❶ 研究鋰離子電池材料需要哪些實驗室設備
掃描探針顯微鏡 NanoscopeIII
多功能掃描探針顯微鏡內 NanoscopeIIIa
掃描探針顯微鏡容 Dimension 3000
可控環境掃描探針顯微鏡 Pico SPM
電化學掃描隧道顯微鏡(3台) Nanoscope E
電化學恆電位儀(2台) HAB-151
靜電蓄勢式抵抗溶接機 NRW-100A/NT-100A/NA-60H
電化學測量系統 BES
全內反射熒光顯微鏡
熒光顯微鏡
近場光學顯微鏡
高效液相色譜儀(2台)
電弧爐
langmuirr-Blodgett提膜機
電阻蒸發鍍膜機
紫外光譜儀
熒光光譜儀
光刻機
❷ 實驗室制錳酸鋰方程式
將MnO2和Li2CO3按4︰1的物質的量比配料,球磨3~5小時,
然後升溫至600℃~750℃,保溫24小時,自然冷卻至室溫得產品.
8 MnO2 + 2 Li2CO3 ==600℃~750℃== 4 LiMn2O4 + 2 CO2↑ + O2↑
❸ 誰知道實驗室製作鋰電池的具體實驗過程
用2L的攪拌機配料,用3米廠的實驗塗布機塗布,手工切片、滾壓、焊接正負極極耳,粘膠帶,烘烤極片,手工卷繞,入殼,焊接負極,滾槽,烘烤電芯,注入電解液,焊接正極蓋帽,封口,化成分容即可。
❹ 關於鋰離子電池的實驗室制備步驟(詳細步驟)
2cm也太小了吧,我們流延用的刮刀有10cm左右,不過具體的尺寸可以定做吧。
❺ 那位化學高手有制備實驗室制備磷酸鐵鋰的方法(畢業論文) 詳細點(最好原料,條件,儀器) ,謝謝
那個大學有同學可以讓同學在圖書館查
❻ 實驗室鋰電池的制備
鋰離子電池設計與檢測的實驗報告,誰有?學校實驗室進行的,最好有具體實驗步驟.我們要花幾個星期做這個實驗,卻不知道如何下手.
❼ 鋰電池的生產工藝流程.
鋰電池的生產工藝流程:
第一步--電極漿料制備
主要是將電極活性材料、粘結劑、溶劑等混合在一起,充分攪拌分散後,形成漿料。
第二步--塗布
將第一步制備的漿料以指定厚度均勻塗布到集流體(鋁箔或銅箔等)上,並烘乾溶劑。
第三步--極片沖切
將上一步製作出來的極片沖切成指定的尺寸形狀。
第四步--疊片
將正負極片、隔膜裝配到一起,完成貼膠後,形成極芯。
第五步--組裝軟包電池
將上一步生產的極芯裝入已經沖好坑的鋁塑膜,並完成頂封、側封等(還要留個口注液),形成未注液的軟包電池。
第六步--注液
將指定量的電解液注入軟包電芯內部。當然電芯要經過烘烤,並且在低濕度環境下進行注液操作,水分含量過多就不好了。
第七步--電池密封
在真空環境中將電芯內部的氣體抽出並完成密封。
❽ 制備丁基鋰裝置中的分液漏斗帶一側管的目的是什麼若無此裝置該如何
那叫「滴液漏斗」,保持液面上下等壓.否則,放熱反應,下面燒瓶里的壓力增加,漏斗里的液體無法加入.還有樣品液會被沖出的危險.
❾ 鋰同位素測量
熱電離質譜法測量鋰同位素
自然界鋰有兩種穩定同位素6Li和7Li,原子質量分別為6.0151223(5)u和7.0160041(5)u,其豐度分別為0.07591(2)和0.92409(20)(Coplenetal.,2002)。IAEA推薦的鋰同位素標准參考物質是NBSL-SVECLi2CO3,其絕對6Li/7Li=0.0832±0.0002(Fleschetal.,1973)。另外還有兩個標准物質是富6Li的IRMM-015和天然豐度的IRMM-016,後者的絕對6Li/7Li=0.08212±0.00028(Qietal.,1997)。根據IUPAC的推薦,試樣的鋰同位素組成要採用δ7Li表示(Coplen,1996)。
目前測定鋰同位素的方法主要有歷史悠久的熱電離質譜法(TIMS)(Sahoo,Masuda,1995)和近期發展起來的多接收等離子體質譜法(MC-ICPMS)(Magnaetal.,2004)。
方法提要
採用鹼熔、酸溶或水溶的方法將待測試樣中的Li制備成含Li溶液,採用離子交換方法進行Li的分離並轉型為Li2B7O4或Li3PO3形式,採用雙帶熱電離的方法獲得Li+離子進行鋰同位素組成的TIMS測定。
儀器裝置
熱電離同位素質譜計(VG354,MAT262,IsoProbeT,Triton)。
原子吸收光譜儀。
真空燒帶裝置。
超凈化實驗室。
石英亞佛蒸餾器。
超凈化乾燥蒸發箱。
電子分析天平。
試劑與材料
硼酸優級純。
氫氧化鈉優級純。
氯化鈉優級純。
磷酸。
低本底亞沸蒸餾鹽酸。
無水甲醇優級純。
低Li亞沸蒸餾水。
1.2mol/LHCl-(4+1)甲醇淋洗溶液由上述試劑配製。
NBS951硼同位素標准溶液ρ(B)=1mg/mL。
各類四氟乙烯器皿燒杯、洗瓶等。
NBSL-SVECLi2CO3鋰同位素標准物質。
Ta金屬箔和Re金屬箔規格:長7.5mm,寬0.76mm,厚0.02mm。
上海正一號陽離子交換樹脂(80~100目)。
石英離子交換柱=0.5cm。
離子交換柱的制備將浸泡過夜的上海正一號陽離子交換樹脂(80~100目)裝入直徑為0.5cm的石英離子交換柱中,樹脂床高度為10cm,繼以200mL4mol/LHCl淋洗,再用高純水洗至中性,並採用1.2mol/LHCl-(4+1)甲醇淋洗溶液將交換柱中的水排出,最後將樹脂倒出,用1.2mol/LHCl-(4+1)甲醇溶液重新裝柱備用。
分析步驟
(1)試樣制備
a.鹽類試樣的溶解及水溶液試樣的預處理。稱取約0.1g鹽類試樣,用低鋰亞沸蒸餾水溶解,過濾除去不溶部分,制備成含Li的溶液備用。水溶液試樣過濾除去不溶物後,在低溫下蒸發至約3mL備用。
b.離子交換純化。在准備就緒的試樣溶液中加入2.5gNaCl和15mL1.2mol/LHCl-(4+1)甲醇淋洗溶液,以0.2mL/min的流速過柱進行交換,盛樣容器中殘留的NaCl晶體用少量淋洗溶液轉移,剩下的少量NaCl晶體用0.2mL水溶解後再加入2mL淋洗液,混合後倒入柱中,重復一次以上操作。最後用淋洗溶液以0.5mL/min的流速淋洗,根據淋洗曲線收集含Li的淋洗液部分。在超凈箱中於60℃蒸發至干,加少量水溶解,再蒸干,重復2次。將生成的溶液通過OH-型陰離子交換柱,將Li轉化成LiOH形式備用。
當採用Li3PO4作塗樣物質時,將交換分離後的試樣溶液蒸干後加入0.3mL0.017mol/LH3PO4,然後在電熱板上於90℃蒸發數小時備用。
(2)鋰含量和特殊組成測定
a.鋰含量的檢測。試液中鋰的濃度可採用原子吸收光譜法測量,以確定鋰同位素質譜測定時的取樣量。
b.鉭、錸帶的加熱去氣處理。為了降低鉭和錸帶中的Li及其他雜質的含量,鉭和錸帶通常要進行加熱處理,過程如下:將點焊在燈絲架上的鉭和錸帶在專用的真空系統中進行電加熱處理,加熱電流Ta帶為3.0A,Re帶4.5A,加熱時間為1.0h,系統的真空度應優於1×10-3Pa。
c.鋰同位素測定。鋰同位素分析在熱電離同位素質譜計(VG354,MAT261,MAT262,IsoProbeT,TritonT)上進行。
採用Li2B4O7作塗樣物質(Xiao,1989):採用去過氣的雙帶或三帶,樣品帶為Ta帶,電離帶為Re帶。塗樣時在樣品帶上塗3μL濃度為1mg/mL的NBS951硼標准溶液(也可採用其他超純的H3BO3化學試劑),蒸發至近干,再加入0.5~1.0μgLi的試液溶液,通以1.2A電流,加熱2min使試液蒸干。裝入質譜計,當離子源真空優於3×10-5Pa時開始進行測量。快速升高電離帶電離至2.00A,然後以0.2A/min繼續升高直到電離帶溫度為1500℃,溫度採用光學溫度計測量。然後緩慢升高樣品帶電流至7Li+離子流達到5×10-12A。對7Li+離子流進行儀器聚焦,當7Li+離子流達到2×10-11A時開始數據採集,採用峰跳掃方式測量7Li+和6Li+離子流強度,基線零點為u/e6.5。
採用Li3PO4作塗樣物質(Moriguti,1998):採用去過氣的雙帶或三帶,樣品帶和電離帶均為Re帶。塗樣時在樣品帶上塗添加有H3PO4的含Li的試樣溶液,先在1.0A下加熱,隨後緩慢升高電流至1.7A,並避免試液沸騰,維持帶電流直至磷酸冒煙消失。裝入質譜計,當離子源真空優於3×10-5Pa時開始進行測量。首先升高電離帶電流至電離帶溫度為1150℃,樣品帶電流升至0.3A,維持10min後快速將兩加熱電流降至0,冷卻10min後再重新升高電離帶電流至1.05~1.10A,此時溫度為850℃,升高樣品帶電流至0.60A,此時將出現7Li+,隨後緩慢升高至7Li+離子流達到(1.05~1.25)×10-11A時開始數據採集。採用峰跳掃方式測量7Li+和6Li+離子流強度,基線零點為u/e6.5。
若採用IsoProbeT或FinniganTriton進行測量,可採用雙接收同時進行7Li+和6Li+離子流強度的測量。
試液的鋰同位素組成用相對於NBSL-SVECLi2CO3鋰同位素標准δ7Li表示:
岩石礦物分析第四分冊資源與環境調查分析技術
圖87.26表明在不同的電離帶溫度下以Li2B4O7作塗樣物質時,7Li/6Li比值隨測量時間的變化。結果表明,當電離帶溫度低於1200℃時,測定的7Li/6Li比值偏低,且有隨時間而升高的趨勢。
圖87.26 以Li2B4O7作塗樣物質時不同電離溫度時7Li/6Li比值隨時間的變化
按照以上方法對NBSL-SVECLi2CO3鋰同位素標准進行重復塗樣測定的7Li/6Li比值列於表87.25。
表87.25 對NBSL-SVECLi2CO3鋰同位素標准7Li/6Li比值測定的重復性
採用正熱電離質譜法測得的NBSL-SVECLi2CO3鋰同位素比值
正熱電離質譜法在Li同位素地球化學、環境等研究領域獲得廣泛應用。表87.26總結了世界各實驗室採用正熱電離質譜法測得的NBSL-SVECLi2CO3鋰同位素比值和精度。
表87.26 各實驗室採用熱電離質譜法測定的NBSL-SVECLi2CO3Li同位素比值
討論
鋰同位素熱電離質譜法測定有一個由單帶到雙帶的發展過程。在多帶法中由於Li以分子形式蒸發,降低了Li在蒸發過程中的同位素分餾而使測定精度得以提高,最常用的塗樣物質有LiNO3、LiCl、LiI、Li2SO4、Li3PO4和Li2B4O7,被檢測的離子有Li+、LiF+和Li2BO2+。近些年來,以Li3PO4作塗樣形式測定Li+的方法得到更普遍的應用。Xiao(1989)等對採用Li2B4O7作塗樣物質測定Li+的熱電離質譜法高精度測定鋰同位素進行系統研究,發現電離帶溫度對控制測定中的鋰同位素分餾起著決定性作用。在多種塗樣物質中,發現Li2B4O7是最好的,能獲得最穩定的7Li/6Li比值測定。但是後來有研究表明,Li3PO4作塗樣物質具有更多的優越性(Moriguti,1998)。
1)電離溫度的影響。由於Li的兩種穩定同位素6Li和7Li非常大的相對質量差,在熱電離質譜法測定中會產生嚴重的同位素分餾,使得鋰同位素的精密測定十分困難。電離溫度是影響Li同位素分餾的重要因素,圖87.27表明採用不同塗樣物質時,7Li/6Li比值隨電離溫度的變化;在低溫時,測定的7Li/6Li比值嚴重偏低,隨電離溫度的升高,測定的7Li/6Li比值逐漸升高,到1200℃時7Li/6Li比值才趨於平穩。這表明在低溫時,Li同位素的分餾更為顯著,因此在進行Li同位素熱電離法測定時,電離溫度應在1400℃以上。
2)不同形式塗樣物質的比較。採用大分子量的塗樣物質能降低Li化合物蒸發過程中的同位素分餾,因此Li同位素測定中採用的塗樣物質有一個由低相對分子質量到高相對分子質量的發展過程,所採用塗樣物質有LiOH、LiCl、LiNO3、LiF、LiI、Li2B4O7和Li3PO4等。除了這一因素外,塗樣物質的腐蝕性和記憶效應以及能否產生穩定的Li+離子流應進行綜合考慮。表87.27表明,LiCl和Li2B4O7可能是比較理想的塗樣物質,7Li/6Li測定精度可達0.14%以上,而且記憶效應較弱。近些年來,很多實驗室採用Li3PO4作塗樣物質,也得到比較理想的測定結果。圖87.27也表明採用Li3PO4塗樣時,記憶Li量與Li2B4O7塗樣時相似,測量條件控製得好,可望獲得更高的測定精度,不妨採用之。LiF可能是最不合適作為鋰同位素測定時的塗樣物質,採用LiF作塗樣物質,測定精度最低,而記憶效應最強。
圖87.27 採用不同塗樣物質時7Li/6Li比值隨電離溫度的變化
表87.27 採用不同鋰化合物塗樣時對NBSL-SVECLi2CO3鋰測定的鋰同位素比值和記憶量
參考文獻
肖應凱,白玉珍,王蘊慧 .1983.大量鈉和鎂中微量鋰的離子交換分離 [J].理化檢驗,化學分冊,19(6) : 41-43
肖應凱,祁海平,王蘊慧,等 .1988.質譜測定鋰同位素組成的分餾效應研究 [J].科學通報,33(17) : 1336-1338
肖應凱,祁海平,王蘊慧,等 .1991.熱電離質譜法測定鋰同位素中各種塗樣形式的比較 [J].科學通報,36 (18) : 1386 -1388
Chan L H,Edmond J M, Thompson G, Gillis K.1992.Lithium isotopic composition of submarine basalts: implications for the lithium cycle in the oceans.Earth Planet Sci.Lett.,108: 151-160
Chan L H.1987.Lithium isotope analysis by thermal ionization mass spectrometry of lithium tetraborate.59: 2662-2665
Coplen T B,Blke J K,Bièvre P De,Ding T,Holden N E,Hopple J A,Krouse H R,Lamberty A,Peiser H S,Révész K,Rieder S E,Rosman K J R,Roth E,Taylor P D P,Vocke J R R D,and Xiao Y K.2002.Isotope-aboundance variations of selected elements.Pure Appl.Chem.,74 (10) : 1987-2017
Coplen T B.1996.Atomic weights of the elements.1995.Pure Appl.Chem,68: 2339-2359
Flesch G D, Anderson, Jr A R and Svec H J.1973.A secondary isotopic atandard for6Li /7Li determinations.Int.J.Mass Spectrom Ion Phys.,265-272.
Green L W, Leppinen J J, Elliot N L.1988.Isotopic analysis of lithium as thermal dilithium fluoride ions.Anal.Chim.Acta,60: 34-37
Huh Y,Chan L H,Zhang L,et al.1998.Lithium and its isotopes in major world revers: implications for weathering and the oceanic budget,geochim.Cosmochim.Acta,62: 2039-2051
Lamberty A,Michiels E,Bievre P D.1987.On the atomic weight of lithium.Int.J.Mass Spectrom Ion Proc.,79: 311-313
Magna T,Wiechert U H,Halliday A N.2004.Low-blank isotope ratio measurement of small samples of lithium using multiple-collector ICPMS.Int.J.Mass Spectrom.,239: 67-76
Moriguti T,Nakamura E.1993.Precise lithium isotopic analysis by thermal ionization mass spectrometry using lithium phosphate as an ion source meterial.Proc.Jpn.Acad.Sci.,69: 123-128
Moriguti T,Nakamura E.1998.High-yield lithium separation and the precise isotopic analysis for natural rock and aqueous samples.Chem.Geol.,145: 91-104
Qi H P,Taylor P D P,Berglund M,Bievre P De.1997.Calibrated measurements of the isotopic composition and atomic weight of the natural Li isotopic reference material IRMM-016.Int.J.Mass Spectrom.Ion Proc,171:263-268
Sahoo S K, Masuda A.1995.High precision isotopic measurement of lithium by thermal ionization mass spectrometry.Int.J.Mass Spectrom.Ion Proc.,151: 189-196
Xiao Y K,Beary E S.1989.High-precision isotopic measurement of lithium by thermal ionization mass spetrometry[J].Int.J.Mass Spectrom Ion Processes,94: 101-114.
You C F,Chan L H.1996.Precise determination of lithium isotopic composition in low concentration natural samples [J].Geochim Cosmochim Acta,60: 909-915
本節編寫人: 肖應凱 (中國科學院青海鹽湖研究所) 。