導航:首頁 > 製冷設備 > 德國西克超聲波流量表怎麼樣

德國西克超聲波流量表怎麼樣

發布時間:2025-07-09 14:04:01

A. 什麼是超聲波

超聲波
超聲波是指頻率為20千赫~50兆赫左右的電磁波,它是一種機械波,需要能量載體—介質—來進行傳播。超聲波在傳遞過程中存在著的正負壓強交變周期,在正相位時,對介質分子產生擠壓,增加介質原來的密度;負相位時,介質分子稀疏、離散,介質密度減小。也就是說,超聲波並不能使樣品內的分子產生極化,而是在溶劑和樣品之間產生聲波空化作用,導致溶液內氣泡的形成、增長和爆破壓縮,從而使固體樣品分散,增大樣品與萃取溶劑之間的接觸面積,提高目標物從固相轉移到液相的傳質速率。在工業應用方面,利用超聲波進行清洗、乾燥、殺菌、霧化及無損檢測等,是一種非常成熟且有廣泛應用的技術。
我們知道,當物體振動時會發出聲音。科學家們將每秒鍾振動的次數稱為聲音的頻率,它的單位是赫茲。我們人類耳朵能聽到的聲波頻率為16~20,000赫茲。因此,當物體的振動超過一定的頻率,即高於人耳聽閾上限時,人們便聽不出來了,這樣的聲波稱為「超聲波」。通常用於醫學診斷的超聲波頻率為1~5兆赫。
雖然說人類聽不出超聲波,但不少動物卻有此本領。它們可以利用超聲波「導航」、追捕食物,或避開危險物。大家可能看到過夏天的夜晚有許多蝙蝠在庭院里來回飛翔,它們為什麼在沒有光亮的情況下飛翔而不會迷失方向呢?原因就是蝙蝠能發出2~10萬赫茲的超聲波,這好比是一座活動的「雷達站」。蝙蝠正是利用這種「雷達」判斷飛行前方是昆蟲,或是障礙物的。
我們人類直到第一次世界大戰才學會利用超聲波,這就是利用「聲納」的原理來探測水中目標及其狀態,如潛艇的位置等。此時人們向水中發出一系列不同頻率的超聲波,然後記錄與處理反射回聲,從回聲的特徵我們便可以估計出探測物的距離、形態及其動態改變。醫學上最早利用超聲波是在1942年,奧地利醫生杜西克首次用超聲技術掃描腦部結構;以後到了60年代醫生們開始將超聲波應用於腹部器官的探測。如今超聲波掃描技術已成為現代醫學診斷不可缺少的工具。
醫學超聲波檢查的工作原理與聲納有一定的相似性,即將超聲波發射到人體內,當它在體內遇到界面時會發生反射及折射,並且在人體組織中可能被吸收而衰減。因為人體各種組織的形態與結構是不相同的,因此其反射與折射以及吸收超聲波的程度也就不同,醫生們正是通過儀器所反映出的波型、曲線,或影象的特徵來辨別它們。此外再結合解剖學知識、正常與病理的改變,便可診斷所檢查的器官是否有病。
目前,醫生們應用的超聲診斷方法有不同的形式,可分為A型、B型、M型及D型四大類。
A型:是以波形來顯示組織特徵的方法,主要用於測量器官的徑線,以判定其大小。可用來鑒別病變組織的一些物理特性,如實質性、液體或是氣體是否存在等。
B型:用平面圖形的形式來顯示被探查組織的具體情況。檢查時,首先將人體界面的反射信號轉變為強弱不同的光點,這些光點可通過熒光屏顯現出來,這種方法直觀性好,重復性強,可供前後對比,所以廣泛用於婦產科、泌尿、消化及心血管等系統疾病的診斷。
M型:是用於觀察活動界面時間變化的一種方法。最適用於檢查心臟的活動情況,其曲線的動態改變稱為超聲心動圖,可以用來觀察心臟各層結構的位置、活動狀態、結構的狀況等,多用於輔助心臟及大血管疫病的診斷。
D型:是專門用來檢測血液流動和器官活動的一種超聲診斷方法,又稱為多普勒超聲診斷法。可確定血管是否通暢、管腔有否狹窄、閉塞以及病變部位。新一代的D型超聲波還能定量地測定管腔內血液的流量。近幾年來科學家又發展了彩色編碼多普勒系統,可在超聲心動圖解剖標志的指示下,以不同顏色顯示血流的方向,色澤的深淺代表血流的流速。現在還有立體超聲顯象、超聲CT、超聲內窺鏡等超聲技術不斷涌現出來,並且還可以與其他檢查儀器結合使用,使疾病的診斷准確率大大提高。超聲波技術正在醫學界發揮著巨大的作用,隨著科學的進步,它將更加完善,將更好地造福於人類。
頻率高於20000 Hz(赫茲)的聲波。研究超聲波的產生、傳播 、接收,以及各種超聲效應和應用的聲學分支叫超聲學。產生超聲波的裝置有機械型超聲發生器(例如氣哨、汽笛和液哨等)、利用電磁感應和電磁作用原理製成的電動超聲發生器、以及利用壓電晶體的電致伸縮效應和鐵磁物質的磁致伸縮效應製成的電聲換能器等。
超聲效應 當超聲波在介質中傳播時,由於超聲波與介質的相互作用,使介質發生物理的和化學的變化,從而產生 一系列力學的、熱的、電磁的和化學的超聲效應,包括以下4種效應:
①機械效應。超聲波的機械作用可促成液體的乳化、凝膠的液化和固體的分散。當超聲波流體介質中形成駐波時 ,懸浮在流體中的微小顆粒因受機械力的作用而凝聚在波節處,在空間形成周期性的堆積。超聲波在壓電材料和磁致伸縮材料中傳播時,由於超聲波的機械作用而引起的感生電極化和感生磁化(見電介質物理學和磁致伸縮)。
②空化作用。超聲波作用於液體時可產生大量小氣泡 。一個原因是液體內局部出現拉應力而形成負壓,壓強的降低使原來溶於液體的氣體過飽和,而從液體逸出,成為小氣泡。另一原因是強大的拉應力把液體「撕開」成一空洞,稱為空化。空洞內為液體蒸氣或溶於液體的另一種氣體,甚至可能是真空。因空化作用形成的小氣泡會隨周圍介質的振動而不斷運動、長大或突然破滅。破滅時周圍液體突然沖入氣泡而產生高溫、高壓,同時產生激波。與空化作用相伴隨的內摩擦可形成電荷,並在氣泡內因放電而產生發光現象。在液體中進行超聲處理的技術大多與空化作用有關。
③熱效應。由於超聲波頻率高,能量大,被介質吸收時能產生顯著的熱效應。
④化學效應。超聲波的作用可促使發生或加速某些化學反應。例如純的蒸餾水經超聲處理後產生過氧化氫;溶有氮氣的水經超聲處理後產生亞硝酸;染料的水溶液經超聲處理後會變色或退色。這些現象的發生總與空化作用相伴隨。超聲波還可加速許多化學物質的水解、分解和聚合過程。超聲波對光化學和電化學過程也有明顯影響。各種氨基酸和其他有機物質的水溶液經超聲處理後,特徵吸收光譜帶消失而呈均勻的一般吸收,這表明空化作用使分子結構發生了改變 。
超聲應用 超聲效應已廣泛用於實際,主要有如下幾方面:
①超聲檢驗。超聲波的波長比一般聲波要短,具有較好的方向性,而且能透過不透明物質,這一特性已被廣泛用於超聲波探傷、測厚、測距、遙控和超聲成像技術。超聲成像是利用超聲波呈現不透明物內部形象的技術 。把從換能器發出的超聲波經聲透鏡聚焦在不透明試樣上,從試樣透出的超聲波攜帶了被照部位的信息(如對聲波的反射、吸收和散射的能力),經聲透鏡匯聚在壓電接收器上,所得電信號輸入放大器,利用掃描系統可把不透明試樣的形象顯示在熒光屏上。上述裝置稱為超聲顯微鏡。超聲成像技術已在醫療檢查方面獲得普遍應用,在微電子器件製造業中用來對大規模集成電路進行檢查,在材料科學中用來顯示合金中不同組分的區域和晶粒間界等。聲全息術是利用超聲波的干涉原理記錄和重現不透明物的立體圖像的聲成像技術,其原理與光波的全息術基本相同,只是記錄手段不同而已(見全息術)。用同一超聲信號源激勵兩個放置在液體中的換能器,它們分別發射兩束相乾的超聲波:一束透過被研究的物體後成為物波,另一束作為參考波。物波和參考波在液面上相干疊加形成聲全息圖,用激光束照射聲全息圖,利用激光在聲全息圖上反射時產生的衍射效應而獲得物的重現像,通常用攝像機和電視機作實時觀察。
②超聲處理。利用超聲的機械作用、空化作用、熱效應和化學效應,可進行超聲焊接、鑽孔、固體的粉碎、乳化 、脫氣、除塵、去鍋垢、清洗、滅菌、促進化學反應和進行生物學研究等,在工礦業、農業、醫療等各個部門獲得了廣泛應用。
③基礎研究。超聲波作用於介質後,在介質中產生聲弛豫過程,聲弛豫過程伴隨著能量在分子各自電度間的輸運過程,並在宏觀上表現出對聲波的吸收(見聲波)。通過物質對超聲的吸收規律可探索物質的特性和結構,這方面的研究構成了分子聲學這一聲學分支。普通聲波的波長遠大於固體中的原子間距,在此條件下固體可當作連續介質 。但對頻率在1012赫以上的 特超聲波 ,波長可與固體中的原子間距相比擬,此時必須把固體當作是具有空間周期性的點陣結構。點陣振動的能量是量子化的 ,稱為聲子(見固體物理學)。特超聲對固體的作用可歸結為特超聲與熱聲子、電子、光子和各種准粒子的相互作用。對固體中特超聲的產生、檢測和傳播規律的研究,以及量子液體——液態氦中聲現象的研究構成了近代聲學的新領域——
量子聲學。

B. 超聲波是什麼用於什麼領域

[編輯本段]超聲波的簡介
我們知道,當物體振動時會發出聲音。科學家們將每秒鍾振動的次數稱為聲音的頻率,它的單位是赫茲。我們人類耳朵能聽到的聲波頻率為20~20,000赫茲。當聲波的振動頻率大於20000赫茲或小於20赫茲時,我們便聽不見了。因此,我們把頻率高於20000赫茲的聲波稱為「超聲波」。通常用於醫學診斷的超聲波頻率為1~5兆赫。超聲波具有方向性好,穿透能力強,易於獲得較集中的聲能,在水中傳播距離遠等特點。可用於測距,測速,清洗,焊接,碎石等。在醫學,軍事,工業,農業上有很多的應用。
理論研究表明,在振幅相同的條件下,一個物體振動的能量與振動頻率成正比,超聲波在介質中傳播時,介質質點振動的頻率很高,因而能量很大.在我國北方乾燥的冬季,如果把超聲波通入水罐中,劇烈的振動會使罐中的水破碎成許多小霧滴,再用小風扇把霧滴吹入室內,就可以增加室內空氣濕度.這就是超聲波加濕器的原理.咽喉炎.氣管炎等疾病,呼喚斤年時斤百 很難血流到達患病的部位.利用加濕器的原理,把葯液霧化,讓病人吸入,能夠提高療效.利用超聲波巨大的能量還可以使人體內的結石做劇烈的受迫振動而破碎,從而減緩病痛,達到治癒的目的。

現在,人們利用超聲波來為飛機、輪船導航,尋找地下的寶藏。超聲波就像一位無聲的功臣,廣泛地應用於工業、農業、醫療和軍事等領域。斯帕拉捷怎麼也不會想到,自己的實驗,會給人類帶來如此巨大的恩惠。

這個資料絕對好,也沒有那麼長,
讓這個成為最佳答案吧!!忒感謝了!!

C. 超聲波的介紹

超聲波
我們知道,當物體振動時會發出聲音。科學家們將每秒鍾振動的次數稱為聲音的頻率,它的單位是赫茲。我們人類耳朵能聽到的聲波頻率為20~20,000赫茲。因此,當物體的振動超過一定的頻率,即高於人耳聽閾上限時,人們便聽不出來了,這樣的聲波稱為「超聲波」。通常用於醫學診斷的超聲波頻率為1~5兆赫。超聲波具有方向性好,穿透能力強,易於獲得較集中的聲能,在水中傳播距離遠等特點。可用於測距,測速,清洗,焊接,碎石等

雖然說人類聽不出超聲波,但不少動物卻有此本領。它們可以利用超聲波「導航」、追捕食物,或避開危險物。大家可能看到過夏天的夜晚有許多蝙蝠在庭院里來回飛翔,它們為什麼在沒有光亮的情況下飛翔而不會迷失方向呢?原因就是蝙蝠能發出2~10萬赫茲的超聲波,這好比是一座活動的「雷達站」。蝙蝠正是利用這種「雷達」判斷飛行前方是昆蟲,或是障礙物的。

我們人類直到第一次世界大戰才學會利用超聲波,這就是利用「聲納」的原理來探測水中目標及其狀態,如潛艇的位置等。此時人們向水中發出一系列不同頻率的超聲波,然後記錄與處理反射回聲,從回聲的特徵我們便可以估計出探測物的距離、形態及其動態改變。醫學上最早利用超聲波是在1942年,奧地利醫生杜西克首次用超聲技術掃描腦部結構;以後到了60年代醫生們開始將超聲波應用於腹部器官的探測。如今超聲波掃描技術已成為現代醫學診斷不可缺少的工具。

醫學超聲波檢查的工作原理與聲納有一定的相似性,即將超聲波發射到人體內,當它在體內遇到界面時會發生反射及折射,並且在人體組織中可能被吸收而衰減。因為人體各種組織的形態與結構是不相同的,因此其反射與折射以及吸收超聲波的程度也就不同,醫生們正是通過儀器所反映出的波型、曲線,或影象的特徵來辨別它們。此外再結合解剖學知識、正常與病理的改變,便可診斷所檢查的器官是否有病。

目前,醫生們應用的超聲診斷方法有不同的形式,可分為A型、B型、M型及D型四大類。

A型:是以波形來顯示組織特徵的方法,主要用於測量器官的徑線,以判定其大小。可用來鑒別病變組織的一些物理特性,如實質性、液體或是氣體是否存在等。

B型:用平面圖形的形式來顯示被探查組織的具體情況。檢查時,首先將人體界面的反射信號轉變為強弱不同的光點,這些光點可通過熒光屏顯現出來,這種方法直觀性好,重復性強,可供前後對比,所以廣泛用於婦產科、泌尿、消化及心血管等系統疾病的診斷。

M型:是用於觀察活動界面時間變化的一種方法。最適用於檢查心臟的活動情況,其曲線的動態改變稱為超聲心動圖,可以用來觀察心臟各層結構的位置、活動狀態、結構的狀況等,多用於輔助心臟及大血管疫病的診斷。

D型:是專門用來檢測血液流動和器官活動的一種超聲診斷方法,又稱為多普勒超聲診斷法。可確定血管是否通暢、管腔有否狹窄、閉塞以及病變部位。新一代的D型超聲波還能定量地測定管腔內血液的流量。近幾年來科學家又發展了彩色編碼多普勒系統,可在超聲心動圖解剖標志的指示下,以不同顏色顯示血流的方向,色澤的深淺代表血流的流速。現在還有立體超聲顯象、超聲CT、超聲內窺鏡等超聲技術不斷涌現出來,並且還可以與其他檢查儀器結合使用,使疾病的診斷准確率大大提高。超聲波技術正在醫學界發揮著巨大的作用,隨著科學的進步,它將更加完善,將更好地造福於人類。

頻率高於20000 Hz(赫茲)的聲波。研究超聲波的產生、傳播 、接收,以及各種超聲效應和應用的聲學分支叫超聲學。產生
超聲波的裝置有機械型超聲發生器(例如氣哨、汽笛和液哨等)、利用電磁感應和電磁作用原理製成的電動超聲發生器、
以及利用壓電晶體的電致伸縮效應和鐵磁物質的磁致伸縮效應製成的電聲換能器等。
超聲效應 當超聲波在介質中傳播時,由於超聲波與介質的相互作用,使介質發生物理的和化學的變化,從而產生
一系列力學的、熱的、電磁的和化學的超聲效應,包括以下4種效應:
①機械效應。超聲波的機械作用可促成液體的乳化、凝膠的液化和固體的分散。當超聲波流體介質中形成駐波時 ,懸浮在流體中的微小顆粒因受機械力的作用而凝聚在波節處,在空間形成周期性的堆積。超聲波在壓電材料和磁致伸縮材料中傳播時,由於超聲波的機械作用而引起的感生電極化和感生磁化(見電介質物理學和磁致伸縮)。
②空化作用。超聲波作用於液體時可產生大量小氣泡 。一個原因是液體內局部出現拉應力而形成負壓,壓強的降低使原來溶於液體的氣體過飽和,而從液體逸出,成為小氣泡。另一原因是強大的拉應力把液體「撕開」成一空洞,稱為空化。空洞內為液體蒸氣或溶於液體的另一種氣體,甚至可能是真空。因空化作用形成的小氣泡會隨周圍介質的振動而不斷運動、長大或突然破滅。破滅時周圍液體突然沖入氣泡而產生高溫、高壓,同時產生激波。與空化作用相伴隨的內摩擦可形成電荷,並在氣泡內因放電而產生發光現象。在液體中進行超聲處理的技術大多與空化作用有關。
③熱效應。由於超聲波頻率高,能量大,被介質吸收時能產生顯著的熱效應。
④化學效應。超聲波的作用可促使發生或加速某些化學反應。例如純的蒸餾水經超聲處理後產生過氧化氫;溶有氮氣的水經超聲處理後產生亞硝酸;染料的水溶液經超聲處理後會變色或退色。這些現象的發生總與空化作用相伴隨。超聲波還可加速許多化學物質的水解、分解和聚合過程。超聲波對光化學和電化學過程也有明顯影響。各種氨基酸和其他有機物質的水溶液經超聲處理後,特徵吸收光譜帶消失而呈均勻的一般吸收,這表明空化作用使分子結構發生了改變 。

超聲應用 超聲效應已廣泛用於實際,主要有如下幾方面:
①超聲檢驗。超聲波的波長比一般聲波要短,具有較好的方向性,而且能透過不透明物質,這一特性已被廣泛用於超聲波探傷、測厚、測距、遙控和超聲成像技術。超聲成像是利用超聲波呈現不透明物內部形象的技術 。把從換能器發出的超聲波經聲透鏡聚焦在不透明試樣上,從試樣透出的超聲波攜帶了被照部位的信息(如對聲波的反射、吸收和散射的能力),經聲透鏡匯聚在壓電接收器上,所得電信號輸入放大器,利用掃描系統可把不透明試樣的形象顯示在熒光屏上。上述裝置稱為超聲顯微鏡。超聲成像技術已在醫療檢查方面獲得普遍應用,在微電子器件製造業中用來對大規模集成電路進行檢查,在材料科學中用來顯示合金中不同組分的區域和晶粒間界等。聲全息術是利用超聲波的干涉原理記錄和重現不透明物的立體圖像的聲成像技術,其原理與光波的全息術基本相同,只是記錄手段不同而已(見全息術)。用同一超聲信號源激勵兩個放置在液體中的換能器,它們分別發射兩束相乾的超聲波:一束透過被研究的物體後成為物波,另一束作為參考波。物波和參考波在液面上相干疊加形成聲全息圖,用激光束照射聲全息圖,利用激光在聲全息圖上反射時產生的衍射效應而獲得物的重現像,通常用攝像機和電視機作實時觀察。
②超聲處理。利用超聲的機械作用、空化作用、熱效應和化學效應,可進行超聲焊接、鑽孔、固體的粉碎、乳化 、脫氣、除塵、去鍋垢、清洗、滅菌、促進化學反應和進行生物學研究等,在工礦業、農業、醫療等各個部門獲得了廣泛應用。
③基礎研究。超聲波作用於介質後,在介質中產生聲弛豫過程,聲弛豫過程伴隨著能量在分子各自電度間的輸運過程,並在宏觀上表現出對聲波的吸收(見聲波)。通過物質對超聲的吸收規律可探索物質的特性和結構,這方面的研究構成了分子聲學這一聲學分支。普通聲波的波長遠大於固體中的原子間距,在此條件下固體可當作連續介質 。但對頻率在1012赫以上的 特超聲波 ,波長可與固體中的原子間距相比擬,此時必須把固體當作是具有空間周期性的點陣結構。點陣振動的能量是量子化的 ,稱為聲子(見固體物理學)。特超聲對固體的作用可歸結為特超聲與熱聲子、電子、光子和各種准粒子的相互作用。對固體中特超聲的產生、檢測和傳播規律的研究,以及量子液體——液態氦中聲現象的研究構成了近代聲學的新領域——
聲波是屬於聲音的類別之一,屬於機械波,聲波是指人耳能感受到的一種縱波,其頻率范圍為16Hz-20KHz。當聲波的頻率低於16Hz時就叫做次聲波,高於20KHz則稱為超聲波聲波。
超聲波具有如下特性:
1) 超聲波可在氣體、液體、固體、固熔體等介質中有效傳播。
2) 超聲波可傳遞很強的能量。
3) 超聲波會產生反射、干涉、疊加和共振現象。
4) 超聲波在液體介質中傳播時,可在界面上產生強烈的沖擊和空化現象。
超聲波是聲波大家族中的一員。
聲波是物體機械振動狀態(或能量)的傳播形式。所謂振動是指物質的質點在其平衡位置附近進行的往返運動。譬如,鼓面經敲擊後,它就上下振動,這種振動狀態通過空氣媒質向四面八方傳播,這便是聲波。
超聲波是指振動頻率大於20KHz以上的,人在自然環境下無法聽到和感受到的聲波。
超聲波治療的概念:
超聲治療學是超聲醫學的重要組成部分。超聲治療時將超聲波能量作用於人體病變部位,以達到治療疾患和促進機體康復的目的。
在全球,超聲波廣泛運用於診斷學、治療學、工程學、生物學等領域。賽福瑞家用超聲治療機屬於超聲波治療學的運用范疇。
(一)工程學方面的應用:水下定位與通訊、地下資源勘查等
(二)生物學方面的應用:剪切大分子、生物工程及處理種子等
(三)診斷學方面的應用:A型、B型、M型、D型、雙功及彩超等
(四)治療學方面的應用:理療、治癌、外科、體外碎石、牙科等
超聲波的特點:
1、超聲波在傳播時,方向性強,能量易於集中。
2、超聲波能在各種不同媒質中傳播,且可傳播足夠遠的距離。
3、超聲與傳聲媒質的相互作用適中,易於攜帶有關傳聲媒質狀態的信息(診斷或對傳聲媒質產生效應。(治療)
超聲波是一種波動形式,它可以作為探測與負載信息的載體或媒介(如B超等用作診斷);超聲波同時又是一種能量形式,當其強度超過一定值時,它就可以通過與傳播超聲波的媒質的相互作用,去影響,改變以致破壞後者的狀態,性質及結構(用作治療)。
超聲波的發展史:
一、國際方面:
自19世紀末到20世紀初,在物理學上發現了壓電效應與反壓電效應之後,人們解決了利用電子學技術產生超聲波的辦法,從此迅速揭開了發展與推廣超聲技術的歷史篇章。
1922年,德國出現了首例超聲波治療的發明專利。
1939年發表了有關超聲波治療取得臨床效果的文獻報道。
40年代末期超聲治療在歐美興起,直到1949年召開的第一次國際醫學超聲波學術會議上,才有了超聲治療方面的論文交流,為超聲治療學的發展奠定了基礎。1956年第二屆國際超聲醫學學術會議上已有許多論文發表,超聲治療進入了實用成熟階段。
二、國內方面:
國內在超聲治療領域起步稍晚,於20世紀50年代初才只有少數醫院開展超聲治療工作,從1950年首先在北京開始用800KHz頻率的超聲治療機治療多種疾病,至50年代開始逐步推廣,並有了國產儀器。公開的文獻報道始見於1957年。到了70年代有了各型國產超聲治療儀,超聲療法普及到全國各大型醫院。
40多年來,全國各大醫院已積累了相當數量的資料和比較豐富的臨床經驗。特別是20世紀80年代初出現的超聲體外機械波碎石術和超聲外科,是結石症治療史上的重大突破。如今已在國際范圍內推廣應用。高強度聚焦超聲無創外科,已使超聲治療在當代醫療技術中占據重要位置。而在21世紀(HIFU)超聲聚焦外科已被譽為是21世紀治療腫瘤的最新技術。
超聲波治病機理:
1.機械效應:超聲在介質中前進時所產生的效應。(超聲在介質中傳播是由反射而產生的機械效應)它可引起機體若干反應。超聲振動可引起組織細胞內物質運動,由於超聲的細微按摩,使細胞漿流動、細胞震盪、旋轉、摩擦、從而產生細胞按摩的作用,也稱為「內按摩」這是超聲波治療所獨有的特性,可以改變細胞膜的通透性,刺激細胞半透膜的彌散過程,促進新陳代謝、加速血液和淋巴循環、改善細胞缺血缺氧狀態,改善組織營養、改變蛋白合成率、提高再生機能等。使細胞內部結構發生變化,導致細胞的功能變化,使堅硬的結締組織延伸,松軟。
超聲波的機械作用可軟化組織,增強滲透,提高代謝,促進血液循環,刺激神經系統和細胞功能,因此具有超聲波獨特的治療意義。
2.溫熱效應:人體組織對超聲能量有比較大的吸收本領,因此當超聲波在人體組織中傳播過程中,其能量不斷地被組織吸收而變成熱量,其結果是組織的自身溫度升高。
產熱過程既是機械能在介質中轉變成熱能的能量轉換過程。即內生熱。超聲溫熱效應可增加血液循環,加速代謝,改善局部組織營養,增強酶活力。一般情況下,超聲波的熱作用以骨和結締組織為顯著,脂肪與血液為最少。
3.理化效應:超聲的機械效應和溫熱效應均可促發若干物理化學變化。實踐證明一些理化效應往往是上述效應的繼發效應。TS-C型治療機通過理化效應繼發出下列五大作用:
A.彌散作用:超聲波可以提高生物膜的通透性,超聲波作用後,細胞膜對鉀,鈣離子的通透性發生較強的改變。從而增強生物膜彌散過程,促進物質交換,加速代謝,改善組織營養。
B.觸變作用:超聲作用下,可使凝膠轉化為溶膠狀態。對肌肉,肌腱的軟化作用,以及對一些與組織缺水有關的病理改變。如類風濕性關節炎病變和關節、肌腱、韌帶的退行性病變的治療。
C.空化作用:空化形成,或保持穩定的單向振動,或繼發膨脹以致崩潰,細胞功能改變,細胞內鈣水平增高。成纖維細胞受激活,蛋白合成增加,血管通透性增加,血管形成加速,膠原張力增加。
D.聚合作用與解聚作用:水分子聚合是將多個相同或相似的分子合成一個較大的分子過程。大分子解聚,是將大分子的化學物變成小分子的過程。可使關節內增加水解酶和原酶活性增加。
E.消炎,修復細胞和分子:超聲作用下,可使組織PH值向鹼性方面發展。緩解炎症所伴有的局部酸中毒。超聲可影響血流量,產生致炎症作用,抑制並起到抗炎作用。使白細胞移動,促進血管生成。膠原合成及成熟。促進或抑制損傷的修復和癒合過程。從而達到對受損細胞組織進行清理、激活、修復的過程。
量子聲學。
超聲波還可以進行雷達探測.清洗較為精細的物品,如鍾表,可以利用超聲波來擊碎病人體內膽結石,還可以利用超聲波測距.
超聲波檢測還用於電阻焊的焊點強度的檢測。

D. 電磁波和超聲波的區別是啥啊

一、定義不同

1、電磁波

電磁波是由相同且互相垂直的電場與磁場在空間中衍生發射的震盪粒子波,是以波動的形式傳播的電磁場,具有波粒二象性。由同相振盪且互相垂直的電場與磁場在空間中以波的形式移動,其傳播方向垂直於電場與磁場構成的平面。電磁波在真空中速率固定,速度為光速。見麥克斯韋方程組。

2、超聲波

超聲波是一種頻率高於20000赫茲的聲波,它的方向性好,穿透能力強,易於獲得較集中的聲能,在水中傳播距離遠,可用於測距、測速、清洗、焊接、碎石、殺菌消毒等。在醫學、軍事、工業、農業上有很多的應用。超聲波因其頻率下限大於人的聽覺上限而得名。

二、產生不同

1、電磁波

電磁波是電磁場的一種運動形態。電與磁可說是一體兩面,變化的電場會產生磁場(即電流會產生磁場),變化的磁場則會產生電場。

變化的電場和變化的磁場構成了一個不可分離的統一的場,這就是電磁場,而變化的電磁場在空間的傳播形成了電磁波,電磁的變動就如同微風輕拂水面產生水波一般,因此被稱為電磁波,也常稱為電波。

2、超聲波

聲波是物體機械振動狀態(或能量)的傳播形式。超聲波是指振動頻率大於20000Hz以上的,其每秒的振動次數(頻率)甚高,超出了人耳聽覺的一般上限(20000Hz),人們將這種聽不見的聲波叫做超聲波。

三、應用不同

1、電磁波

1)微波用於微波爐、衛星通信等。

2)紅外線用於遙控、熱成像儀、紅外製導導彈等。

3)可見光是所有生物用來觀察事物的基礎。

4)紫外線用於醫用消毒,驗證假鈔,測量距離,工程上的探傷等。

5)X射線用於CT照相。

2、超聲波

1)超聲處理

利用超聲的機械作用、空化作用、熱效應和化學效應,可進行超聲焊接、鑽孔、固體的粉碎、乳化 、脫氣、除塵、去鍋垢、清洗、滅菌、促進化學反應和進行生物學研究等,在工礦業、農業、醫療等各個部門獲得了廣泛應用。

2)超聲除油

將黏附有油污的製件放在除油液中,並使除油過程處於一定頻率的超聲波場作用下的除油過程,稱為超聲波除油。引入超聲波可以強化除油過程、縮短除油時間、提高除油質量、降低化學葯品的消耗量。

E. 超聲波和聲吶有什麼關系

超聲的傳播機制和超聲對媒質的各種效應是超聲應用的物理基礎。目前超聲有著廣泛的應用。現主要介紹超聲在醫學、工業和科研領域中的應用。超聲在醫學上的應用。①超聲診斷。從體外向人體內部器官發射一束超聲波,然後根據體內器官反射回來的超聲波的特徵來判斷或檢查該部分器官的生理或病理狀況。超聲診斷具有所用聲強較小,對人體沒有損害,操作簡便,結果迅速,受檢查者無不適感等特點,所以超聲診斷發展迅速和推廣較快。目前超聲診斷已用於顱腦、眼、頸部、乳腺、胃、肝、膽、脾、腎、心臟、腹部及盆腔腫塊、胸腹積液等疾病的診斷與鑒別診斷以及產科等方面。②超聲治療。把較強的超聲波發射到人體某一部位,藉助超聲波對有機體的生物效應或其他物理、化學效應而治癒某些疾病。它所用的工作頻率約1兆赫左右。有時發射探頭做成聚焦型結構,發射的超聲波能就集中在所需治療的較小區域。早期被用於治療神經痛、神經炎等疾病,繼而擴大應用於骨、關節、肌肉及其他軟組織的創傷、勞損與炎症,呼吸系統疾病,消化系統疾病以及疤痕等病理情況。近年還試用治療眼和腦的疾病。另外,超聲外科、超聲噴霧、口腔科的超聲處理都屬於超聲治療。③超聲醫學。由於超聲波在醫學上應用很廣,超聲學與醫學相結合,或超聲技術應用於醫學各部門而形成了一門分支科學叫超聲醫學。它包括超聲在基礎醫學、臨床醫學、衛生學及其他醫學領域中的研究與應用。例如基礎醫學中包括超聲在生物學、生理學、生物化學、生物物理學、微生物學等有關內容中的研究;在臨床醫學中包括超聲診斷、超聲治療、超聲外科、超聲潔齒、超聲鑽牙等;在衛生學及其他方面有超聲除塵、超聲清洗、超聲滅菌、超聲乳化以及實驗生理學、實驗外科學、生物製品中的一些超聲技術應用等。由於超聲醫學與保障人類健康緊密相關而特別受到重視並發展迅速,例如,超聲成像技術的成就很快被應用到超聲醫學中。超聲在工業中的應用。①超聲檢測。利用超聲波束檢查材料、物件的缺陷、傷痕,或利用超聲波來測量材料、物件的某些物理、化學性質。它的物理基礎是各種材料的聲學性質不同或材料中有缺陷、傷痕,影響了超聲波的傳播特性。例如,影響它的傳播速度或衰減的數值,以及使其產生反射、折射、衍射等現象。超聲檢測的應用很廣,在工業上常作為無損探傷手段來檢查金屬、非金屬物體中的缺陷、傷痕,或用來測量液位、流速、流量、厚度、粘度、硬度、溫度等;在電子工業中可做成各種延遲線和信息處理器件;在國防上用來探測海洋、潛艇等水下目標。超聲檢測中,可以利用連續超聲波,而目前較多的是利用脈沖超聲波。根據不同應用目的,可製成專用儀器,例如超聲探傷儀、超聲診斷儀、超聲厚度計、超聲聲速儀、超聲衰減儀等。②超聲加工。利用超聲振動的能量來對硬脆性材料(例如石英、寶石、玻璃、陶瓷、硅、鍺、鐵氧體等)進行切割、鑽孔、研磨等。超聲加工時,由超聲換能器產生的超聲振動先經過變幅桿把振幅加以放大,使連接在變幅桿頂端的工具頭能以較強的振幅振動,在工具頭與被加工工具之間送入磨燭液,並使工具頭以一定的靜壓力壓在工件上,磨蝕液中的磨料顆粒由於受工具振動的作用而沖向工件,對工件引起微小的擊破,從而使該部分工件材料逐漸被除去,加工所得的孔的形狀與工具頭端面的形狀完全一樣。超聲加工的工作頻率一般為數十千赫,功率一般為數瓦到數千瓦。③超聲處理。利用超聲波的能量使物質的一些物理、化學、生物特性或狀態發生改變,或使這類改變的速度加快。它屬於強聲超聲應用范圍。當超聲波消失後,這種已有的改變一般被保持下來不再復原。它的形式很多,例如超聲清洗、超聲焊接、超聲乳化、超聲搪錫、超聲霧化、超聲凝聚、超聲金屬成型、超聲處理種子以及超聲促進化學反應等。超聲處理過程的物理基礎一般與超聲空化有關。但每一種處理方式大都又各有其作用機制,不少作用機理目前仍在探索之中。超聲在科研領域中的應用。機械運動是最簡單、也是最普遍的物質運動,它和其他形式的物質運動以及物質結構之間的關系非常密切。超聲振動本身就是一種機械運動,因此,超聲方法是研究物質結構的一個重要途徑。從 20世紀40年代起,人們在研究媒質中超聲波的聲速和聲衰減隨頻率變化的關系時,陸續發現它們與各個分子弛豫過程及微觀諧振動之間的關系,從而形成了分子聲學的分支學科。目前,超聲波的頻率已接近點陣熱振動頻率,利用高頻超聲的量子化聲能——聲子,來研究原子間的相互作用、能量傳遞等問題是十

F. 超聲波的主要用途

超聲效應已廣泛用於實際,主要有如下幾方面:

1,超聲處理

利用超聲的機械作用、空化作用、熱效應和化學效應,可進行超聲焊接、鑽孔、固體的粉碎、乳化 、脫氣、除塵、去鍋垢、清洗、滅菌、促進化學反應和進行生物學研究等,在工礦業、農業、醫療等各個部門獲得了廣泛應用。

2,超聲波清洗

清洗的超聲波應用原理是由超聲波發生器發出的高頻振盪信號,通過換能器轉換成高頻機械振盪而傳播到介質, 清洗溶劑中超聲波在清洗液中疏密相間的向前輻射,使液體流動而產生數以萬計的微小氣泡,存在於液體中的微小氣泡(空化核)在聲場的作用下振動,當聲壓達到一定值時,氣泡迅速增長,然後突然閉合,在氣泡閉合時產生沖擊波,在其周圍產生上千個大氣壓力,破壞不溶性污物而使它們分散於清洗液中,當團體粒子被油污裹著而粘附在清洗件表面時,油被乳化,固體粒子即脫離,從而達到清洗件表面凈化的目的。

3,超聲波加濕器

理論研究表明,在振幅相同的條件下,一個物體振動的能量與振動頻率成正比,超聲波在介質中傳播時,介質質點振動的頻率很高,因而能量很大.在中國北方乾燥的冬季,如果把超聲波通入水罐中,劇烈的振動會使罐中的水破碎成許多小霧滴,再用小風扇把霧滴吹入室內,就可以增加室內空氣濕度,這就是超聲波加濕器的原理。

如咽喉炎、氣管炎等疾病,很難利用血流使葯物到達患病的部位,利用加濕器的原理,把葯液霧化,讓病人吸入,能夠提高療效。利用超聲波巨大的能量還可以使人體內的結石做劇烈的受迫振動而破碎,從而減緩病痛,達到治癒的目的。超聲波在醫學方面應用非常廣泛,可以對物品進行殺菌消毒。

4,超聲除蟎

科研人員發現,蟎蟲的聽覺神經系統很脆弱,對特定頻率的超聲非常敏感,針對蟎蟲的這種生理特性,已有科技公司的研究人員開發出了超聲波除蟎儀。這種新型的除蟎產品採用現代微電子技術手段,直接用特殊頻率的超聲作用於蟎蟲的聽覺神經系統,使其生理系統紊亂,煩躁不安,食慾不振,最終奄奄一息逐漸死亡。

採用這種原理的除蟎產品不用添加任何化學葯劑,無毒無二次污染,對人體和家中寵物都沒有傷害,是比較理想的除蟎產品。

5,超聲除油

將黏附有油污的製件放在除油液中,並使除油過程處於一定頻率的超聲波場作用下的除油過程,稱為超聲波除油。引入超聲波可以強化除油過程、縮短除油時間、提高除油質量、降低化學葯品的消耗量。

尤其對復雜外形零件、小型精密零件、表面有難除污物的零件及絕緣材料製成的零件有顯著的除油效果,可以省去費時的手工勞動,防止零件的損傷。

超聲波除油的效果與零件的形狀、尺寸、表面油污性質、溶液成分、零件的放置位置等有關,因此,最佳的超聲波除油工藝要通過試驗確定。

超聲波除油所用的頻率一般為30kHz左右。零件小時,採用高一些的頻率;零件大時,採用較低的頻率。超聲波是直線傳播的,難以達到被遮蔽的部分,因此應該使零件在除油槽內旋轉或翻動,以使其表面上各個部位都能得到超聲波的輻照,受到較好的除油效果。

另外超聲波除油溶液的濃度和溫度要比相應的化學除油和電化學除油低,以免影響超聲波的傳播,也可減少金屬材料表面的腐蝕。

(6)德國西克超聲波流量表怎麼樣擴展閱讀

超聲波是一種頻率高於20000赫茲的聲波,它的方向性好,穿透能力強,易於獲得較集中的聲能,在水中傳播距離遠,可用於測距、測速、清洗、焊接、碎石、殺菌消毒等。在醫學、軍事、工業、農業上有很多的應用。超聲波因其頻率下限大於人的聽覺上限而得名。

科學家們將每秒鍾振動的次數稱為聲音的頻率,它的單位是赫茲(Hz)。我們人類耳朵能聽到的聲波頻率為20Hz-20000Hz。因此,我們把頻率高於20000赫茲的聲波稱為「超聲波」。通常用於醫學診斷的超聲波頻率為1兆赫茲-30兆赫茲。

理論研究表明,在振幅相同的條件下,一個物體振動的能量與振動頻率成正比,超聲波在介質中傳播時,介質質點振動的頻率很高,因而能量很大.在中國北方乾燥的冬季,如果把超聲波通入水罐中,劇烈的振動會使罐中的水破碎成許多小霧滴,再用小風扇把霧滴吹入室內,就可以增加室內空氣濕度,這就是超聲波加濕器的原理。

如咽喉炎、氣管炎等疾病,很難利用血流使葯物到達患病的部位,利用加濕器的原理,把葯液霧化,讓病人吸入,能夠提高療效。利用超聲波巨大的能量還可以使人體內的結石做劇烈的受迫振動而破碎,從而減緩病痛,達到治癒的目的。超聲波在醫學方面應用非常廣泛,可以對物品進行殺菌消毒。

G. 重慶超聲波

超聲波有危害嗎?如果有,是什麼?如果沒有,為什麼?
懸賞分:5 - 解決時間:2006-9-24 18:02
如題
提問者: czwx2 - 助理 二級 最佳答案
超聲波
頻率高於20000 Hz(赫茲)的聲波。研究超聲波的產生、傳播 、接收,以及各種超聲效應和應用的聲學分支叫超聲學。產生

超聲波的裝置有機械型超聲發生器(例如氣哨、汽笛和液哨等)、利用電磁感應和電磁作用原理製成的電動超聲發生器、

以及利用壓電晶體的電致伸縮效應和鐵磁物質的磁致伸縮效應製成的電聲換能器等。

超聲效應 當超聲波在介質中傳播時,由於超聲波與介質的相互作用,使介質發生物理的和化學的變化,從而產生

一系列力學的、熱的、電磁的和化學的超聲效應,包括以下4種效應:

①機械效應。超聲波的機械作用可促成液體的乳化、凝

膠的液化和固體的分散。當超聲波流體介質中形成駐波時 ,

懸浮在流體中的微小顆粒因受機械力的作用而凝聚在波節處,

在空間形成周期性的堆積。超聲波在壓電材料和磁致伸縮材

料中傳播時,由於超聲波的機械作用而引起的感生電極化和

感生磁化(見電介質物理學和磁致伸縮)。

②空化作用。超聲波作用於液體時可產生大量小氣泡 。

一個原因是液體內局部出現拉應力而形成負壓,壓強的降低

使原來溶於液體的氣體過飽和,而從液體逸出,成為小氣泡。

另一原因是強大的拉應力把液體「撕開」成一空洞,稱為空

化。空洞內為液體蒸氣或溶於液體的另一種氣體,甚至可能

是真空。因空化作用形成的小氣泡會隨周圍介質的振動而不

斷運動、長大或突然破滅。破滅時周圍液體突然沖入氣泡而

產生高溫、高壓,同時產生激波。與空化作用相伴隨的內摩

擦可形成電荷,並在氣泡內因放電而產生發光現象。在液體

中進行超聲處理的技術大多與空化作用有關。

③熱效應。由於超聲波頻率高,能量大,被介質吸收時

能產生顯著的熱效應。

④化學效應。超聲波的作用可促使發生或加速某些化學

反應。例如純的蒸餾水經超聲處理後產生過氧化氫;溶有氮

氣的水經超聲處理後產生亞硝酸;染料的水溶液經超聲處理

後會變色或退色。這些現象的發生總與空化作用相伴隨。超

聲波還可加速許多化學物質的水解、分解和聚合過程。超聲

波對光化學和電化學過程也有明顯影響。各種氨基酸和其他

有機物質的水溶液經超聲處理後,特徵吸收光譜帶消失而呈

均勻的一般吸收,這表明空化作用使分子結構發生了改變 。

超聲應用 超聲效應已廣泛用於實際,主要有如下幾方

面:

①超聲檢驗。超聲波的波長比一般聲波要短,具有較好

的方向性,而且能透過不透明物質,這一特性已被廣泛用於

超聲波探傷、測厚、測距、遙控和超聲成像技術。

超聲成像是利用超聲波呈現不透明物內部形象的技術 。

把從換能器發出的超聲波經聲透鏡聚焦在不透明試樣上,從

試樣透出的超聲波攜帶了被照部位的信息(如對聲波的反射、

吸收和散射的能力),經聲透鏡匯聚在壓電接收器上,所得

電信號輸入放大器,利用掃描系統可把不透明試樣的形象顯

示在熒光屏上。上述裝置稱為超聲顯微鏡。超聲成像技術已

在醫療檢查方面獲得普遍應用,在微電子器件製造業中用來

對大規模集成電路進行檢查,在材料科學中用來顯示合金中

不同組分的區域和晶粒間界等。

聲全息術是利用超聲波的干涉原理記錄和重現不透明物

的立體圖像的聲成像技術,其原理與光波的全息術基本相同,

只是記錄手段不同而已(見全息術)。用同一超聲信號源激

勵兩個放置在液體中的換能器,它們分別發射兩束相乾的超

聲波:一束透過被研究的物體後成為物波,另一束作為參考

波。物波和參考波在液面上相干疊加形成聲全息圖,用激光

束照射聲全息圖,利用激光在聲全息圖上反射時產生的衍射

效應而獲得物的重現像,通常用攝像機和電視機作實時觀察。

②超聲處理。利用超聲的機械作用、空化作用、熱效應

和化學效應,可進行超聲焊接、鑽孔、固體的粉碎、乳化 、

脫氣、除塵、去鍋垢、清洗、滅菌、促進化學反應和進行生

物學研究等,在工礦業、農業、醫療等各個部門獲得了廣泛

應用。

③基礎研究。超聲波作用於介質後,在介質中產生聲弛

豫過程,聲弛豫過程伴隨著能量在分子各自電度間的輸運過

程,並在宏觀上表現出對聲波的吸收(見聲波)。通過物質

對超聲的吸收規律可探索物質的特性和結構,這方面的研究

構成了分子聲學這一聲學分支。

普通聲波的波長遠大於固體中的原子間距,在此條件下

固體可當作連續介質 。但對頻率在1012赫以上的 特超聲波 ,

波長可與固體中的原子間距相比擬,此時必須把固體當作是

具有空間周期性的點陣結構。點陣振動的能量是量子化的 ,

稱為聲子(見固體物理學)。特超聲對固體的作用可歸結為

特超聲與熱聲子、電子、光子和各種准粒子的相互作用。對

固體中特超聲的產生、檢測和傳播規律的研究,以及量子液

體——液態氦中聲現象的研究構成了近代聲學的新領域——
量子聲學。

<危害>:

超聲波的頻率高至20000Hz以上(每秒振動20000次以上),由於它的頻率高,因此具有以下特點:(a)方向性好,幾乎沿直線傳播;(b)穿透能力強,能穿透許多電磁波不能穿透的物質;(c)在媒質中傳播時能產生巨大的作用力,可以用來為硬質材料做切割、鑿孔等,也可以用來清洗和消毒等對於超聲波的應用,我們比較熟悉的就是醫院中常用的B超,它是把超聲波射入人體,根據人體組織對超聲波的傳導和反射能力的變化來判斷有無異常,如對人體臟器做病變檢查、結石檢查等,它具有對人體無損傷、簡便迅速的優點.
次聲又稱亞聲,是頻率在20Hz以下的低頻率波.許多自然災害如地震、火山爆發、龍卷風等在發生前都會發出次聲波.次聲波對人體能夠造成危害,引起頭痛、嘔吐、呼吸困難等症狀.在20世紀30年代,美國一位物理學家做過實驗:他把一台次聲發生器帶進劇場,開演後悄悄地打開,然後坐在自己的包廂內觀察動靜,只見坐在次聲器四周的觀眾產生一種惶恐不安和迷惑不解的神情,並很快蔓延到整個劇場.次聲波的特點是來源廣、傳播遠、穿透力強科學家們利用它來預測台風、研究大氣結構等.在軍事上可以利用次聲來偵察大氣中的核爆炸、跟蹤導彈等等.
1890年, 一艘名叫「馬爾波羅號」帆船在從紐西蘭駛往英國的途中,突然神秘地失蹤了. 20年後,人們在火地島海岸邊發現了它.奇怪的是:船上的開都原封未動.完好如初.船長航海日記的字跡仍然依稀可辨;就連那些死已多年的船員,也都「各在其位」,保持著當年在崗時的「姿勢」;
1948年初,一艘荷蘭貨船在通過馬六甲海峽時,一場風暴過後,全船海員莫明其妙地死光;在匈牙利鮑拉得利山洞入口, 3名旅遊者齊刷刷地突然倒地,停止了呼吸......
上述慘案,引起了科學家們的普遍關注,其中不少人還對船員的遇難原因進行了長期的研究.就以本文開頭的那樁慘案來說,船員們是怎麼死的?是死於天火或是雷擊的嗎?不是,因為船上沒有絲毫燃燒的痕跡;是死於海盜的刀下的嗎?不!遇難者遺骸上看到死前打鬥的跡象;是死於飢餓乾渴的嗎?也不是!船上當時貯存著足夠的食物和淡水.至於前面提到的第二樁和第三樁慘案,是自殺還是他殺?死因何在?兇手是誰?檢驗的結果是:在所有遇難者身上,都沒有找到任何傷痕,也不存在中毒跡象.顯然,謀殺或者自殺之說已不成立.那麼,是以及病一類心腦血管疾病的突然發作致死的嗎?法醫的解剖報告表明,死者生前個個都很健壯!
經過反復調查,終於弄清了製造上述慘案的「兇手」,是一種為人們所不很了解的次聲的聲波.次聲波是一種每秒鍾振動數很少,人耳聽不到的聲波.次聲的聲波頻率很低,一般均在20兆赫以下,波長卻很長,傳播距離也很遠.它比一般的聲波、光波和無線電波都要傳得遠.例如,頻率低於1赫的次聲波,可以傳到幾千以至上萬公里以外的地方.1960年,南美洲的智利發生大地震,地震時產生的次聲波傳遍了全世界的每一個角落!1961年,蘇聯在北極圈內進行了一次核爆炸,產生的次聲波竟繞地球轉了5圈之後才消失!
次聲波具有極強的穿透力,不僅可以穿透大氣、海水、土壤,而且還能穿透堅固的鋼筋水泥構成的建築物,甚至連坦克、軍艦、潛艇和飛機都不在話下.次聲穿透人體時,不僅能使人產生頭暈、煩燥、耳鳴、惡心、心悸、視物模糊,吞咽困難、胃痛、肝功能失調、四肢麻木,而且還可能破壞大腦神經系統,造成大腦組織的重大損傷.次聲波對心臟影響最為嚴重,最終可導致死亡.
為什麼次聲波能致人於死呢?
原來,人體內臟固有的振動頻率和次聲頻率相近似(0.01~20赫),倘若外來的次聲頻率與體內臟的振動頻率相似或相同,就會引起人體內臟的「共振」,從而使人產生上面提到的頭暈、煩躁、耳鳴、惡心等等一系列症狀.特別是當人的腹腔、胸腔等固有的振動頻率與外來次聲頻率一致時,更易引起人體內臟的共振,使人體內臟受損而喪命.前面開頭提到的發生在馬六甲海峽的那樁慘案,就是因為這艘貨船在駛近該海峽時,恰遇上海上起了風暴.風暴與海浪摩擦,產生了次聲波.次聲波使人的心臟及其它內臟劇烈抖動、狂跳,以致血管破裂,最後促使死亡.
次聲雖然無形,但它卻時刻在產生並威脅著人類的安全.在自然界,例如太陽磁暴、海峽咆哮、雷鳴電閃、氣壓突變;在工廠,機械的撞擊、摩擦;軍事上的原子彈、氫彈爆炸試驗等等,都可以產生次聲波.
由於次聲波具有極強的穿透力,因此,國際海難救助組織就在一些遠離大陸的島上建立起「次聲定位站」,監測著海潮的洋面.一旦船隻或飛機失事附海,可以迅速測定方位,進行救助.
近年來,一些國家利用次聲能夠「殺人」這一特性,致力次聲武器——次聲炸彈的研製盡管眼下尚處於研製階段,但科學家們預言;只要次聲炸彈一聲爆炸,瞬息之間,在方圓十幾公里的地面上,所有的人都將被殺死,且無一能倖免.次聲武器能夠穿透15厘米的混凝土和坦克鋼板.人即使躲到防空洞或鑽進坦克的「肚子」里,也還是一樣地難逃殘廢的厄運.次聲炸彈和中子彈一樣,只殺傷生物而無損於建築物.但兩者相比,次聲彈的殺傷力遠比中子彈強得多.

<作用>:
超聲波:
超聲治療學是超聲醫學的重要組成部分。超聲治療時將超聲波能量作用於人體病變部位,以達到治療疾患和促進機體康復的目的。
在全球,超聲波廣泛運用於診斷學、治療學、工程學、生物學等領域。賽福瑞家用超聲治療機屬於超聲波治療學的運用范疇。
(一)工程學方面的應用:水下定位與通訊、地下資源勘查等
(二)生物學方面的應用:剪切大分子、生物工程及處理種子等
(三)診斷學方面的應用:A型、B型、M型、D型、雙功及彩超等
(四)治療學方面的應用:理療、治癌、外科、體外碎石、牙科等
超聲波的特點:
1、超聲波在傳播時,方向性強,能量易於集中。
2、超聲波能在各種不同媒質中傳播,且可傳播足夠遠的距離。
3、超聲與傳聲媒質的相互作用適中,易於攜帶有關傳聲媒質狀態的信息(診斷或對傳聲媒質產生效應。(治療)
超聲波是一種波動形式,它可以作為探測與負載信息的載體或媒介(如B超等用作診斷);超聲波同時又是一種能量形式,當其強度超過一定值時,它就可以通過與傳播超聲波的媒質的相互作用,去影響,改變以致破壞後者的狀態,性質及結構(用作治療)。
超聲波的發展史:
一、國際方面:
自19世紀末到20世紀初,在物理學上發現了壓電效應與反壓電效應之後,人們解決了利用電子學技術產生超聲波的辦法,從此迅速揭開了發展與推廣超聲技術的歷史篇章。
1922年,德國出現了首例超聲波治療的發明專利。
1939年發表了有關超聲波治療取得臨床效果的文獻報道。
40年代末期超聲治療在歐美興起,直到1949年召開的第一次國際醫學超聲波學術會議上,才有了超聲治療方面的論文交流,為超聲治療學的發展奠定了基礎。1956年第二屆國際超聲醫學學術會議上已有許多論文發表,超聲治療進入了實用成熟階段。
二、國內方面:
國內在超聲治療領域起步稍晚,於20世紀50年代初才只有少數醫院開展超聲治療工作,從1950年首先在北京開始用800KHz頻率的超聲治療機治療多種疾病,至50年代開始逐步推廣,並有了國產儀器。公開的文獻報道始見於1957年。到了70年代有了各型國產超聲治療儀,超聲療法普及到全國各大型醫院。
40多年來,全國各大醫院已積累了相當數量的資料和比較豐富的臨床經驗。特別是20世紀80年代初出現的超聲體外機械波碎石術和超聲外科,是結石症治療史上的重大突破。如今已在國際范圍內推廣應用。高強度聚焦超聲無創外科,已使超聲治療在當代醫療技術中占據重要位置。而在21世紀(HIFU)超聲聚焦外科已被譽為是21世紀治療腫瘤的最新技術。
超聲波治病機理:

1.機械效應:超聲在介質中前進時所產生的效應。(超聲在介質中傳播是由反射而產生的機械效應)它可引起機體若干反應。超聲振動可引起組織細胞內物質運動,由於超聲的細微按摩,使細胞漿流動、細胞震盪、旋轉、摩擦、從而產生細胞按摩的作用,也稱為「內按摩」這是超聲波治療所獨有的特性,可以改變細胞膜的通透性,刺激細胞半透膜的彌散過程,促進新陳代謝、加速血液和淋巴循環、改善細胞缺血缺氧狀態,改善組織營養、改變蛋白合成率、提高再生機能等。使細胞內部結構發生變化,導致細胞的功能變化,使堅硬的結締組織延伸,松軟。
超聲波的機械作用可軟化組織,增強滲透,提高代謝,促進血液循環,刺激神經系統和細胞功能,因此具有超聲波獨特的治療意義。
2.溫熱效應:人體組織對超聲能量有比較大的吸收本領,因此當超聲波在人體組織中傳播過程中,其能量不斷地被組織吸收而變成熱量,其結果是組織的自身溫度升高。
產熱過程既是機械能在介質中轉變成熱能的能量轉換過程。即內生熱。超聲溫熱效應可增加血液循環,加速代謝,改善局部組織營養,增強酶活力。一般情況下,超聲波的熱作用以骨和結締組織為顯著,脂肪與血液為最少。
3.理化效應:超聲的機械效應和溫熱效應均可促發若干物理化學變化。實踐證明一些理化效應往往是上述效應的繼發效應。TS-C型治療機通過理化效應繼發出下列五大作用:
A.彌散作用:超聲波可以提高生物膜的通透性,超聲波作用後,細胞膜對鉀,鈣離子的通透性發生較強的改變。從而增強生物膜彌散過程,促進物質交換,加速代謝,改善組織營養。
B.觸變作用:超聲作用下,可使凝膠轉化為溶膠狀態。對肌肉,肌腱的軟化作用,以及對一些與組織缺水有關的病理改變。如類風濕性關節炎病變和關節、肌腱、韌帶的退行性病變的治療。
C.空化作用:空化形成,或保持穩定的單向振動,或繼發膨脹以致崩潰,細胞功能改變,細胞內鈣水平增高。成纖維細胞受激活,蛋白合成增加,血管通透性增加,血管形成加速,膠原張力增加。
D.聚合作用與解聚作用:水分子聚合是將多個相同或相似的分子合成一個較大的分子過程。大分子解聚,是將大分子的化學物變成小分子的過程。可使關節內增加水解酶和原酶活性增加。
E.消炎,修復細胞和分子:超聲作用下,可使組織PH值向鹼性方面發展。緩解炎症所伴有的局部酸中毒。超聲可影響血流量,產生致炎症作用,抑制並起到抗炎作用。使白細胞移動,促進血管生成。膠原合成及成熟。促進或抑制損傷的修復和癒合過程。從而達到對受損細胞組織進行清理、激活、修復的過程。

次聲波:
由於次聲的頻率很低,所以大氣對次聲波的吸收系數很小,因而其穿透力極強,可傳播至極遠處而能量衰減很小。10Hz以下的次聲波可以傳播至數千千米的距離。1983年夏,位於印度尼西亞蘇門答臘島和爪哇島之間的喀拉喀托火山爆發,火山爆發時產生的強次聲波繞地球轉了3圈,歷時108小時後才慢慢消逝。全世界的微氣壓計都記錄到了它的振動餘波。1986年1月29日,美國太空梭"挑戰者"號升空爆炸,爆炸產生的次聲波歷時12小時53分鍾,其爆炸威力之強,連遠在1萬多千米處的我國北京香山中科院聲學研究所監測站的監測儀都"聽"到了。通常的隔音吸音方法對次聲波的特強穿透力作用極微,7000 Hz的聲波用一張紙即可隔擋,而7Hz的次聲波用一堵厚牆也擋不住,次聲波可以穿透十幾米厚的鋼筋混凝土

H. 什麼是超聲波雷達

超聲波雷達也稱超聲波感測器,它是利用超聲波特性研製而成,是在超聲波頻率范圍內將交變的電信號轉換成聲信號或將外界聲場中的聲信號轉換為電信號的能量轉換器件。

閱讀全文

與德國西克超聲波流量表怎麼樣相關的資料

熱點內容
500瓦用電設備有哪些 瀏覽:213
自動上下料裝置的研究報告 瀏覽:681
實驗室收集氣體的裝置圖 瀏覽:300
踏板摩托車儀表殼變黃怎麼辦 瀏覽:281
調教用標准儀表為什麼用02級 瀏覽:440
全自動煤的吸附常數測試裝置 瀏覽:660
ipe的排氣閥門工作原理 瀏覽:864
機械盤mac什麼格式 瀏覽:918
火力發電施工管道篇閥門驗收 瀏覽:85
滾琴機械表不帶了怎麼辦 瀏覽:454
機械手錶怎麼秒針計時 瀏覽:146
雲米冰箱製冷效果怎麼樣 瀏覽:11
什麼設備可以檢測光貓發光 瀏覽:583
立地空調怎麼調製冷 瀏覽:114
石獅市五金機電市場在哪裡 瀏覽:631
華帝熱水器2個閥門怎麼開圖 瀏覽:765
機械加工一般用什麼軟體畫圖 瀏覽:182
做美容器材生意怎麼樣 瀏覽:296
君誠機械技術有限公司怎麼樣 瀏覽:260
機械的在職研究生考哪些 瀏覽:311