速度型壓縮機是靠高速旋轉的T作I1"輪對蒸氣做功,壓力升高,並完成輸送蒸氣的任務。屬於這類壓縮機的有離心式和軸流式壓縮機,目前常用的是離心式壓縮機。1、往復式壓縮機的工作原理
往復式壓縮機又稱活塞式壓縮機。壓縮機的工作腔是汽缸。活塞在汽缸內作上下往復運動,從而完成了壓縮、排汽、膨脹、吸汽等過程。圖1中的四個過程分別表示了壓縮機1二作中的四個過程。
到最低位置(稱活塞的下止點)時,汽缸吸滿蒸氣。而活塞轉而向上,這時吸、排汽門都關閉,汽缸容積縮小,蒸氣被壓縮,一直壓縮到排汽壓力為止。圖中(b)為排汽過程:當壓力達到一定值(大於排汽管內壓力)時,排汽閥開啟,活塞繼續上移,蒸氣排出,一直到活塞上移到最高位置(這位置稱活塞的上止點)時,排汽結束。圖中(c)是余隙膨脹過程:為了防止活塞與吸排汽閥碰撞,活塞上移到上止點時,活塞與汽缸頂部之間留有一定間隙,稱余隙。當活塞轉而向下運動時,排汽結束時留在余隙內的高壓蒸氣阻止吸汽閥開啟,吸汽不能開始。這時余隙內的蒸氣隨著活塞下移而進行膨脹,一直膨脹到吸汽壓力以下時才結束。圖中之(d)是吸汽過程:吸汽閥開啟,隨著活塞往下運動而吸汽,一直進行到活塞下移到活塞下止點為止。
( 2)優點:它應用比較廣泛,製造技術成熟,結構簡單,而且對加工材料和加工lT藝要求較低,造價比較低,適應性強,能適應廣闊的壓力范圍和製冷量要求,可維修性強。
(3)缺點:無法實現較高轉速,機器大而重,不容易實現輕量化,排氣不連續,氣流容易出現波動,而且工作時有較大的振動。由於曲軸連桿式壓縮機的上述特點,已經很少有小排量壓縮機採用這種結構形式,曲軸連桿式壓縮機目前大多應用在客車和卡車的大排量空調系統中。
2、螺桿式壓縮機的構造與工作過程
螺桿式壓縮機是一種回轉式容積式壓縮機。它利用螺桿的齒槽容積和位置的變化來完成蒸氣的吸人、壓縮和排IqJ過程。無油螺桿壓縮機在本世紀三十年代問世,主要用於壓縮空氣。後來汽缸內噴油的螺桿式壓縮機出現,效能得到提高,目前,噴油式螺桿壓縮機已是製冷壓縮機中主要機種之一。螺桿式壓縮機分為雙螺桿和單螺桿兩大類,雙螺桿壓縮機習慣上稱為螺桿式壓縮機。
(1)圖2為噴油式螺桿式壓縮機的構造。在斷面為雙圓相交的汽缸內,裝有一對轉子—— 陽轉子和陰轉子。陽轉子有四個齒,陰轉子有六個齒,兩根轉子相互齧合。當陽轉子旋轉一周,隱轉子旋轉2/3周,或者說,陽子的轉速比陰轉子的轉速快50%。圖3是螺桿式壓縮機從吸汽靠排汽的工作過程,在汽缸的吸汽端座上開有吸汽口,當齒槽與吸汽口相通時,吸汽就開始,隨著螺桿的旋轉,齒槽脫離吸汽口,一對齒槽空間吸滿蒸氣,如圖(a)。螺桿繼續旋轉,兩螺桿的齒與齒槽相互齧合,有汽缸體、齧合的螺桿和排汽端座組成的齒槽容積變小,而且位置向排汽端移動,完成了對蒸氣壓縮和輸送的作用,如圖
(b)。當這對齒槽空間與端座的排汽
口相通時,壓縮終了,蒸氣被排出,如圖(c)。每對齒槽空間都存在著吸汽、
壓縮、排汽三個過程。在同一時刻存在著吸汽、壓縮、排汽三個過程,不過
它們發生在不同的齒槽空間。
(2)螺桿式壓縮機的優點:
① 螺桿式壓縮機只有旋轉運動,沒有往復運動,因此壓縮機的平衡性好,振動小,可以提高壓縮機的轉速。
② 螺桿式壓縮機的結構簡單、緊湊,重量輕,無吸、排汽閥,易損件少,可靠性高,檢修周期長。
③ 在低蒸發溫度或高壓縮比工況下,用單級壓縮仍然可正常工作,且有良好的效能。這是由於螺桿式壓縮機沒有餘隙,沒有吸、排汽閥,故在這種不利工況下仍然有較高的容積效率。
④ 螺桿式壓縮機對溼壓縮不敏感。
⑤ 螺桿式壓縮機的製冷量可以在10%一100%范圍內無級調節,但在40%以上負荷時的調節比較經濟。
(3)缺點:雜訊較大,以及需要設
置一套潤滑油分離、冷卻、過濾和加壓的輔助裝置,造成機組體積大。
單級蒸汽壓縮製冷系統,是由製冷壓縮機、冷凝器、蒸發器和節流閥四個基本部件組成。它們之間用管道依次連線,形成一個密閉的系統,製冷劑在系統中不斷地迴圈流動,發生狀態變化,與外界進行熱量交換。其工作過程如圖1所示。 圖1. 製冷系統的基本原理 液體製冷劑在蒸發器中吸收被冷卻的物體熱量之後,汽化成低溫低壓的蒸汽、被壓縮機吸入、壓縮成高壓高溫的蒸汽後排入冷凝器、在冷凝器中向冷卻介質(水或空氣)放熱,冷凝為高壓液體、經節流閥節流為低壓低溫的製冷劑、再次進入蒸發器吸熱汽化,達到迴圈製冷的目的。這樣,製冷劑在系統中經過蒸發、壓縮、冷凝、節流四個基本過程完成一個製冷迴圈。 在製冷系統中,蒸發器、冷凝器、壓縮機和節流閥是製冷系統中必不可少的四大件,這當中蒸發器是輸送冷量的裝置。製冷劑在其中吸收被冷卻物體的熱量實現製冷。壓縮機是心臟,起著吸入、壓縮、輸送製冷劑蒸汽的作用。冷凝器是放出熱量的裝置,將蒸發器中吸收的熱量連同壓縮機功所轉化的熱量一起傳遞給冷卻介質帶走。節流閥對製冷劑起節流降壓作用、同時控制和調節流入蒸發器中製冷劑液體的數量,並將系統分為高壓側和低壓側兩大部分。實際製冷系統中,除上述四大件之外,常常有一些輔助裝置,如電磁閥、分配器、乾燥器、集熱器、易熔塞、壓力控制器等部件組成,它們是為了提高執行的經濟性,可靠性和安全性而設定的。
首先你要知道它的內部構造;主要為陰螺桿,陽螺桿,再加上滑塊(負荷調節裝置)。
陰陽螺桿相互轉動時會形成一個密閉空間,製冷劑在其中通過滑塊的豎向調節(與螺桿同一軸線方向)起到負荷能量的調節作用。說起來太麻煩啦,還是網路下:土木線上!裡面有個製冷板塊,能搜到的;
祝好
經濟器也是通過製冷劑揮發吸熱從而給送到蒸發器的製冷劑提供二次降溫達到節約的目的。
螺桿式製冷壓縮機和活塞式製冷壓縮機在氣體壓縮方式上相同,都屬於容積型壓縮機,也就是說它們都是靠容積的變化而使氣體壓縮的。不同點是這兩種壓縮機實現工作容積變化的方式不同。螺桿式製冷壓縮機又分為單螺桿壓縮機和雙螺桿壓縮機。其中雙螺桿壓縮機是利用置於機體內的兩個具有螺旋狀齒槽的螺桿相齧合旋轉及其與機體內壁和吸、排氣端座內壁的配合,造成齒間容積的變化,從而完成氣體的吸入、壓縮及排出過程。
製冷原理與什麼型別的壓縮機沒有關系,製冷是利用製冷劑的特殊性質來達到製冷或者制熱的目的,製冷劑在壓縮時會升高溫度,從而向大氣視放內能,在壓力降低時又會吸收周圍的熱量,達到周圍溫度下降的目的,壓縮機就是用來給製冷劑加壓迴圈的。所以要理解製冷原理,必須對製冷劑的物理性質有所了解,高中物理中有關氣體的 狀態方程就有著方面的簡單講解。您不妨看看。
在執行過程中製冷壓縮機會將製冷劑從低壓區抽取出來經過壓縮之後送到高壓區進行冷卻凝結,製冷劑在被輸送到高壓區之後通過散熱片將熱量散發到空氣中,這時它也從原來的氣態變為液態,壓力也隨之升高。
製冷劑在迴圈過程中,從高壓區流向低壓區,之後通過毛細血管噴射到蒸發器中,在壓力驟降的情況下由液態變為氣態,然後通過散熱片來吸收空氣中的熱量實現降溫。通過這迴圈過程,將冷空氣成功的轉入到室內。
D. 離心式壓縮機的結構和原理
離心式壓縮機的工作原理與結構 1. 工作原理離心式製冷壓縮機有單級、雙級和多級等多種結構型式。單級壓縮機主要由吸氣室、葉輪、擴壓器、蝸殼等組成,如圖6-1所示。對於多級壓縮機,還設有彎道和迴流器等部件。一個工作葉輪和與其相配合的固定元件(如吸氣室、擴壓器、彎道、迴流器或蝸殼等)就組成壓縮機的一個級。多級離心式製冷壓縮機的主軸上設置著幾個葉輪串聯工作,以達到較高的壓力比。多級離心式製冷壓縮機的中間級如圖6-2所示。為了節省壓縮功耗和不使排氣溫度過高,級數較多的離心式製冷壓縮機中可分為幾段,每段包括一到幾級。低壓段的排氣需經中間冷卻後才輸往高壓段。 1—進口可調導流葉片 2—吸氣室 1—葉輪 2—擴壓器 3—葉輪 4—蝸殼 5—擴壓器 6—主軸 3—彎道 4—迴流器圖6-1所示的單級離心式製冷壓縮機的工作原理如下:壓縮機葉輪3旋轉時,製冷劑氣體由吸氣室2通過進口可調導流葉片1進入葉輪流道,在葉輪葉片的推動下氣體隨著葉輪一起旋轉。由於離心力的作用,氣體沿著葉輪流道徑向流動並離開葉輪,同時,葉輪進口處形成低壓,氣體由吸氣管不斷吸入。在此過程中,葉輪對氣體做功,使其動能和壓力能增加,氣體的壓力和流速得到提高。接著,氣體以高速進入截面逐漸擴大的擴壓器5和蝸殼4,流速逐漸下降,大部分氣體動能轉變為壓力能,壓力進一步提高,然後再引出壓縮機外。對於多級離心式製冷壓縮機,為了使製冷劑氣體壓力繼續提高,則利用彎道和迴流器再將氣體引入下一級葉輪進行壓縮,如圖6-2所示。因壓縮機的工作原理不同,離心式製冷壓縮機與往復活塞式製冷壓縮機相比,具有以下特點:①在相同製冷量時,其外形尺寸小、重量輕、佔地面積小。相同的製冷工況及製冷量,活塞式製冷壓縮機比離心式製冷壓縮機(包括齒輪增速器)重5~8倍,佔地面積多一倍左右。②無往復運動部件,動平衡特性好,振動小,基礎要求簡單。目前對中小型組裝式機組,壓縮機可直接裝在單筒式的蒸發
E. 空調壓縮機工作原理圖解
空調的壓縮機工作原理主要是依靠空調製冷壓縮機的工作,可以說,壓縮機就是空調的心臟,決定空調製冷效果的好壞,這樣我們才能享受到更好的使用效果,接下來,就為大家介紹它的工作原理吧,希望本文對大家能夠有所幫助,趕快來了解了解具體內容吧。
空調製冷壓縮機
空調製冷壓縮機是在空調製冷劑迴路中起壓縮驅動製冷劑的作用。空調製冷壓縮機一般裝在室外機中。空調製冷壓縮機把製冷劑從低壓區抽取來經壓縮後送到高壓區冷卻凝結,通過散熱片散發出熱量到空氣中,製冷劑也從氣態變成液態,壓力升高。
空調製冷壓縮機的工作迴路中分蒸發區(低壓區)和冷凝區(高壓區)。空調的室內機和室外機分別屬於低壓或高壓區(要看工作狀態而定)。製冷劑再從高壓區流向低壓區,通過毛細管噴射到蒸發器中,壓力驟降,液態製冷劑立即變成氣態,通過散熱片吸收空氣中大量的熱量。這樣,空調製冷壓縮機不斷工作,就不斷地把低壓區一端的熱量吸收到製冷劑中再送到高壓區散發到空氣中,起到調節氣溫的作用。
1、壓縮機將冷凍劑壓縮成高壓飽和氣體(氨或氟里昂),這種氣態冷凍劑再經過冷凝器冷凝。通過節流裝置節流之後,通入到蒸發器中,將所需要冷卻的媒介冷卻換熱。
2、空調製冷壓縮機是在空調製冷劑迴路中起壓縮驅動製冷劑的作用。壓縮機吧製冷劑從低壓區抽取出來壓縮後送到高壓區冷卻凝結,通過散熱片散發出熱量到空氣中;
3、空調在製冷運行時,低溫低壓的製冷劑氣體被壓縮機吸入後加壓變成高溫高壓的製冷劑氣體,高溫高壓的製冷劑氣體在室外換熱器中放熱變成中溫高壓的液體,中溫高壓的液體再經過節流部件降壓後變成低溫低壓的液體,進入壓縮機壓縮,就這樣一直循環。
因為這個頁面暫時不能夠配圖,所以只能夠以文字的方式把壓縮機的工作原理做一個簡單的介紹,希望能夠幫到你了解空調壓縮機的工作原理。