① 汽車定位系統的原理是什麼
GPS全球衛星定位導航系統(Global Positioning System-GPS)是美國從本世紀70年代開始研製,歷時20年,耗資200億美元,於1994年全面建成,具有在海、陸、空進行全方位實時三維導航與定位能力的新一代衛星導航與定位系統。經近10年我國測繪等部門的使用表明,GPS以全天候、高精度、自動化、高效益等顯著特點,贏得廣大測繪工作者的信賴,並成功地應用於大地測量、工程測量、航空攝影測量、運載工具導航和管制、地殼運動監測、工程變形監測、資源勘察、地球動力學等多種學科,從而給測繪領域帶來一場深刻的技術革命。
隨著全球定位系統的不斷改進,硬、軟體的不斷完善,應用領域正在不斷地開拓,目前已遍及國民經濟各種部門,並開始逐步深入人們的日常生活。
② 定位系統的原理
GPS導航系統的基本原理是測量出已知位置的衛星到用戶接收機之間的距離,然後綜合多顆衛星的數據就可知道接收機的具體位置。要達到這一目的,衛星的位置可以根據星載時鍾所記錄的時間在衛星星歷中查出。而用戶到衛星的距離則通過紀錄衛星信號傳播到用戶所經歷的時間,再將其乘以光速得到(由於大氣層電離層的干擾,這一距離並不是用戶與衛星之間的真實距離,而是偽距(PR):當GPS衛星正常工作時,會不斷地用1和0二進制碼元組成的偽隨機碼(簡稱偽碼)發射導航電文。GPS系統使用的偽碼一共有兩種,分別是民用的C/A碼和軍用的P(Y)碼。C/A碼頻率1.023MHz,重復周期一毫秒,碼間距1微秒,相當於300m;P碼頻率10.23MHz,重復周期266.4天,碼間距0.1微秒,相當於30m。而Y碼是在P碼的基礎上形成的,保密性能更佳。導航電文包括衛星星歷、工作狀況、時鍾改正、電離層時延修正、大氣折射修正等信息。它是從衛星信號中解調制出來,以50b/s調制在載頻上發射的。導航電文每個主幀中包含5個子幀每幀長6s。前三幀各10個字碼;每三十秒重復一次,每小時更新一次。後兩幀共15000b。導航電文中的內容主要有遙測碼、轉換碼、第1、2、3數據塊,其中最重要的則為星歷數據。當用戶接受到導航電文時,提取出衛星時間並將其與自己的時鍾做對比便可得知衛星與用戶的距離,再利用導航電文中的衛星星歷數據推算出衛星發射電文時所處位置,用戶在WGS-84大地坐標系中的位置速度等信息便可得知。
可見GPS導航系統衛星部分的作用就是不斷地發射導航電文。然而,由於用戶接受機使用的時鍾與衛星星載時鍾不可能總是同步,所以除了用戶的三維坐標x、y、z外,還要引進一個Δt即衛星與接收機之間的時間差作為未知數,然後用4個方程將這4個未知數解出來。所以如果想知道接收機所處的位置,至少要能接收到4個衛星的信號。
GPS接收機可接收到可用於授時的准確至納秒級的時間信息;用於預報未來幾個月內衛星所處概略位置的預報星歷;用於計算定位時所需衛星坐標的廣播星歷,精度為幾米至幾十米(各個衛星不同,隨時變化);以及GPS系統信息,如衛星狀況等。
GPS接收機對碼的量測就可得到衛星到接收機的距離,由於含有接收機衛星鍾的誤差及大氣傳播誤差,故稱為偽距。對0A碼測得的偽距稱為UA碼偽距,精度約為20米左右,對P碼測得的偽距稱為P碼偽距,精度約為2米左右。
GPS接收機對收到的衛星信號,進行解碼或採用其它技術,將調制在載波上的信息去掉後,就可以恢復載波。嚴格而言,載波相位應被稱為載波拍頻相位,它是收到的受多普勒頻 移影響的衛星信號載波相位與接收機本機振盪產生信號相位之差。一般在接收機鍾確定的歷元時刻量測,保持對衛星信號的跟蹤,就可記錄下相位的變化值,但開始觀測時的接收機和衛星振盪器的相位初值是不知道的,起始歷元的相位整數也是不知道的,即整周模糊度,只能在數據處理中作為參數解算。相位觀測值的精度高至毫米,但前提是解出整周模糊度,因此只有在相對定位、並有一段連續觀測值時才能使用相位觀測值,而要達到優於米級的定位 精度也只能採用相位觀測值。
按定位方式,GPS定位分為單點定位和相對定位(差分定位)。單點定位就是根據一台接收機的觀測數據來確定接收機位置的方式,它只能採用偽距觀測量,可用於車船等的概略導航定位。相對定位(差分定位)是根據兩台以上接收機的觀測數據來確定觀測點之間的相對位置的方法,它既可採用偽距觀測量也可採用相位觀測量,大地測量或工程測量均應採用相位觀測值進行相對定位。
在GPS觀測量中包含了衛星和接收機的鍾差、大氣傳播延遲、多路徑效應等誤差,在定位計算時還要受到衛星廣播星歷誤差的影響,在進行相對定位時大部分公共誤差被抵消或削弱,因此定位精度將大大提高,雙頻接收機可以根據兩個頻率的觀測量抵消大氣中電離層誤差的主要部分,在精度要求高,接收機間距離較遠時(大氣有明顯差別),應選用雙頻接收機。
相對論為GPS提供了所需的修正
全球定位系統GPS衛星的定時信號提供緯度、經度和高度的信息,精確的距離測量需要精確的時鍾。因此精確的GPS接受器就要用到相對論效應。
准確度在30米之內的GPS接受器就意味著它已經利用了相對論效應。華盛頓大學的物理學家Clifford M. Will詳細解釋說:「如果不考慮相對論效應,衛星上的時鍾就和地球的時鍾不同步。」相對論認為快速移動物體隨時間的流逝比靜止的要慢。Will計算出,每個GPS衛星每小時跨過大約1.4萬千米的路程,這意味著它的星載原子鍾每天要比地球上的鍾慢7微秒。
而引力對時間施加了更大的相對論效應。大約2萬千米的高空,GPS衛星經受到的引力拉力大約相當於地面上的四分之一。結果就是星載時鍾每天快45微秒, GPS要計入共38微秒的偏差。Ashby解釋說:「如果衛星上沒有頻率補償,每天將會增大11千米的誤差。」(這種效應實事上更為復雜,因為衛星沿著一個偏心軌道,有時離地球較近,有時又離得較遠。)
③ GPS衛星定位裝置的主要用途是什麼
GPS定位終端分為監控終端和導航終端。
GPS模塊負責接收衛星定位信息。
單純的GPS是一個接收體,和我們的收音機一樣,它獲取衛星信號計算出當前的地理位置(經緯度),現在GPS導航就是利用這個原理,要實現第三方定位(監控)就需要通過無線網路傳輸給監控方,一般都採用GPRS和CDMA1X網路。
GPS:全球衛星定位系統(Global Positioning System,GPS)是由美國政府所發展,整個系統約分成下列三個部份:
【太空衛星部份】由 24 顆繞極衛星所組成,分成六個軌道,運行於約 20200公里的高空,繞行地球一周約12小時。每個衛星均持續著發射載 有衛星軌道數據及時間的無線電波,提供地球上的各種接收機來應用。
【地面管制部份】這是為了追蹤及控制上述衛星運轉,所設置的地面 管制站,主要工作為負責修正與維護每個衛星能保持正常運轉的各項參 數數據,以確保每個衛星都能提供正確的訊息給使用者接收機來接收。
【使用者接收機】追蹤所有的 GPS衛星,並實時地計算出接收機所在 位置的坐標、移動速度及時間,GARMIN GPS 即屬於此部份。
我們一般民間所能擁有及應用的,就是第三部份。計算原理為:每個太空衛星在運行時,任一時刻都有一個坐標值來代表其位置所在(已知值),接收機所在的位置坐標為未知值,而太空衛星的訊息在傳送過程中,所需耗費的時間,可經由比對衛星時鍾與接收機內的時鍾計算之,將此時間差值乘以電波傳送速度(一般定為光速),就可計算出太空衛星與使用者接收機間的距離,如此就可依三角向量關系來列出一個相關的方程式。
一般我們使用的接收機就是依上述原理來計算出所在位置的坐標數據,每接收到一顆衛星就可列出一個相關的方程式,因此在至少收到三衛星後,即可計算出平面坐標(經緯度)值,收到四顆則加上高程值,五顆以上更可提高准確度,這就是 GPS的基本定位原理。一般來說,使用者接收機每一秒鍾的坐標數據都是最新的,也就是說接收機會自動不斷地接收衛星訊息,並實時地計算其所在位置的坐標數據,如此使用者便不需擔心是否接收機顯示的數據太舊或是不準確了。
由於衛星是處在相當高的運行軌道上,其傳送的訊號是相當的微弱,因此它不像一般通訊無線電或大哥大等可在室內使用或收到訊號,在使用時需注意下列事項:
1.需在室外及天空開闊度較佳之地方才能使用,否則若大部份之衛星信號被建築物、金屬遮蓋物、濃密樹林等所阻擋,接收機將無法獲得足夠的衛星訊息來計算出所在位置之坐標。
2.請勿在具1.57GHz左右之強電波環境下使用,因此環境易將衛星訊號遮蓋掉,造成接收機無法獲得足夠的衛星訊息來計算出所在位置之坐標,尤其是高壓電塔下方。
3.單純 GPS 所計算出的高程值,並非是我們一般所說的海拔高度及氣壓計量測的飛行高度,原因在於所使用的海平面基準點不同,因此在使用時請務必注意此點。
GPS 的基本應用就是導航與定位,定位方面在上文已描述過,而導航方面就是利用所求出的定位數據來計算。接收機所計算出的任何時刻坐標數據,在GPS里我們都稱為一個航點(WAYPOINT),也就是說每個航點所表示的就是一個坐標值,比較重要的航點,我們就可以把它儲存在接收機內,並編上一個名字,讓我們可以辨別。
由於在地球表面上的任何位置,都以不同的坐標值來表示,因此只要知道兩個不同航點的坐標數據,接收機就可馬上計算出兩個航點間的直線距離、相對方位及航行速度,這就是 GPS 接收機導航數據的來源。
例如:目前我們在廣州南沙港,希望往南行駛,第一個目的地是虎門,第二個目的地是香港為終站;從起點至終點,每站就都是一個航點,航點與航點間的行程稱為航段(LEG),從起點依序經過各點至終點琉球等,整個行程我們稱之為一條航線或是一條路徑(ROUTE),圖標如下:
(航點) 航段 (航點) 航段 (航點)
廣州南沙港 → 虎門 → 香港
全程稱為:Route
我們只要事先將各點的坐標數據(利用地圖或查詢相關數據)輸入GPS接收機內,我們就可建立許多航點數據,要使用時候將其叫出,利用 GPS接收機的導航功能做各航段間的導航。而當進行導航時,為使我們的行進方向不致於偏移太多,有些 GPS 提供了航線寬度— CDI的設定功能,只要我們行進時偏離我們所設定的航線寬度限制,GPS 就會自動提示我們,這就是CDI的作用。由此可知,要利用 GPS 做導航功能,最基本的就是先建立航點的數據,然後儲存在接收機內,如此不管是要做航點與航點間的導航,或是要編輯一條航線,就可直接利用內存內的航點數據了,也可以說″航點″是GPS 接收機導航功能所需最基本的數據了。
④ 手機定位器的原理
顯示的地標名還在優化之中,隨著進一步優化,地標將更加准確。原理手機定位是利用GSM移動通信網的蜂窩技術來實現位置信息的查詢, GSM無線通信網是由許多像蜜蜂蜂窩一樣的小區構建而成的,每個小區都有自己的編號,通過手機所在小區的識別號就可以知道手機所在區域。手機小區定位技術尚在完善之中,市區精度范圍大致在200米左右,郊區精度范圍大致在1000米~2000米左右,隨著移動公司技術的不斷發展,相信精度會進一步提高到50米范圍內。同時顯示的地標名還在優化之中,隨著進一步優化,地標將更加准確。
⑤ gps定位器的原理
GPS的空間分布是由24顆GPS工作衛星所組成,這些GPS工作衛星共同組成了GPS衛星星座,其中21顆為可用於導航的衛星,3顆為活動的備用衛星。這24顆衛星分布在6個傾角為55°的軌道上繞地球運行。衛星的運行周期約為12恆星時。每顆GPS工作衛星都發出用於導航定位的信號。GPS用戶正是利用這些信號來進行工作的。
⑥ GPS定位跟蹤器的工作原理
GPS系統有24顆衛星組成,地球上的任何一點,都能收到至少4顆,至多9顆衛星的信號.
對於導航定位來說,GPS衛星是一動態已知點。星的位置是依據衛星發射的星歷—描述衛星運動及其軌道的的參數算得的。每顆GPS衛星所播發的星歷,是由地面監控系統提供的。衛星上的各種設備是否正常工作,以及衛星是否一直沿著預定軌道運行,都要由地面設備進行監測和控制。地面監控系統另一重要作用是保持各顆衛星處於同一時間標准—GPS時間系統。這就需要地面站監測各顆衛星的時間,求出鍾差。然後由地面注入站發給衛星,衛星再由導航電文發給用戶設備。GPS工作衛星的地面監控系統包括一個主控站、三個注入站和五個監測站。
GPS信號接收機的任務是:能夠捕獲到按一定衛星高度截止角所選擇的待測衛星的信號,並跟蹤這些衛星的運行,對所接收到的GPS信號進行變換、放大和處理,以便測量出GPS信號從衛星到接收機天線的傳播時間,解譯出GPS衛星所發送的導航電文,實時地計算出測站的三維位置,位置,甚至三維速度和時間。
GPS衛星發送的導航定位信號,是一種可供無數用戶共享的信息資源。對於陸地、海洋和空間的廣大用戶,只要用戶擁有能夠接收、跟蹤、變換和測量GPS信號的接收設備,即GPS信號接收機。可以在任何時候用GPS信號進行導航定位測量。根據使用目的的不同,用戶要求的GPS信號接收機也各有差異。目前世界上已有幾十家工廠生產GPS接收機,產品也有幾百種。這些產品可以按照原理、用途、功能等來分類。
靜態定位中,GPS接收機在捕獲和跟蹤GPS衛星的過程中固定不變,接收機高精度地測量GPS信號的傳播時間,利用GPS衛星在軌的已知位置,解算出接收機天線所在位置的三維坐標。而動態定位則是用GPS接收機測定一個運動物體的運行軌跡。GPS信號接收機所位於的運動物體叫做載體(如航行中的船艦,空中的飛機,行走的車輛等)。載體上的GPS接收機天線在跟蹤GPS衛星的過程中相對地球而運動,接收機用GPS信號實時地測得運動載體的狀態參數(瞬間三維位置和三維速度)。
接收機硬體和機內軟體以及GPS數據的後處理軟體包,構成完整的GPS用戶設備。GPS接收機的結構分為天線單元和接收單元兩大部分。對於測地型接收機來說,兩個單元一般分成兩個獨立的部件,觀測時將天線單元安置在測站上,接收單元置於測站附近的適當地方,用電纜線將兩者連接成一個整機。也有的將天線單元和接收單元製作成一個整體,觀測時將其安置在測站點上。
⑦ 定位器的工作原理
電氣定位器:
通過4-20MA(DC1-5V)直流電源,來推動力矩馬達,使它在於反饋凸輪、彈簧之間力的平衡點關系或位置,來控制噴嘴氣流的大小,以達到控制膜室里氣壓的大小的任一穩定點,從而控制達到控制閥位的目地。
作用
(1)用於對調節質量要求高的重要調節系統,以提高調節閥的定位精確及可靠性。
(2)用於閥門兩端壓差大( △p>1MPa)的場合。通過提高氣源壓力增大執行機構的輸出力,以克服液體對閥芯產生的不平衡力,減小行程誤差。
(3)當被調介質為高溫、高壓、低溫、有毒、易燃、易爆時,為了防止對外泄漏,往往將填料壓得很緊,因此閥桿與填料間的摩擦力較大,此時用定位器可克服時滯。
(4)被調介質為粘性流體或含有固體懸浮物時,用定位器可以克服介質對閥桿移動的阻力。
(5)用於大口徑(Dg>100mm)的調節閥,以增大執行機構的輸出推力。
(6)當調節器與執行器距離在60m以上時,用定位器可克服控制信號的傳遞滯後,改善閥門的動作反應速度。
(7)用來改善調節閥的流量特性。
(8)一個調節器控制兩個執行器實行分程式控制制時,可用兩個定位器,分別接受低輸入信號和高輸入信號,則一個執行器低程動作,另一個高程動作,即構成了分程調節。
⑧ 定位器的作用
閥門定位器的作用主要有:
1.改善調節閥的靜態特性,提高閥門位置的線性度。
2.改善調節閥的動態特性,減少調節信號的傳遞滯後。
3.改變調節閥的流量特性。
4.改變調節閥對信號壓力的響應范圍實現分程式控制制。
5.使閥門動作反向。
⑨ 電氣閥門定位器的工作原理和作用分別是什麼
閥門定位器是安裝在氣動調節閥上的主要附件,閥門定位器接收調節器的信專號,將電控命屬令轉化成氣動定位增量來驅動氣動執行機構,實現閥位控制;同時,閥門定位器中的微處理器接收4-20mA的設定值信號,與閥位感測器反饋的實際閥位值進行比較,如果檢測到偏差,立即根據偏差的大小和方向輸出一個指令,調節進入執行機構氣室的空氣流量,也就是說控制閥將控制指令轉換為氣動位移增量。當實際閥位與設定值偏差很大時(高速區),定位器輸出一個連續信號;如果偏差不大(低速區),定位器將輸出脈沖信號;當偏差很小時(自適應或可調死區狀態),則沒有定位器輸出,此時,實際閥門位置到達設定值,機構達到平衡狀態,即一定的設定電流對應一定的閥門位置。