① 我們做水沸騰的實驗室有哪些四種儀器分別是什麼
濾紙、玻璃棒、漏斗、燒杯一貼:濾紙緊貼漏斗內壁。二低:濾紙邊沿低於漏版斗邊沿;過濾液邊沿低於權濾紙邊沿。三靠:玻璃棒尖端緊靠濾紙三層處;燒杯嘴部緊靠玻璃棒;漏斗頸部緊靠燒杯內壁。根據具體實驗的不同還有很多特殊的玻璃儀器。如:燒杯、燒瓶、試管、三角燒瓶、定碘三角瓶、酸鹼滴定管、量筒、量杯、容量瓶、滴瓶、廣口試劑瓶、小口試劑瓶、酒精燈、分液漏斗、刻度吸管、大肚吸管、三角漏斗、全玻蒸餾器等。過濾是把不溶於液體的固體與液體分離的一種方法,過濾操作的裝置由鐵架台、燒杯、玻璃棒、漏斗四種儀器組成。注意事項 1.燒杯中的混合物在過濾前應用玻璃棒攪拌,然後進行過濾。 2.過濾後若溶液還顯渾濁,應再過濾一次,直到溶液變得透明為止。 3.過濾器中的沉澱的洗滌方法:用燒瓶或滴管向過濾器中加蒸餾水,使水面蓋沒沉澱物,待溶液全部濾出後,重復2~3次。
② 什麼是電子打火裝置
電子打火機的基本工作原理是:把一塊壓電材料塊(晶體結構)一端接上一段細導線,此導線與在打火機出氣口處的金屬材料形成一個缺口,通過機械機構使撞擊塊的撞擊時與氣源開啟同步。當撞擊塊以一定的沖擊能量或力撞擊壓電材料塊的另一端時,壓電材料的內部分子就會強烈振動,並將振動能量傳遞到導線中。由於導線的截面積與壓電材料塊的截面積之比懸殊很大,在導線中分子的振動就有了很大的加強趨勢。當導線的端點分子強烈的振動撞擊缺口處的空氣分子時,空氣分子也就產生強烈振動。空氣分子振動的運動軌跡就是我們看見的電火星(電弧光)。這些電火星(電弧光)實際上就是導線分子強烈振動並向打火機出氣口處的金屬材料傳遞能量時空氣分子振動的運動軌跡,說明缺口處的空氣分子振動很厲害。按照振動理論的說法振動強烈就是物質溫度很高,當這個溫度超過打火機內的液化氣的燃點時,跑出來的氣體就會被點燃,形成火焰,火焰就是劇烈振動著的氣體物質分子影象。這就是打火機的基本工作原理,其他電子打火裝置的道理與此相同。
用陶瓷的壓電效應,對於特殊的陶瓷片兩邊加壓,會產生電的定向流動,從而產生電流,如果拆開那個小元件,就會發現最下面的陶瓷片和用於敲擊它的機構,這種陶瓷就是壓電陶瓷。相對應的,如果給它通上電流,它就會產生振動,最常見的就是陶瓷峰鳴器,就是一種上面有白色陶瓷的一種金屬圓片。如果通上電後,所發出的聲音頻率很高,在超聲范圍內,就是B超探頭中發射超聲波的元件
關於打火機的發明:
過去一般認為打火機的圖繪最早出現在公元1505年德國紐倫堡地區一名貴族MartinLoffelholz擁有的手卷之中,另外有人認為打火機裝置也有可能是出自文藝復興大師李奧納多·達文西(LeonarddaVinci)之手,在他的手卷CodexAtlanticus中也有類似機械的圖繪。不過由於該頁的時間無法確定(繪成時間可能在1500-1519年之間),所以兩者雖然類似,卻無法能夠肯定地將之歸功於達文西,因為達文西的圖繪也可能是在看到別人的發明後記錄下來的。
現代打火機按使用的燃料可分為液體打火機和氣體打火機;按發火方式可分為火石打火機和電子打火機。
最原始的打火機是從燧石點火槍衍生出來的。帶強彈簧的扳機扣動時,擊打在火石上產生火花,點燃於樹葉。
1823年德國化學家備貝萊納在實驗室發現:氫氣遇到鉑棉會起火。這一發現引發了他試制打火機的念頭。德貝萊納用一隻小玻璃筒盛上適量的稀硫酸,筒內裝一內管,內管中裝入鋅片,玻璃筒裝一頂蓋,頂蓋上有噴嘴、鉑棉和開關,內管中鋅片與硫酸接觸生成氫氣。一定量的氫氣產生的壓力將內管中的硫酸排入玻璃筒內,打開開關時,內管的氫氣沖到鉑棉上起火;內管與玻璃筒內的壓力重新平衡,硫酸再次進入內管,與鋅片反應又產生氫氣。如此世界上第一隻打火機便告誕生。但它有體積大不便攜帶,玻璃殼易碎,硫酸溢出有危險等缺點,沒能普及作用.
1920年法國出現了燈芯式打火機,燈芯是用硝石粉浸過的,容易被火花點燃,後來,改成將燈芯浸在苯中的苯打火機,這種打火機有時漏燃料,而且要經常更換燈芯。
第二次世界大戰後,出現氣體燃料打火機,逐漸取代了苯燈芯打火機。將從天然氣中提取的丁烷氣壓縮到打火機中,使用時,丁烷氣體從打火機的頂端噴嘴中噴出,由打火裝置點燃,火焰的大小可通過調節噴氣量來控制,丁烷氣體用盡後,可從打火機底部的活門裝填。
打火機的點火系統也經長期改進,日益完善,老式的打火系統是由火石和火石輪組成,火石是鐵和鈰做成的合金。1906年奧地利化學家發現這種合金材料具有產生火花的性質,將火廠裝入打火機,靠機蓋上的鐵輪銼的磨擊,使火石產生火花。
第二次世界大戰期間,彈葯專家使用壓電效應引爆炸彈。在炸彈的前端裝上像酒石酸鉀鈉和一些陶瓷類的晶體,受到強力沖擊時,會在瞬間產生高壓電荷,引爆炸葯。戰後,日本成功的將壓電效就用在打火機上,在三四萬分之一秒內產生6000—8000伏高壓,使產生的火花點燃丁烷,省去了干電池或火石。
日本東海集團公司是世界上首家發明和生產一次性打火機的廠家.
③ 實驗室里這種讓裝置懸空的架子叫什麼名字
應該是鐵架台
④ 化學實驗室用來鼓氣的裝置叫什麼
化學實驗室的一種儀器 用於鼓氣和移取溶液
⑤ 實驗室酒精燈用什麼點火
燃點;酒精傾瀉導致起火;氧氣;火焰燃著其他物品
⑥ 實驗室儀器著火應使用什麼滅火器
實驗室儀器著火應使用液態二氧化碳滅火器。
液態二氧化碳滅火器的工作原理是:噴出的液態二氧化碳先氣化吸收熱量,使環境的溫度迅速降低,二氧化碳本身不能燃燒,也不支持燃燒,密度比空氣大,因此能有效的滅火。
液態二氧化碳滅火器的優點是:
1、 效果好,既降溫,又能隔絕空氣。
2、無殘留,不損傷物品。
(6)實驗室用的點火裝置叫什麼擴展閱讀:
二氧化碳滅火器適用於撲救各種可燃液體和可燃氣體的初起火災。以及帶電設備和精密電子儀器、貴重設備的火災。但不宜在室外刮大風時使用,在窄小和密閉的空間使用後,要及時通風或人員撤離現場,以防窒息。
在加壓時將液態二氧化碳壓縮在小鋼瓶中,滅火時再將其噴出,有降溫和隔絕空氣的作用。
參考資料來源:網路-二氧化碳滅火器
⑦ 實驗室用的爐子叫什麼爐子啊誰知道
一種叫電阻爐,利用燒紅的電阻絲加熱的,和一個電話機座機差不多大。
一種叫馬福爐或馬弗爐,是一個箱子,有一個小空腔可以放樣品。
⑧ 打火機裡面那個能打火的東西叫什麼
打火機是一種小巧的取火器,現代打火機按使用的燃料可分為液體打火機和氣體打火機;按發火方式可分為火石打火機和電子打火機。
最原始的打火機是從燧石點火槍衍生出來的。帶強彈簧的扳機扣動時,擊打在火石上產生火花,點燃於樹葉。
1823年德國化學家備貝萊納在實驗室發現:氫氣遇到鉑棉會起火。這一發現引發了他試制打火機的念頭。德貝萊納用一隻小玻璃筒盛上適量的稀硫酸,筒內裝一內管,內管中裝入鋅片,玻璃筒裝一頂蓋,頂蓋上有噴嘴、鉑棉和開關,內管中鋅片與硫酸接觸生成氫氣。一定量的氫氣產生的壓力將內管中的硫酸排入玻璃筒內,打開開關時,內管的氫氣沖到鉑棉上起火;內管與玻璃筒內的壓力重新平衡,硫酸再次進入內管,與鋅片反應又產生氫氣。如此世界上第一隻打火機便告誕生。但它有體積大不便攜帶,玻璃殼易碎,硫酸溢出有危險等缺點,沒能普及作用。(圖)(現代電子點火氣體打火機結構示意圖)
1920年法國出現了燈芯式打火機,燈芯是用硝石粉浸過的,容易被火花點燃,後來,改成將燈芯浸在苯中的苯打火機,這種打火機有時漏燃料,而且要經常更換燈芯。
第二次世界大戰後,出現氣體燃料打火機,逐漸取代了苯燈芯打火機。將從天然氣中提取的丁烷氣壓縮到打火機中,使用時,丁烷氣體從打火機的頂端噴嘴中噴出,由打火裝置點燃,火焰的大小可通過調節噴氣量來控制,丁烷氣體用盡後,可從打火機底部的活門裝填。
打火機的點火系統也經長期改進,日益完善,老式的打火系統是由火石和火石輪組成,火石是鐵和鈰做成的合金。1906年奧地利化學家發現這種合金材料具有產生火花的性質,將火廠裝入打火機,靠機蓋上的鐵輪銼的磨擊,使火石產生火花。
第二次世界大戰期間,彈葯專家使用壓電效應引爆炸彈。在炸彈的前端裝上像酒石酸鉀鈉和一些陶瓷類的晶體,受到強力沖擊時,會在瞬間產生高壓電荷,引爆炸葯。戰後,日本成功的將壓電效就用在打火機上,在三四萬分之一秒內產生6000—8000伏高壓,使產生的火花點燃丁烷,省去了干電池或火石。
另一類打火機是以干電池為動力點火,一種是使用9—12伏層狀錳電池,打開開關時,盒內的微型變壓器將電壓升到9000伏,產生火花,點燃燃料。還有一種打火機內裝水銀電池和集成電路,產生高壓火花,這類打火機只要定期更換電池和補充燃料即可。
⑨ 點火裝置有多少種,誰統計過詳細的數據,都有哪些
一、 電火花的產生
二、發動機的工作狀況對點火的影響
三、發動機對點火系統的要求
四、數字式電子點火系統組成
數字式電子點火系統是在使用無觸點電子點火裝置之後的汽油機點火系統的又一大進展,稱為微型電子計算機控制半導體點火系統。
點火系統的分類:
A.。電感蓄能式點火系統(實際電路參見圖3、4、5)
點火系統產生高壓前以點火線圈建立磁場能量的方式儲存點火能量。目前汽車使用的絕大部分點火系統為電感儲能式。(重點分析介紹)
B.電容儲能式點火系(圖6)
點火系統產生高壓前,先從電源獲取能量以蓄能電容建立電場能量的方式儲存點火能量。多應用於高轉速發動機上,如賽車。
工作原理是把較低電源電壓變換成較高直流電壓(500V-1000V)對電容充電蓄能,點火時刻通過電
容放電使變壓器產生高壓。特點是電容充放電周期快,高壓跳火火花持續期短(約1微秒)且電流大,
不存左火花尾。ECU根據發動機工況在一個點火周期內進行1-3次點火。
電感蓄能式點火系統主要有微型電子計算機(ECU)、各種感測器、高壓輸出部分(功率管、變壓器、高壓線、火花塞)三大部分組成。(參見圖1)
1.ECU
ECU就是整部汽車的智能控制中心,指揮協調汽車的各部工作,同時ECU還有自動診斷功能。
其中處理控制點火系統工作是ECU眾多工作重要的一項。ECU只讀存儲器ROM中存有500多萬組
數據,這些數據大多數是發動機通過各種實際工作情況測量優選得出的,包括了整個汽油機工作范圍
內各種轉速和負荷下的最佳點火提前角及噴油脈寬等有關全部數據。不同型號整車的ECU的存儲數
據是不同的,各廠家對數據都是保密不公開的;這些數據保證了汽油機在功率性、加速性、經濟性和
排放控制方面達到最優組合。
ECU控制點火原理
發動機啟動後,ECU每10ms採集一次發動機的各感測器動態參數,按預先編好的程序處理這
些數據,並存入隨機存儲器RAM中;同時ECU還要根據電源電壓大小、從其只讀存儲器ROM中選
取出適應當前工況的高壓變壓器初級線圈電流導通時間,(即ECU輸出寬度不同的方波電壓控制高壓
輸出糸統變壓器初級線圈電流大小,實現對高壓輸電壓大小的控制)ECU綜合這些數據,從其只讀
存儲器ROM中查找出(計算出)適應當前發動機工況的最佳點火提前角存入隨機存儲器RAM中,
然後利用發動機轉速(或轉角)信號和曲軸位置信號,將最佳點火提前角轉換成點火時刻,即切斷高
壓變壓器初級電流的時刻。
在下列情況下ECU點火實行開環控制,點火按預設程序工作。
A..發動機啟動時。B.重負荷時。C.節氣門全開時。
2.感測器
感測器就是各種不同類型及功用的測量元件,安裝在發動機不同的有關部位,把發動機工況各種參數變化反饋給ECU作計算數據。
在點火系統中應用的感測器主要有:空氣流量計及進氣溫度感測器、發動機轉速及曲軸位置感測器、節氣門位置感測器、冷卻液溫度感測器及爆震感測器、氧感測等等。
3. 高壓輸出
A.高壓輸出功率三極體:在電路中起開關作用。
B.高壓輸出變壓器:在電路中把低電壓轉換成高電壓供火花塞點火。
C.高壓線:在電路中把高壓電傳輸到火花塞。
D.火花塞:在電路中把高壓電引進汽缸並把電能量轉換成熱能。
點火的電原理
變壓器次級線圈分布電容及火花塞、高壓線的分布電容組成迴路電容C,電路無屏蔽時C約50PF,有屏蔽約150PF,火花塞間隙等同可變電阻R。
高壓能量分三個階段變化消耗
第一階段
電容C放電期(誘燃期):變壓器次級線圈產生的點火高壓對電容C充電,當電容C電壓上升達到火花塞擊穿電壓時,火花塞跳火電容C快速放電, 火花塞間隙電壓迅速下降到幾百到幾千伏,電容C放電瞬間電流達10-50安培以上,放電時間約1微秒。點火電壓越高(即點火能量越大),C放電電流越大。
正常狀況下氣缸的混合氣就是這一時刻的火花點燃。如果跳火電離線被發動機氣缸內高速擾流吹息,変壓器高壓再次對C進行充電,則C第二次放電產生電離通道。
註:電壓從10000V-20000V左右在1微秒內突降至幾百到幾千伏,由此產生了一個很強的方波
電壓,並通過高壓線幅射電磁波,對外界電器產生干擾波。方波由N個正弦波組成,所以形成了一
個1微秒時基為中心的干擾電磁頻帶。
第二階段
電感放電期(燃燒期):電感放電是靠電容C放電產生的電離通道形成的低阻產生的。由於電容C放電產生的電離通導(電阻)不能立刻消失,同時變壓器次級電感中還存有充足的高壓能量,所以電感繼續對電離通導放電使火花持續。
由於次級線圈放電電流的變化引起磁通量的變化,次級電感線圈產生了一個感抗電動勢,即產生一個與電感放電電流方向相反的電動勢阻礙了電流的変化,使放電電流較小,電流在幾到幾十毫安,所以,高壓能量需要較長時間放電才能消耗掉,這一電感放電火花持續期俗稱火花尾。
由第一階段電容C放電誘燃後產生一個「火焰中心」,這個「火焰中心」跟隨氣缸內高速擾流移動離開了火花塞電極,這時電感電能放電火花又會點燃混合氣另一個「火焰中心」,作為點燃混合氣的補充,「火焰中心」使混合氣在整個氣缸內很快形成燃燒的「明亮火焰期」,即氣缸內混合氣燃燒溫度達最高,氣體壓強達最高值。這個過程稱為混合汽燃燒期, 燃燒時間在750μS-2500μS之間。
電感放電火花在發動機啟動及低速時非常重要,發動機在啟動或非正常工況下,電容C放電期極有可能未點燃混合氣,此時,只有靠電感放電火花來點燃燃混合氣。
冷車啟動時氣缸內的混合氣溫度低,霧化效果差,點然混合氣需要較長火花期;在低轉速時,由於氣缸內混合氣擾流速度低,第一個「火焰中心」移動慢,有必要點燃第二個「火焰中心」加快混合氣的燃燒,所以點火火花期也較長。但當發動機轉速較高時, 氣缸內混合氣擾流速度変快,「火焰中心」高速移動,快速傳播引燃了缸內混合氣,因此,並不需要第二個「火焰中心」。
根據混合汽燃燒時間在750μS-2500μS之間,所以,火花持續期最長在700μS左右就可保證混合氣的完全燃燒。實驗證明火花持續期過長對燃燒效果並沒有提高,相反,電離通道生產的高熱加上火花塞自身溫度反而加速了火花塞電極的燒蝕,這就是為什麼要控制點火能量的主因。
另外,從這一原理可以正明,點火能量的大小與高壓線無關(當然,不包括損壞高壓線)。
第三階段
振盪衰減期:隨放電時間的增加電感線圈儲存能量(電壓)消耗下降,使氣體中分離的電離子越來越少,電感放電電流也就越來越少,電離通道溫度下降,根著通道電離子數量急劇下降,即相當於通道電阻值R逐步上升変為無限大,火花塞停止跳火。這時電感剩餘能量對電容C充電,電容C對電感放電,如此反復直至下一個點火周期的到來。
註:同樣此階段產生一個逐步衰竭的正弦振盪波對外界造成干擾,但強度遠小於第一階段電容放電干擾電磁波。
⑩ 實驗室常用的加熱裝置的名稱
你說的是鐵架台的的鐵圈和鐵夾吧
架著石棉網,再上面放著燒杯的是鐵圈,掛溫度計的是鐵夾.