㈠ 急急急~鍋爐煙氣脫硫設計方案
現在有很多脫硫的方法 最常見的就是干法和濕法兩種
上海科格思過濾材料有限公司
我們是成產除塵布袋的廠家
宋旭
電話021-61506009
硫技術
通過對國內外脫硫技術以及國內電力行業引進脫硫工藝試點廠情況的分析研究,目前脫硫方法一般可劃分為燃燒前脫硫、燃燒中脫硫和燃燒後脫硫等3類。
其中燃燒後脫硫,又稱煙氣脫硫(Flue gas desulfurization,簡稱FGD),在FGD技術中,按脫硫劑的種類劃分,可分為以下五種方法:以CaCO3(石灰石)為基礎的鈣法,以MgO為基礎的鎂法,以Na2SO3為基礎的鈉法,以NH3為基礎的氨法,以有機鹼為基礎的有機鹼法。世界上普遍使用的商業化技術是鈣法,所佔比例在90%以上。按吸收劑及脫硫產物在脫硫過程中的干濕狀態又可將脫硫技術分為濕法、干法和半干(半濕)法。濕法FGD技術是用含有吸收劑的溶液或漿液在濕狀態下脫硫和處理脫硫產物,該法具有脫硫反應速度快、設備簡單、脫硫效率高等優點,但普遍存在腐蝕嚴重、運行維護費用高及易造成二次污染等問題。干法FGD技術的脫硫吸收和產物處理均在干狀態下進行,該法具有無污水廢酸排出、設備腐蝕程度較輕,煙氣在凈化過程中無明顯降溫、凈化後煙溫高、利於煙囪排氣擴散、二次污染少等優點,但存在脫硫效率低,反應速度較慢、設備龐大等問題。半干法FGD技術是指脫硫劑在乾燥狀態下脫硫、在濕狀態下再生(如水洗活性炭再生流程),或者在濕狀態下脫硫、在干狀態下處理脫硫產物(如噴霧乾燥法)的煙氣脫硫技術。特別是在濕狀態下脫硫、在干狀態下處理脫硫產物的半干法,以其既有濕法脫硫反應速度快、脫硫效率高的優點,又有干法無污水廢酸排出、脫硫後產物易於處理的優勢而受到人們廣泛的關注。按脫硫產物的用途,可分為拋棄法和回收法兩種。
1.1脫硫的幾種工藝
(1)石灰石——石膏法煙氣脫硫工藝
石灰石——石膏法脫硫工藝是世界上應用最廣泛的一種脫硫技術,日本、德國、美國的火力發電廠採用的煙氣脫硫裝置約90%採用此工藝。
它的工作原理是:將石灰石粉加水製成漿液作為吸收劑泵入吸收塔與煙氣充分接觸混合,煙氣中的二氧化硫與漿液中的碳酸鈣以及從塔下部鼓入的空氣進行氧化反應生成硫酸鈣,硫酸鈣達到一定飽和度後,結晶形成二水石膏。經吸收塔排出的石膏漿液經濃縮、脫水,使其含水量小於10%,然後用輸送機送至石膏貯倉堆放,脫硫後的煙氣經過除霧器除去霧滴,再經過換熱器加熱升溫後,由煙囪排入大氣。由於吸收塔內吸收劑漿液通過循環泵反復循環與煙氣接觸,吸收劑利用率很高,鈣硫比較低,脫硫效率可大於95% 。
(2)旋轉噴霧乾燥煙氣脫硫工藝
噴霧乾燥法脫硫工藝以石灰為脫硫吸收劑,石灰經消化並加水製成消石灰乳,消石灰乳由泵打入位於吸收塔內的霧化裝置,在吸收塔內,被霧化成細小液滴的吸收劑與煙氣混合接觸,與煙氣中的SO2發生化學反應生成CaSO3,煙氣中的SO2被脫除。與此同時,吸收劑帶入的水分迅速被蒸發而乾燥,煙氣溫度隨之降低。脫硫反應產物及未被利用的吸收劑以乾燥的顆粒物形式隨煙氣帶出吸收塔,進入除塵器被收集下來。脫硫後的煙氣經除塵器除塵後排放。為了提高脫硫吸收劑的利用率,一般將部分除塵器收集物加入制漿系統進行循環利用。該工藝有兩種不同的霧化形式可供選擇,一種為旋轉噴霧輪霧化,另一種為氣液兩相流。
噴霧乾燥法脫硫工藝具有技術成熟、工藝流程較為簡單、系統可靠性高等特點,脫硫率可達到85%以上。該工藝在美國及西歐一些國家有一定應用范圍(8%)。脫硫灰渣可用作制磚、築路,但多為拋棄至灰場或回填廢舊礦坑。
(3) 磷銨肥法煙氣脫硫工藝
磷銨肥法煙氣脫硫技術屬於回收法,以其副產品為磷銨而命名。該工藝過程主要由吸附(活性炭脫硫制酸)、萃取(稀硫酸分解磷礦萃取磷酸)、中和(磷銨中和液制備)、吸收( 磷銨液脫硫制肥)、氧化(亞硫酸銨氧化)、濃縮乾燥(固體肥料制備)等單元組成。它分為兩個系統:
煙氣脫硫系統——煙氣經高效除塵器後使含塵量小於200mg/Nm3,用風機將煙壓升高到7000Pa,先經文氏管噴水降溫調濕,然後進入四塔並列的活性炭脫硫塔組(其中一隻塔周期性切換再生),控制一級脫硫率大於或等於70%,並製得30%左右濃度的硫酸,一級脫硫後的煙氣進入二級脫硫塔用磷銨漿液洗滌脫硫,凈化後的煙氣經分離霧沫後排放。
肥料制備系統——在常規單槽多漿萃取槽中,同一級脫硫製得的稀硫酸分解磷礦粉(P2O5 含量大於26%),過濾後獲得稀磷酸(其濃度大於10%),加氨中和後製得磷氨,作為二級脫硫劑,二級脫硫後的料漿經濃縮乾燥製成磷銨復合肥料。
(4)爐內噴鈣尾部增濕煙氣脫硫工藝
爐內噴鈣加尾部煙氣增濕活化脫硫工藝是在爐內噴鈣脫硫工藝的基礎上在鍋爐尾部增設了增濕段,以提高脫硫效率。該工藝多以石灰石粉為吸收劑,石灰石粉由氣力噴入爐膛850~1150℃溫度區,石灰石受熱分解為氧化鈣和二氧化碳,氧化鈣與煙氣中的二氧化硫反應生成亞硫酸鈣。由於反應在氣固兩相之間進行,受到傳質過程的影響,反應速度較慢,吸收劑利用率較低。在尾部增濕活化反應器內,增濕水以霧狀噴入,與未反應的氧化鈣接觸生成氫氧化鈣進而與煙氣中的二氧化硫反應。當鈣硫比控制在2.0~2.5時,系統脫硫率可達到65~80%。由於增濕水的加入使煙氣溫度下降,一般控制出口煙氣溫度高於露點溫度10~15℃,增濕水由於煙溫加熱被迅速蒸發,未反應的吸收劑、反應產物呈乾燥態隨煙氣排出,被除塵器收集下來。
該脫硫工藝在芬蘭、美國、加拿大、法國等國家得到應用,採用這一脫硫技術的最大單機容量已達30萬千瓦。
(5)煙氣循環流化床脫硫工藝
煙氣循環流化床脫硫工藝由吸收劑制備、吸收塔、脫硫灰再循環、除塵器及控制系統等部分組成。該工藝一般採用干態的消石灰粉作為吸收劑,也可採用其它對二氧化硫有吸收反應能力的乾粉或漿液作為吸收劑。
由鍋爐排出的未經處理的煙氣從吸收塔(即流化床)底部進入。吸收塔底部為一個文丘里裝置,煙氣流經文丘里管後速度加快,並在此與很細的吸收劑粉末互相混合,顆粒之間、氣體與顆粒之間劇烈摩擦,形成流化床,在噴入均勻水霧降低煙溫的條件下,吸收劑與煙氣中的二氧化硫反應生成CaSO3 和CaSO4。脫硫後攜帶大量固體顆粒的煙氣從吸收塔頂部排出,進入再循環除塵器,被分離出來的顆粒經中間灰倉返回吸收塔,由於固體顆粒反復循環達百次之多,故吸收劑利用率較高。
此工藝所產生的副產物呈乾粉狀,其化學成分與噴霧乾燥法脫硫工藝類似,主要由飛灰、CaSO3、CaSO4和未反應完的吸收劑Ca(OH)2等組成,適合作廢礦井回填、道路基礎等。
典型的煙氣循環流化床脫硫工藝,當燃煤含硫量為2%左右,鈣硫比不大於1.3時,脫硫率可達90%以上,排煙溫度約70℃。此工藝在國外目前應用在10~20萬千瓦等級機組。由於其佔地面積少,投資較省,尤其適合於老機組煙氣脫硫。
(6)海水脫硫工藝
海水脫硫工藝是利用海水的鹼度達到脫除煙氣中二氧化硫的一種脫硫方法。在脫硫吸收塔內,大量海水噴淋洗滌進入吸收塔內的燃煤煙氣,煙氣中的二氧化硫被海水吸收而除去,凈化後的煙氣經除霧器除霧、經煙氣換熱器加熱後排放。吸收二氧化硫後的海水與大量未脫硫的海水混合後,經曝氣池曝氣處理,使其中的SO32-被氧化成為穩定的SO42-,並使海水的PH值與COD調整達到排放標准後排放大海。海水脫硫工藝一般適用於靠海邊、擴散條件較好、用海水作為冷卻水、燃用低硫煤的電廠。海水脫硫工藝在挪威比較廣泛用於煉鋁廠、煉油廠等工業爐窯的煙氣脫硫,先後有20多套脫硫裝置投入運行。近幾年,海水脫硫工藝在電廠的應用取得了較快的進展。此種工藝最大問題是煙氣脫硫後可能產生的重金屬沉積和對海洋環境的影響需要長時間的觀察才能得出結論,因此在環境質量比較敏感和環保要求較高的區域需慎重考慮。
(7) 電子束法脫硫工藝
該工藝流程有排煙預除塵、煙氣冷卻、氨的充入、電子束照射和副產品捕集等工序所組成。鍋爐所排出的煙氣,經過除塵器的粗濾處理之後進入冷卻塔,在冷卻塔內噴射冷卻水,將煙氣冷卻到適合於脫硫、脫硝處理的溫度(約70℃)。煙氣的露點通常約為50℃,被噴射呈霧狀的冷卻水在冷卻塔內完全得到蒸發,因此,不產生廢水。通過冷卻塔後的煙氣流進反應器,在反應器進口處將一定的氨水、壓縮空氣和軟水混合噴入,加入氨的量取決於SOx濃度和NOx濃度,經過電子束照射後,SOx和NOx在自由基作用下生成中間生成物硫酸(H2SO4)和硝酸(HNO3)。然後硫酸和硝酸與共存的氨進行中和反應,生成粉狀微粒(硫酸氨(NH4)2SO4與硝酸氨NH4NO3的混合粉體)。這些粉狀微粒一部分沉澱到反應器底部,通過輸送機排出,其餘被副產品除塵器所分離和捕集,經過造粒處理後被送到副產品倉庫儲藏。凈化後的煙氣經脫硫風機由煙囪向大氣排放。
(8)氨水洗滌法脫硫工藝
該脫硫工藝以氨水為吸收劑,副產硫酸銨化肥。鍋爐排出的煙氣經煙氣換熱器冷卻至90~100℃,進入預洗滌器經洗滌後除去HCI和HF,洗滌後的煙氣經過液滴分離器除去水滴進入前置洗滌器中。在前置洗滌器中,氨水自塔頂噴淋洗滌煙氣,煙氣中的SO2被洗滌吸收除去,經洗滌的煙氣排出後經液滴分離器除去攜帶的水滴,進入脫硫洗滌器。在該洗滌器中煙氣進一步被洗滌,經洗滌塔頂的除霧器除去霧滴,進入脫硫洗滌器。再經煙氣換熱器加熱後經煙囪排放。洗滌工藝中產生的濃度約30%的硫酸銨溶液排出洗滌塔,可以送到化肥廠進一步處理或直接作為液體氮肥出售,也可以把這種溶液進一步濃縮蒸發乾燥加工成顆粒、晶體或塊狀化肥出售。
1。2燃燒前脫硫
燃燒前脫硫就是在煤燃燒前把煤中的硫分脫除掉,燃燒前脫硫技術主要有物理洗選煤法、化學洗選煤法、煤的氣化和液化、水煤漿技術等。洗選煤是採用物理、化學或生物方式對鍋爐使用的原煤進行清洗,將煤中的硫部分除掉,使煤得以凈化並生產出不同質量、規格的產品。微生物脫硫技術從本質上講也是一種化學法,它是把煤粉懸浮在含細菌的氣泡液中,細菌產生的酶能促進硫氧化成硫酸鹽,從而達到脫硫的目的;微生物脫硫技術目前常用的脫硫細菌有:屬硫桿菌的氧化亞鐵硫桿菌、氧化硫桿菌、古細菌、熱硫化葉菌等。煤的氣化,是指用水蒸汽、氧氣或空氣作氧化劑,在高溫下與煤發生化學反應,生成H2、CO、CH4等可燃混合氣體(稱作煤氣)的過程。煤炭液化是將煤轉化為清潔的液體燃料(汽油、柴油、航空煤油等)或化工原料的一種先進的潔凈煤技術。水煤漿(Coal Water Mixture,簡稱CWM)是將灰份小於10%,硫份小於0.5%、揮發份高的原料煤,研磨成250~300μm的細煤粉,按65%~70%的煤、30%~35%的水和約1%的添加劑的比例配製而成,水煤漿可以像燃料油一樣運輸、儲存和燃燒,燃燒時水煤漿從噴嘴高速噴出,霧化成50~70μm的霧滴,在預熱到600~700℃的爐膛內迅速蒸發,並拌有微爆,煤中揮發分析出而著火,其著火溫度比干煤粉還低。
燃燒前脫硫技術中物理洗選煤技術已成熟,應用最廣泛、最經濟,但只能脫無機硫;生物、化學法脫硫不僅能脫無機硫,也能脫除有機硫,但生產成本昂貴,距工業應用尚有較大距離;煤的氣化和液化還有待於進一步研究完善;微生物脫硫技術正在開發;水煤漿是一種新型低污染代油燃料,它既保持了煤炭原有的物理特性,又具有石油一樣的流動性和穩定性,被稱為液態煤炭產品,市場潛力巨大,目前已具備商業化條件。
煤的燃燒前的脫硫技術盡管還存在著種種問題,但其優點是能同時除去灰分,減輕運輸量,減輕鍋爐的沾污和磨損,減少電廠灰渣處理量,還可回收部分硫資源。
1.3 燃燒中脫硫,又稱爐內脫硫
爐內脫硫是在燃燒過程中,向爐內加入固硫劑如CaCO3等,使煤中硫分轉化成硫酸鹽,隨爐渣排除。其基本原理是:
CaCO3→CaO+CO2↑
CaO+SO2→CaSO3
CaSO3+1/2×O2→CaSO4
(1) LIMB爐內噴鈣技術
早在本世紀60年代末70年代初,爐內噴固硫劑脫硫技術的研究工作已開展,但由於脫硫效率低於10%~30%,既不能與濕法FGD相比,也難以滿足高達90%的脫除率要求。一度被冷落。但在1981年美國國家環保局EPA研究了爐內噴鈣多段燃燒降低氮氧化物的脫硫技術,簡稱LIMB,並取得了一些經驗。Ca/S在2以上時,用石灰石或消石灰作吸收劑,脫硫率分別可達40%和60%。對燃用中、低含硫量的煤的脫硫來說,只要能滿足環保要求,不一定非要求用投資費用很高的煙氣脫硫技術。爐內噴鈣脫硫工藝簡單,投資費用低,特別適用於老廠的改造。
(2) LIFAC煙氣脫硫工藝
LIFAC工藝即在燃煤鍋爐內適當溫度區噴射石灰石粉,並在鍋爐空氣預熱器後增設活化反應器,用以脫除煙氣中的SO2。芬蘭Tampella和IVO公司開發的這種脫硫工藝,於1986年首先投入商業運行。LIFAC工藝的脫硫效率一般為60%~85%。
加拿大最先進的燃煤電廠Shand電站採用LIFAC煙氣脫硫工藝,8個月的運行結果表明,其脫硫工藝性能良好,脫硫率和設備可用率都達到了一些成熟的SO2控制技術相當的水平。我國下關電廠引進LIFAC脫硫工藝,其工藝投資少、佔地面積小、沒有廢水排放,有利於老電廠改造。
1.4 燃燒後脫硫,又稱煙氣脫硫(Flue gas desulfurization,簡稱FGD)
燃煤的煙氣脫硫技術是當前應用最廣、效率最高的脫硫技術。對燃煤電廠而言,在今後一個相當長的時期內,FGD將是控制SO2排放的主要方法。目前國內外火電廠煙氣脫硫技術的主要發展趨勢為:脫硫效率高、裝機容量大、技術水平先進、投資省、佔地少、運行費用低、自動化程度高、可靠性好等。
1.3.1乾式煙氣脫硫工藝
該工藝用於電廠煙氣脫硫始於80年代初,與常規的濕式洗滌工藝相比有以下優點:投資費用較低;脫硫產物呈干態,並和飛灰相混;無需裝設除霧器及再熱器;設備不易腐蝕,不易發生結垢及堵塞。其缺點是:吸收劑的利用率低於濕式煙氣脫硫工藝;用於高硫煤時經濟性差;飛灰與脫硫產物相混可能影響綜合利用;對乾燥過程式控制制要求很高。
(1) 噴霧乾式煙氣脫硫工藝:噴霧乾式煙氣脫硫(簡稱干法FGD),最先由美國JOY公司和丹麥Niro Atomier公司共同開發的脫硫工藝,70年代中期得到發展,並在電力工業迅速推廣應用。該工藝用霧化的石灰漿液在噴霧乾燥塔中與煙氣接觸,石灰漿液與SO2反應後生成一種乾燥的固體反應物,最後連同飛灰一起被除塵器收集。我國曾在四川省白馬電廠進行了旋轉噴霧干法煙氣脫硫的中間試驗,取得了一些經驗,為在200~300MW機組上採用旋轉噴霧干法煙氣脫硫優化參數的設計提供了依據。
(2) 粉煤灰乾式煙氣脫硫技術:日本從1985年起,研究利用粉煤灰作為脫硫劑的乾式煙氣脫硫技術,到1988年底完成工業實用化試驗,1991年初投運了首台粉煤灰乾式脫硫設備,處理煙氣量644000Nm3/h。其特點:脫硫率高達60%以上,性能穩定,達到了一般濕式法脫硫性能水平;脫硫劑成本低;用水量少,無需排水處理和排煙再加熱,設備總費用比濕式法脫硫低1/4;煤灰脫硫劑可以復用;沒有漿料,維護容易,設備系統簡單可靠。
1.3.2 濕法FGD工藝
世界各國的濕法煙氣脫硫工藝流程、形式和機理大同小異,主要是使用石灰石(CaCO3)、石灰(CaO)或碳酸鈉(Na2CO3)等漿液作洗滌劑,在反應塔中對煙氣進行洗滌,從而除去煙氣中的SO2。這種工藝已有50年的歷史,經過不斷地改進和完善後,技術比較成熟,而且具有脫硫效率高(90%~98%),機組容量大,煤種適應性強,運行費用較低和副產品易回收等優點。據美國環保局(EPA)的統計資料,全美火電廠採用濕式脫硫裝置中,濕式石灰法佔39.6%,石灰石法佔47.4%,兩法共佔87%;雙鹼法佔4.1%,碳酸鈉法佔3.1%。世界各國(如德國、日本等),在大型火電廠中,90%以上採用濕式石灰/石灰石-石膏法煙氣脫硫工藝流程。
石灰或石灰石法主要的化學反應機理為:
石灰法:SO2+CaO+1/2H2O→CaSO3•1/2H2O
石灰石法:SO2+CaCO3+1/2H2O→CaSO3•1/2H2O+CO2
其主要優點是能廣泛地進行商品化開發,且其吸收劑的資源豐富,成本低廉,廢渣既可拋棄,也可作為商品石膏回收。目前,石灰/石灰石法是世界上應用最多的一種FGD工藝,對高硫煤,脫硫率可在90%以上,對低硫煤,脫硫率可在95%以上。
傳統的石灰/石灰石工藝有其潛在的缺陷,主要表現為設備的積垢、堵塞、腐蝕與磨損。為了解決這些問題,各設備製造廠商採用了各種不同的方法,開發出第二代、第三代石灰/石灰石脫硫工藝系統。
濕法FGD工藝較為成熟的還有:氫氧化鎂法;氫氧化鈉法;美國Davy Mckee公司Wellman-Lord FGD工藝;氨法等。
在濕法工藝中,煙氣的再熱問題直接影響整個FGD工藝的投資。因為經過濕法工藝脫硫後的煙氣一般溫度較低(45℃),大都在露點以下,若不經過再加熱而直接排入煙囪,則容易形成酸霧,腐蝕煙囪,也不利於煙氣的擴散。所以濕法FGD裝置一般都配有煙氣再熱系統。目前,應用較多的是技術上成熟的再生(回轉)式煙氣熱交換器(GGH)。GGH價格較貴,占整個FGD工藝投資的比例較高。近年來,日本三菱公司開發出一種可省去無泄漏型的GGH,較好地解決了煙氣泄漏問題,但價格仍然較高。前德國SHU公司開發出一種可省去GGH和煙囪的新工藝,它將整個FGD裝置安裝在電廠的冷卻塔內,利用電廠循環水余熱來加熱煙氣,運行情況良好,是一種十分有前途的方法。
1.5等離子體煙氣脫硫技術
等離子體煙氣脫硫技術研究始於70年代,目前世界上已較大規模開展研究的方法有2類:
(1) 電子束輻照法(EB)
電子束輻照含有水蒸氣的煙氣時,會使煙氣中的分子如O2、H2O等處於激發態、離子或裂解,產生強氧化性的自由基O、OH、HO2和O3等。這些自由基對煙氣中的SO2和NO進行氧化,分別變成SO3和NO2或相應的酸。在有氨存在的情況下,生成較穩定的硫銨和硫硝銨固體,它們被除塵器捕集下來而達到脫硫脫硝的目的。
(2) 脈沖電暈法(PPCP)
脈沖電暈放電脫硫脫硝的基本原理和電子束輻照脫硫脫硝的基本原理基本一致,世界上許多國家進行了大量的實驗研究,並且進行了較大規模的中間試驗,但仍然有許多問題有待研究解決。
1.6 海水脫硫
海水通常呈鹼性,自然鹼度大約為1.2~2.5mmol/L,這使得海水具有天然的酸鹼緩沖能力及吸收SO2的能力。國外一些脫硫公司利用海水的這種特性,開發並成功地應用海水洗滌煙氣中的SO2,達到煙氣凈化的目的。
海水脫硫工藝主要由煙氣系統、供排海水系統、海水恢復系統等組成。
㈡ 鍋爐燃燒自動控制系統設計是什麼樣的
燃燒控制系統是電廠鍋爐的主控系統,主要包括燃料控制系統、風量控制系統、爐膛壓力控制系統。目前大部分電廠的鍋爐燃燒控制系統仍然採用PID控制。燃燒控制系統由主蒸汽壓力控制和燃燒率控制組成串級控制系統,其中燃燒率控制由燃料量控制、送風量控制、引風量控制構成,各個子控制系統分別通過不同的測量、控制手段來保證經濟燃燒和安全燃燒。如圖1所示。
圖1 燃燒控制系統結構圖
2、控制方案
鍋爐燃燒自動控制系統的基本任務是使燃料燃燒所提供的熱量適應外界對鍋爐輸出的蒸汽負荷的要求,同時還要保證鍋爐安全經濟運行。一台鍋爐的燃料量、送風量和引風量三者的控制任務是不可分開的,可以用三個控制器控制這三個控制變數,但彼此之間應互相協調,才能可靠工作。對給定出水溫度的情況,則需要調節鼓風量與給煤量的比例,使鍋爐運行在最佳燃燒狀態。同時應使爐膛內存在一定的負壓,以維持鍋爐熱效率、避免爐膛過熱向外噴火,保證了人員的安全和環境衛生。
2.1 控制系統總體框架設計
燃燒過程自動控制系統的方案,與鍋爐設備的類型、運行方式及控制要求有關,對不同的情況與要求,控制系統的設計方案不一樣。將單元機組燃燒過程被控對象看作是一個多變數系統,設計控制系統時,充分考慮工程實際問題,既保證符合運行人員的操作習慣,又要最大限度的實施燃燒優化控制。控制系統的總體框架如圖2所示。
圖2 單元機組燃燒過程式控制制原理圖
P為機組負荷熱量信號為D+dPbdt。控制系統包括:滑壓運行主汽壓力設定值計算模塊(由熱力系統實驗獲得數據,再擬合成可用DCS折線功能塊實現的曲線)、負荷—送風量模糊計算模塊、主蒸汽壓力控制系統和送、引風控制系統等。主蒸汽壓力控制系統採用常規串級PID控制結構。
2.2 燃料量控制系統
當外界對鍋爐蒸汽負荷的要求變化時,必須相應的改變鍋爐燃燒的燃料量。燃料量控制是鍋爐控制中最基本也是最主要的一個系統。因為給煤量的多少既影響主汽壓力,也影響送、引風量的控制,還影響到汽包中蒸汽蒸發量及汽溫等參數,所以燃料量控制對鍋爐運行有重大影響。燃料控制可用圖3簡單表示。
圖3 燃料量控制策略
其中:NB為鍋爐負荷要求;B為燃料量;F(x)為執行機構。
設置燃料量控制子系統的目的之一就是利用它來消除燃料側內部的自發擾動,改善系統的調節品質。另外,由於大型機組容量大,各部分之間聯系密切,相互影響不可忽略。特別是燃料品種的變化、投入的燃料供給裝置的台數不同等因素都會給控制系統帶來影響。燃料量控制子系統的設置也為解決這些問題提供了手段。
2.3 送風量控制系統
為了實現經濟燃燒,當燃料量改變時,必須相應的改變送風量,使送風量與燃料量相適應。燃料量與送風量的關系見圖4。
圖4 燃料量與送風量關系
燃燒過程的經濟與否可以通過剩餘空氣系數是否合適來衡量,過剩空氣系數通常用煙氣的含氧量來間接表示。實現經濟燃燒最基本的方法是使風量與燃料量成一定的比例。
送風量控制子系統的任務就是使鍋爐的送風量與燃料量相協調,可以達到鍋爐的最高熱效率,保證機組的經濟性,但由於鍋爐的熱效率不能直接測量,故通常通過一些間接的方法來達到目的。如圖5所示,以實測的燃料量B作為送風量調節器的給定值,使送風量V和燃料量B成一定的比例。
圖5 燃料量空氣調節系統
在穩態時,系統可保證燃料量和送風量間滿足
選擇使送風量略大於B完全燃燒所需要的理論空氣量。這個系統的優點是實現簡單,可以消除來自負荷側和燃料側的各種擾動。
2.4 引風量控制系統
為了保持爐膛壓力在要求的范圍內,引風量必須與送風量相適應。爐膛壓力的高低也關系著鍋爐的安全和經濟運行。爐膛壓力過低會使大量的冷風漏入爐膛,將會增大引風機的負荷和排煙損失,爐膛壓力太低甚至會引起內爆;反之爐膛壓力高且高出大氣壓力的時候,會使火焰和煙氣冒出,不僅影響環境衛生,甚至可能影響設備和人生安全。引風量控制子系統的任務是保證一定的爐膛負壓力,且爐膛負壓必須控制在允許范圍內,一般在-20Pa左右。
控制爐膛負壓的手段是調節引風機的引風量,其主要的外部擾動是送風量。作為調節對象,爐膛煙道的慣性很小,無論在內擾和外擾下,都近似一個比例環節。一般採用單迴路調節系統並加以前饋的方法進行控制,如圖6所示。
圖6 引風量控制子系統
圖中為爐膛負壓給定值,S為實測的爐膛負壓,Q為引風量,V為送風量。由於爐膛負壓實際上決定於送風量和引風量的平衡,故利用送風量作為前饋信號,以改善系統的調節性能。另外,由於調節對象相當於一個比例環節,被調量反應過於靈敏,為了防止小幅度偏差引起引風機擋板的頻繁動作,可設置調節器的比例帶自動修正環節,使得在小偏差時增大調節器的比例帶。對於負壓S的測量信號,也需進行低通濾波,以抑制測量值的劇烈波動。
3、系統硬體配置
在鍋爐燃燒過程中,用常規儀表進行控制,存在滯後、間歇調節、煙氣中氧含量超過給定值、低負荷和煙氣溫度過低等問題。採用PLC對鍋爐進行控制時,由於它的運算速度快、精度高、准確可靠,可適應復雜的、難於處理的控制系統。因而,可以解決以上由常規儀表控制難以解決的問題。所選擇的PLC系統要求具有較強的兼容性,可用最小的投資使系統建成及運轉;其次,當設計的自動化系統要有所改變時,不需要重新編程,對輸入、輸出系統不需要再重新接線,不須重新培訓人員,就可使PLC系統升級;最後,系統性能較高。硬體結構圖如圖7所示。
圖7 硬體結構圖
根據系統的要求,選取西門子PLCS7-200 CPU226 作為控制核心,同時還擴展了2個EM231模擬量輸入模塊和1個CP243-1乙太網模塊。CPU226的IO點數是2416,這樣完全可以滿足系統的要求。同時,選用了EM231模塊,它是AD轉換模塊,具有4個模擬量輸入,12位AD,其采樣速度25μs,溫度感測器、壓力感測器、流量感測器以及含氧檢測感測器的輸出信號經過調理和放大處理後,成為0~5V的標准信號,EM231模塊自動完成AD轉換。
S7-200的PPI介面的物理特性為RS-485,可在PPI、MPI和自由通訊口方式下工作。為實現PLC與上位機的通訊提供了多種選擇。
為實現人機對話功能,如系統狀態以及變數圖形顯示、參數修改等,還擴展了一塊Eview500系列的觸摸顯示屏,操作控制簡單、方便,可用於設置系統參數, 顯示鍋爐溫度等。還有一個乙太網模塊CP243-1,其作用是可以讓S7-200直接連入乙太網,通過乙太網進行遠距離交換數據,與其他的S7-200進行數據傳輸,通信基於TCPIP,安裝方便、簡單。
4、系統軟體設計
控製程序採用STEP7-MicroWin軟體以梯形圖方式編寫,其軟體框圖如圖8所示。
圖8 軟體主框圖
S7-200PLC給出了一條PID指令,這樣省去了復雜的PID演算法編程過程,大大方便了用戶的使用。使用PID指令有以下要點和經驗:
(1)比例系數和積分時間常數的確定。應根據經驗值和反復調試確定。
(2)調節量、給定量、輸出量等參數的標准歸一化轉換。
(3)按正確順序填寫PID迴路參數表(LOOP TABLE),分配好各參數地址。
5、結束語
單元機組燃燒過程式控制制系統在某火電廠發電機組鍋爐協調控制系統中投入使用。實際運行情況表明:由於引入負荷模糊前饋,使得鍋爐燃燒控制系統作為協調控制的子系統,跟隨機組負荷變化的能力顯著提高,風煤比能夠在靜態和動態過程中保持一致;送、引風控制系統在邏輯控制系統的配合下運行的平穩性和安全性提高,爐膛負壓波動減小,滿足了運行的要求;在機組負荷不變時,鍋爐燃燒穩定,各被調參數動態偏差顯著減少,實現了鍋爐的優化燃燒;採用非線性PID調節方式,解決了引風擋板的晃動問題。
採用西門子的PLC控制,不僅簡化了系統,提高了設備的可靠性和穩定性,同時也大幅地提高了燃燒能的熱效率。通過操作面板修改系統參數可以滿足不同的工況要求,機組的各種信息,如工作狀態、故障情況等可以聲光報警及文字形式表示出來,主要控制參數(溫度值)的實時變化情況以趨勢圖的形式記錄顯示, 方便了設備的操作和維護,該系統通用性好、擴展性強,直觀易操作。
㈢ 中壓鍋爐為什麼要加磷酸鹽
中壓鍋爐加入磷酸鹽的目的是為了防止生成鈣垢,因為鈣是水中最主要的生垢物質。當爐水中含有足夠的PO43-濃度時,在一定的PH值條件下,Ca₂+會與PO43-會生成鹼式磷酸鈣,鹼式磷酸鈣在鍋爐中不會生成水垢,而是呈水渣狀,可隨爐水排污排出爐外。爐水內添加磷酸鹽是一種補救性的、預防性的措施,以防止在脫鹽處理過程中漏出的鈣離子產生危害。
顯然,根本性的措施應是提高給水脫鹽處理的質量,盡量杜絕(實際上難免有微量Ca₂+漏過)生垢物質漏入脫鹽精製水,因為即使生成水渣,過多的水渣也會影響蒸汽的質量。
(3)蒸磷鍋爐與磷回收裝置設計擴展閱讀:
中壓鍋爐爐齡存在的問題:
1、由於除氧器運行不正常,鍋爐補水含氧量超標,鍋爐存在氧腐蝕安全隱患; 熱力除氧蒸汽對空排放,造成嚴重的蒸汽浪費和熱污染。
2、凝結水系統的凝結水未經處理直接回用,存在腐蝕隱患。
3、鍋爐水採用磷酸三鈉處理,存在鹼隱藏的安全隱患。
4、受當前技術制約,鍋爐排污水無法回收,造成排污熱和排污水的極大浪費。
㈣ 鍋爐磷酸鹽加葯裝置的結構及原理
鍋爐磷復酸鹽加葯裝置的質量不制僅要看主體質量如何還要看配件質量是否可靠,鍋爐磷酸鹽加葯裝置連雲港助利機械設備有限公司質量比較好,用的是,鍋爐磷酸鹽加葯裝置的結構組成:主要部件有:溶葯箱、液位計、溶液箱、攪拌器、計量泵、安全閥、緩沖罐、壓力表、控制櫃、閥門及管路集中布置在底座上,還配有扶梯和平台。 A book iron-grey and chill is this that I have written, the tale 望採納!
㈤ 鍋爐定排 連排 罐排 放點蒸汽 及水回收利用工程設計
可以為您提供閃蒸氣回收利用技術,使廢蒸汽得到合理利用,節約能源與資金。符合國家號召,有需要可登錄:www.zgjngy.com 一次投資受益良多。
㈥ 凝結水回收裝置開式系統和閉式系統的區別
很榮幸能為你解答! 大連蒸汽凝結水回收裝置工作原理如下: 用戶系統運行正常時,冷凝水從用熱設備中排出,經專用疏水裝置、共網裝置等專用疏水裝置順利引入閃蒸罐。根據需要可進行二次汽分離利用。分離後的冷凝水被熱泵引入回水罐,經消汽蝕處理後高溫冷凝水被高溫水泵直接送到鍋爐汽包內。回水罐液位和水泵均採用自動控制,基本實現鍋爐產多少汽便可回多少水的水—汽平衡(不考慮系統中跑、冒、滴、漏現象)。系統不會產生氧腐蝕,冷凝水也不會被二次污染。整個回收率過程在密閉狀態下運行。 凝水回收採用的是閉式回收方式。在回收過程中設備一直處於承壓狀態,具有冷凝水回收溫度高,熱量基本做到完全回收。因不與大氣接觸,冷凝水不會被污染,使鍋爐的排污量大幅降低,同時也有效地防止了鍋爐水垢的生成。 1、該裝置取代了部分用熱廠家冷凝水的開式回收。開式回收即用熱設備產生的冷凝水通過疏水器直接排出,排出的汽水混合物直接引到水泥池或鐵罐中,然後加水降溫到80℃以下,再用水泵送到鍋爐的做法。此種方法僅能回收部分熱量,約占排放量的30%~50%,而冷凝水在回收過程中與大氣接觸,水中的雜質大幅增加,喪失了冷凝水(蒸餾水)的優良品質。 2、針對瓦楞紙板生產線各設備的用熱特點,對疏水工藝進行了合理改造,採用本設計的專用疏水裝置,單面機和熱板的溫度在不同車速下均比改造前有所提高。 3、回收冷凝水系統採用了自控變頻技術,冷凝水直接回鍋爐汽包。如不考慮系統的泄漏,可實現鍋爐汽水平衡,即鍋爐產多少汽便可回多少水。而且回水溫度高(最高可達160℃),鍋爐的汽壓、汽溫得到了保證,從而改善了鍋爐的然燒狀況,增強鍋爐對煤種的適應能力。 希望能幫到你!
㈦ 鍋爐爐水磷酸根與水質有什麼關系
水磷酸根高,水質好。水磷酸根低,水質壞。
汽包爐進行磷酸鹽-pH協調控制時,其爐水的Na+與PO3-的摩爾比值,應維持在2.3~2.8。若爐水的Na+與PO3-的摩爾比低於2.3或高於2.8時,可加中和劑進行調節。檢測不到磷酸根確實是因為給水硬度高結垢了。
二級反滲透+混床系統標准:
硬度:≤2.0μmol/L。
溶解氧:≤13µɡ/L。
這些離子在鍋爐中若不及時除去就會在水冷壁管中結成鈣鎂水垢,從而影響汽水循環工況,危及熱力設備的安全運行和其壽命,甚至造成爆管停爐,後果是相當嚴重的。
科學家們通過長期的科學實驗總出一種方法:向爐水中加入磷酸三鈉鹽(Na₃PO₄·12H₂O)溶液的辦法,使鍋爐水中經常維持一定含量的磷酸根離子(PO₄-) 。
(7)蒸磷鍋爐與磷回收裝置設計擴展閱讀:
在鍋爐正常運行的情況下,爐水的pH值通常控制在9一11之間,過高或過低對鍋爐腐蝕都有影響。
①在低pH值(pH<9)的情況下,水對鋼材的腐蝕加快,因為H+起了去極化作用。而且此時的腐蝕產物都是可溶的,不易生成保護膜。
②爐水中PO3-與cf,+的反應,是在pH值足夠高的情況下,才能生成容易通過排污排除的雜質。
③爐水保持適當的pH值,也有利於抑制爐水中硅酸鹽的水解,減少硅酸在蒸汽(特別是高壓蒸汽)中的溶解性攜帶量。
㈧ 鍋爐煙氣余熱回收系統如何設計
酸露點太高,沒有多少設計的價值啊!你的進水溫度起碼要保證115度啊,採用翅片管,才能保證不積灰腐蝕。採用115度的進水溫度,煙氣溫度能降低到130度就不錯了。不然低於露點溫度,管子就報廢了! 你還要弄85度的熱水溫度,只能採用再循環方式,保證入口熱水溫度達到115度!
㈨ 300MW機組鍋爐排污DCS控制系統設計
其實都是大同小異,改一下吧
DCS在輕烴分餾系統中的應用
【摘要】輕烴分餾採用多塔蒸餾分離技術,利用各組分之間相對揮發度的不同進行分餾。反應裝置為塔式,塔內裝設有塔板或填料,以提供傳熱和傳質場所。加熱設備為加熱爐,以導熱油為介質為塔底重沸器提供熱源。冷凝設備為冷凝器,以水為介質為塔頂冷凝器提供冷源;根據工藝要求,設置DCS系統實現輕烴分餾工藝的自動控制。
【關鍵詞】輕烴分餾、DCS系統、自動控制
1.工藝流程概述
輕烴原料→脫水器(脫水)→預熱器(預熱)→脫硫化氫塔(脫硫化氫)→脫硫醇塔(脫硫醇)→1#塔(脫丁烷)→2#塔(脫戊烷)→3#塔(脫己烷)→4#塔(脫庚烷)→5#塔(脫辛烷)→6#塔(脫壬烷)
輕烴在1.4Mpa下進入工序,原料通過聚結器脫水,再經預熱器預熱30℃~35℃,然後進入脫硫化氫塔和脫硫醇塔,之後進入1#、2#、3#塔底預熱器預熱,匯總後進入1#塔(脫丁烷塔)進料口。由於每個塔系構成及工藝原理相似,所以以下只對1#塔系(脫丁烷塔系)工藝做詳細敘述。
1#塔系(脫丁烷塔系)的目的是將原料C4以下的輕組分與C5以上的重組分分離,匯總後的原料進入1#塔(脫丁烷塔)中部,1#塔(脫丁烷塔)塔頂物料經1#塔冷凝器後進入1#塔迴流罐,通過1#塔迴流泵一部分打迴流,另一部分作為液化石油氣產品進入儲罐待售,塔底物料在塔內壓力的作用下,一部分經過1#塔重沸器與導熱油換熱後重新回到塔底,另一部分經原料與1#塔底預熱器換熱後進入2#塔(脫戊烷塔)中部。
2.系統的主要控制要求
根據工藝要求,該系統主要實現輕烴分餾工藝的自動控制包括:物料進塔控制、塔溫度控制、塔液位控制、塔壓力控制;重沸器控制、冷凝器控制、迴流罐控制、迴流量的控制、采出量的控制、向下一塔的出料量的控制。
3.系統的控制方案分析
影響分餾塔的重要因素是溫度、壓力、迴流量、液位,其中壓力對溫度和產品質量影響很大。所以壓力是平穩操作的主要因素,塔的壓力取決於塔頂產品的組分及冷卻後的溫度。系統中要求控制對象的工藝特性及要求不同,為了達到最佳控制效果,針對不同的對象,往往需要採用不同的控制方案。
3.1物料流量(FC1)控制
物料是塔中進料所以對塔中溫度、壓力都有一定影響,所以在物料本質不變的情況下,控制物料流量使其恆定在一定范圍內,對塔系穩定是必要的。由於物料經預熱器預熱所以溫度基本恆定,而且是由原料泵輸送所以壓力也是一定的,所以物料流量控制只需採用單迴路前饋控制方案。前饋控制可使受控變數連續維持在恆定的給定值上,即總進料量恆定。如圖1-1
3.2塔溫度(TC1)控制
塔底的溫度是由物料在重沸器中被導熱油加熱上升至塔底的溫度,所以塔底的溫度是隨重沸器中導熱油溫度而改變的。塔底溫度控制可以選擇導熱油出口流量為操作變數的控制方案。如圖1-1
3.3塔壓力(PC1)控制
恆定壓力的方法就是固定進料量(FC1)、迴流量(FC2)、塔底溫度(TC1)和冷卻器負荷,使塔頂產品具有穩定的冷後溫度與組分,以保持與迴流罐的恆定壓差。所以選擇冷卻後到迴流罐的產品流量作為操作變數。迴流罐出現負壓可以通過(PC2)補充氮氣。如圖1-1
3.4塔底液位(LC1)控制
塔底液位主要是受塔底溫度(TC1)、向下一塔的出料量(FC3)的影響。由於塔底液位不光對本塔系構成影響還會波及下一個塔系,所以必須使向下一塔的出料量(FC3)恆定在一定范圍,還要滿足液位高度控制在要求范圍內。這樣簡單的單迴路控制就無法滿足要求,所以應該選用塔底液位(LC1)與向下一塔的出料量(FC3)串級控制。如圖1-1
圖1-1 1#塔(脫丁烷)工藝控制流程圖
氮氣線
產品采出線
TC1
導熱油出
冷凝器
導熱油進
FC1
FC2
LC2
FC3
PC2
LC1
原料
物料進2#塔
迴流線
迴流罐
重沸器
泵
泵
1#塔
PC1
4.控制方案在DCS上的實現
4.1MACSV系統介紹
MACS系統是通過一抬網和基於現場匯流排技術的控制網路連接的由工程師站、操作站、現場控制站、通訊站、伺服器組成的綜合信息系統。
MACS系統硬體由網路、工程師站、操作員站、系統伺服器、高級計算機站、現場控制站(包括控制器、電源模塊、I/O模塊)、管理網網關、通信控制站組成。網路分監控網路、系統網路、控制網路三個層次,監控網路實現工程師站、操作員站、高級計算機站、系統伺服器的互連,系統網路實現系統伺服器與現場控制站互連,控制網路實現現場控制站與過程I/O單元的通訊。
4.2控制系統配置
4.2.1 I/O的配置
根據系統監控要求,需要確定出系統中要檢測的量和控制的量(即I/O點),列出系統I/O測點清單並說明信號類型。在該系統中採用熱電阻、溫度變送器、壓力變送器、浮筒液位變送器、質量流量計、渦街流量計等將壓力、溫度、液位、流量信號轉換成模擬電流信號輸入DCS中,利用模擬輸出信號控制各種調節閥來實現輸出控制。
4.2.2 硬體配置
根據控制方案所需的I/O點及工藝要求,結合MACS系統模塊特點配置模塊,還需要配置一個控制站、一個工程師站、二個系統伺服器和三個操作員站。
4.2.3軟體配置
工程師站配置MACSV 組態軟體、MACSV操作員站軟體;伺服器配置MACSV伺服器軟體、現場控制器運行軟體;操作員站配置MACSV操作員站軟體。
4.3系統組態
系統組態是在工程師站上利用組態軟體完成,然後下裝到控制站執行的。
4.3.1系統配置組態
應用系統的硬體配置通過系統配置軟體完成。系統設備組態的任務是完成系統網和監控網上各網路設備的硬體配置。I/O設備組態是以現場控制站為單位來完成每個站的I/O單元配置。軟體採用從主畫面進入各組態畫面的方式完成各部分組態。
4.3.2資料庫組態
資料庫組態就是定義和編輯系統各站的點信息,這是形成應用系統的基礎。
4.3.3演算法組態
演算法組態由變數定義、變數使用、編制控制運算程序三部分構成。MACSV系統提供五種演算法組態語言:SFC、ST、FBD、LD、FM。
4.3.4圖形、報表組態
圖形組態包括背景圖定義和動態點定義,其中動態顯示其實時值或歷史變化,因而要求動態點必須同已定義點相對應。通過把圖文連入系統,就可以實現圖形的顯示和切換。
4.3.5編譯、下裝
系統聯編功能連接形成伺服器下載文件,成為操作員站、現場控制站上的在線運行軟體運行基礎。伺服器下裝文件生成後,其中系統庫、圖形、報表文件通過網路下傳到伺服器和操作員站。
結束語
本文敘述講解了DCS系統在輕烴分餾裝置中如何分析、設置、安裝、控制的應用過程。
參考文獻
1 楊麗明 張光新 化工儀表及自動化 北京:化學工業出版社 2004
2王樹青 趙鵬程 集散型計算機控制系統(DCS) 杭州:浙江大學出版社 1991
3 周澤魁 控制儀表與計算機控制裝置 北京:化學工業出版社 2002
㈩ 制漿造紙鹼回收鍋爐的ESP(靜電除塵)裝置設計及其工作原理
不了解 當觀眾