❶ 超聲波探傷儀原理技術的其他
4.超聲波探傷與X射線探傷相比較有何優的缺點?
答:超聲波探傷比X射線探傷具有較高的探傷靈敏度、周期短、成本低、靈活方便、效率高,對人體無害等優點;缺點是對工作表面要求平滑、要求富有經驗的檢驗人員才能辨別缺陷種類、對缺陷沒有直觀性;超聲波探 傷適合於厚度較大的零件檢驗。
5、超聲波探傷的主要特性有哪些?
答:(1)超聲波在介質中傳播時,在不同質界面上具有反射的特性,如遇到缺陷,缺陷的尺寸等於或大於超聲波波長時,則超聲波在缺陷上反射回來,探傷儀可將反射波顯示出來;如缺陷的尺寸甚至小於波長時,聲波將繞過缺陷而不能反射;
(2)波聲的方向性好,頻率越高,方向性越好,以很窄的波束向介質中輻射,易於確定缺陷的位置。
(3)超聲波的傳播能量大,如頻率為1MHZ(100赫茲)的超生波所傳播的能量,相當於振幅相同而頻率為1000HZ(赫茲)的聲波的100萬倍。
6、超生波探傷板厚14毫米時,距離波幅曲線上三條主要曲線的關系怎樣?
答:測長線 Ф1 х 6 -12dB
定量線 Ф1 х 6 -6dB
判度線 Ф1 х 6 -2dB
7、用超生波探傷時,底波消失可能是什麼原因造成的?
答:(1)近表表大缺陷;(2)吸收性缺陷;(3)傾斜大缺陷;(4)氧化皮與鋼板結合不好。
8、簡述超生波探傷中,超生波在介質中傳播時引起衰減的原因是什麼?
答:(1)超聲波的擴散傳播距離增加,波束截面愈來愈大,單位面積上的能量減少。
(2)材質衰減一是介質粘滯性引起的吸收;二是介質界面雜亂反射引起的散射。
9、CSK-ⅡA試塊的主要作用是什麼?
答:(1)校驗靈敏度;(2)校準掃描線性。
10、用超聲波對餅形大鍛件探傷,如果用底波調節探傷起始靈敏度對工作底面有何要求?
答:(1)底面必須平行於探傷面;
(2)底面必須平整並且有一定的光潔度。
11.超聲波探傷選擇探頭K值有哪三條原則?
答:(1)聲束掃查到整個焊縫截面;
(2)聲束盡量垂直於主要缺陷;
(3)有足夠的靈敏度。
12、超聲波探傷儀主要有哪幾部分組成?
答:主要有電路同步電路、發電路、接收電路、水平掃描電路、顯示器和電源等部份組成。
13、發射電路的主要作用是什麼?
答:由同步電路輸入的同步脈沖信號,觸發發射電路工作,產生高頻電脈沖信號激勵晶片,產生高頻振動,並在介質內產生超聲波。
14、超聲波探傷中,晶片表面和被探工件表面之間使用耦合劑的原因是什麼?
答:晶片表面和被檢工件表面之間的空氣間隙,會使超聲波完全反射,造成探傷結果不準確和無法探傷。
15、JB1150-73標准中規定的判別缺陷的三種情況是什麼?
答:(1)無底波只有缺陷的多次反射波。
(2)無底波只有多個紊亂的缺陷波。
(3)缺陷波和底波同時存在。
16、JB1150-73標准中規定的距離――波幅曲線的用途是什麼?
答:距離――波幅曲線主要用於判定缺陷大小,給驗收標准提供依據它是由判廢線、定量線、測長線三條曲線組成;
判廢線――判定缺陷的最大允許當量;
定量線――判定缺陷的大小、長度的控制線;
測長線――探傷起始靈敏度控制線。
17、什麼是超聲場?
答:充滿超聲場能量的空間叫超聲場。
18、反映超聲場特徵的主要參數是什麼?
答:反映超聲場特徵的重要物理量有聲強、聲壓聲阻抗、聲束擴散角、近場和遠場區。
19、探傷儀最重要的性能指標是什麼?
答:分辨力、動態范圍、水平線性、垂直線性、靈敏度、信噪比。
20、超聲波探傷儀近顯示方式可分幾種?
答:(1)A型顯示示波屏橫坐標代表超聲波傳遞播時間(或距離),縱坐標代表反射回波的高度;(2)B型顯示示波屏橫坐標代表超聲波傳遞播時間(或距離),這類顯示得到的是探頭掃查深度方向的斷面圖;(3)C型顯示儀器示波屏代表被檢工件的投影面,這種顯示能繪出缺陷的水平投影位置,但不能給出缺陷的埋藏深度。
21、超聲波探頭的主要作用是什麼?
答:1、探頭是一個電聲換能器,並能將返回來的聲波轉換成電脈沖;2、控制超聲波的傳播方向和能量集中的程度,當改變探 頭入射 角或改變超聲波的擴散角時,可使聲波的主要能量按不同的角度射入介質內部或改變聲波的指向性,提高解析度;3、實現波型轉換;4、控制工作頻率;適用於不同的工作條件。
22、為什麼要加強超波探傷合錄和報告工作?
答:任何工件經過超聲波探傷後,都必須出據檢驗報告以作為該工作質量好壞的憑證,一份正確的探傷報告,除建立可靠的探測方法和結果外,很大程度上取決於原始記錄和最後出據的探傷報告是非常重要的,如果我們檢查了工件不作記錄也不出報告,那麼探傷檢查就毫無意義。
23、無損檢測有哪些應用
應用時機:設計階段;製造過程;成品檢驗;在役檢查。
應用對象:各類材料(金屬、非金屬等);各種工件(焊接件、鍛件、鑄件等);各種工程(道路建設、水壩建設、橋梁建設、機場建設等)。
24、超聲波焊縫探傷時為缺陷定位儀器時間掃描線的調整有哪幾種方法?
答:有水平定位儀、垂直定位、聲程定位三種方法
25、在超聲波探傷中把焊縫中的缺陷分幾類?怎樣進行分類?
答:在焊縫超聲波探傷中一般把焊縫中的缺陷 分成三類:點狀缺陷、線狀缺陷、面狀缺陷。
在分類中把長度小於10mm的缺陷叫做點狀缺陷;一般不測長,小於10mm的缺陷按5mm計。把長度大於10mm的缺陷叫線狀缺陷。把長度大於10mm高度大於3mm的缺陷叫面狀缺陷。
26、超聲波試塊的作用是什麼?
答:超聲波試塊的作用是校驗儀器和探頭的性能,確定探傷起始靈敏度,校準掃描線性。
27、什麼是斜探頭折射角β的正確值?
答:斜探頭折射角的正確值稱為K值,它等於斜探頭λ射點至反射點的水平距離和相應深度的比值。
28、當局部無損探傷檢查的焊縫中發現有不允許的缺陷時如何辦?
答:應在缺陷的延長方向或可疑部位作補充射線探傷。補充檢查後對焊縫質量仍然有懷疑對該焊縫應全部探傷。
29、超聲波探傷儀中同步信號發生器的主要作用是什麼?它主要控制哪二部分電路工作?
答:同步電路產生同步脈沖信號,用以觸發儀器各部分電路同時協調工作,它主要控制同步發射和同步掃描二部分電路。
30、無損檢測的目的?
答:1、改進製造工藝;2、降低製造成本;3、提高產品的可能性;4、保證設備的安全運行。
31.超探儀的作用及主要應用行業
超探儀是一種攜帶型工業無損探傷儀器,它能夠快速便捷、無損傷、精確地進行工件內部多種缺陷(焊縫、裂紋、夾雜、折疊、氣孔、砂眼等)的檢測、定位、評估和診斷。既可以用於實驗室,也可以用於工程現場。本儀器能夠廣泛地應用在製造業、鋼鐵冶金業、金屬加工業、化工業等需要缺陷檢測和質量控制的領域,也廣泛應用於航空航天、鐵路交通、鍋爐壓力容器等領域的在役安全檢查與壽命評估。它是無損檢測行業的必備儀器。 編號 應用行業 1 電力 2 鍋爐與壓力容器 3 機械 4 鋼鐵工業 5 鋼結構 6 石油 7 化工 8 鐵路 9 航天航空 10 船舶 11 管道 12 高校 13 永磁 14 科研院所 15 軍工 16 陶瓷 32.有關超聲波探傷的國家標准和行業標准 超聲波探傷國家標准和行業標准有:
1、QB/T 無損檢測術語 超聲檢測
2、JB/T 10061-1999 A型脈沖反射式超聲探傷儀通用技術條件
3、JJG 746-91 超聲探傷儀 中華人民共和國國家計量檢定規程 33.斜探頭K值與角度的對應關系 NO. K值 對應角度 1 K1 對應45度 2 K1.5 對應56.3度 3 K2 對應63.4度 4 K2.5 對應68.2度 5 K3 對應71.6度 34. 焊縫探傷超聲波探頭的選擇方案參考 編號 被測工件厚度 選擇探頭和斜率 選擇探頭和斜率 1 4—5mm 6×6 K3 不銹鋼:1.25MHz
鑄鐵:0.5—2.5 MHz
普通鋼:5MHz 2 6—8mm 8×8 K3 3 9—10mm 9×9 K3 4 11—12mm 9×9 K2.5 5 13—16 mm 9×9 K2 6 17—25 mm 13×13 K2 7 26—30 mm 13×13 K2.5 8 31—46 mm 13×13 K1.5 9 47—120 mm 13×13( K2—K1) 10 121—400 mm 18×18 ( K2—K1)
20×20 ( K2—K1) 注:以上方案僅作參考,各企業可視具體情況稍作改動
35.探頭型號表
註:下表所列探頭型號僅供探傷時參考 產品名稱 頻率(MHZ) 晶片面積(mm2) 說明 直探頭(硬保護膜) 0.5~10 Φ8 Φ10 Φ14 Φ20 Φ24Φ30 直探頭(軟保護膜) 0.5~5 Φ10 Φ14 Φ20 Φ24 雙晶片直探頭 2.5~5 10×12×2Φ14×2Φ20×2 F5 F10 F15 F20 F30 斜探頭 1~5 9×9 8×8 10×12 Φ14
12×15 14×16 13×13Φ20 30o40o50oK1 K1.5 K2 K2.5 K3 斜探頭 1~5 18×18 雙晶片斜探頭 2.5 5 8×8×2 10×12×2 K1 K2 K3
F10 F20 F30 表面波探頭 2.5 5 9×9 10×12 13×13 HB-50 回波探頭 小角管探頭 2.5 5 Φ14 Φ20 小角管探頭 5 6×6 5×7 K1 K2 K2.5 K3 小角管探頭 5 雙晶曲面片 板波探頭 1~5 20×20? 30×30 入射角由用戶定 爬波探頭 1~5 薄波探頭 5 可檢測5MM以下薄板 可變角探頭 2.5 5 10×10 角度可變范圍0o~90o 液浸式探頭 1~5 Φ10 Φ12 Φ14 Φ20 充水探頭 1~5 Φ14 Φ20 雙晶充水探頭 1~5 Φ14 Φ20 交距由用戶定 液浸聚焦探頭 1~5 Φ14 Φ20 點聚焦線聚焦 接觸式聚焦直探頭 2.5? 5 Φ14 Φ20 焦距10~60 接觸式聚焦斜探頭 2.5? 5 Φ14 Φ20 焦距10~60 常規測厚探頭 1~5 小徑管測厚探頭 1~5 Φ8 中溫測厚探頭 1~5 上限300℃ 高溫測厚探頭 1~5 上限500℃ 深水探頭 1~5 用於水下超聲探傷 常用試驗塊
❷ 醫學超聲成像原理
我總結一下醫學超聲成像的原理
超聲波成像需要三個步驟:發射聲波,接受反射聲波,以及信號分析處理得到圖像。
超聲波探頭是通過壓電陶瓷換能器發射超聲波,不同的探頭能夠發射的聲波頻率不同。醫學超聲波頻率一般是2-13MHz,聲波頻率越高,衍射越弱,成像分別率越高;但與此同時,頻率越高,聲波衰減也越快,穿透深度就小。因此,我們在探測心臟的時候,只能用頻率較低的聲波,否則探測的深度不夠,雖然成像效果差一些;而在探測頸動脈、股動脈等表皮下方的血管時,就用頻率高的聲波,成像好清晰許多。實驗中,我們採用的心臟探頭為2-4MHz,血管探頭為10MHz。
接收反射波的依舊是同一個超聲波探頭,壓電陶瓷換能器將聲波信號轉換成電信號,之後電腦上的系統進行信號處理成像。
B型超聲波顯示的是探頭面向的組織切面的二維灰度圖。我們知道確定二維灰度圖上的每個點需要3個信息,橫坐標、縱坐標和灰度。這些是怎麼得到的呢?由於超聲波在人體內接觸到組織會反射,不同的組織聲阻抗不同,根據接收到的回波反射率計算得到聲阻抗,對應於圖上的灰度(如血管壁的組織聲阻抗差不多,在圖像上的灰度就差不多,就能看出來是血管的形狀)。假設探頭是一維的,那麼探頭上每一個探針的位置就對應一個橫坐標。縱坐標是由發射和接收聲波的時間差決定的,假設聲波在人體中傳播速度相同,那麼時間越長表示反射組織的位置越深。最後由得到的灰度圖,可以看到組織輪廓,並可以進行測量,如血管直徑,面積等等。
當然,具體的成像過程遠遠比這個復雜,因為B超是實時的,如何區分發射波、反射波、如何去除噪音,放大信號,信號處理非常復雜,我也不清楚。但以上簡單的描述,已經足夠我們大致了解成像的過程。
多普勒效應我們中學物理都學過,無論是發射者還是接收者相對聲波傳播介質運動,都會引起觀察到的聲波頻率的變化。
利用多普勒效應測量血流速度如下圖,探頭發射聲波的方向和血流方向的夾角為 \theta,發射聲波頻率為 f_0,反射聲波頻率為 f',多普勒頻率也就是頻移為f_D,聲波在人體組織中傳播速度為c,血流速度為v
則由多普勒頻率可以計算得到血流速度,公式如下
它的推導過程主要就是套兩次多普勒效應公式,發射時認為接收者(血液)相對聲波介質(人體組織)運動,而回收時認為發射者(血液反射聲波)相對介質運動。然後相加項近似兩個頻率不變得到分母的2f_0。
之前做彩超檢查子宮,我就問給我檢查的護士姐姐啥是彩色超聲波,因為我發現無論是檢查結果還是他們的顯示屏都是黑乎乎的,完全不知道彩色在哪裡。
彩超相比於B超,通過多普勒效應測量血流的速度,並在圖像中通過著色來表出來。所以這個彩色並不是直接反應人體組織顏色的,頗令人失望。一般來講,圖像中紅色表示血流方向是迎面而來,而藍色表示血流方向是離你而去。同時,顏色越深表示血流速度越快。
脈沖多普勒的原理不太懂,網上查了一下彩色多普勒和脈沖多普勒的區別,大概是方法不太一樣,也有各自的優缺點。實驗時,我們通過脈沖多普勒得到血流速度的頻譜,也就是血路速度隨時間的變化圖(波形圖),不是人體組織的成像圖。通過測量兩個血流速度脈沖之間的水平距離(時間差),就可以計算得到心率,如果在彩色多普勒圖像(B型超聲圖像也行)測量血管的直徑,進而計算出血管的面積,再乘以血流速度的波形圖一個周期內曲線下方的面積(積分),就可以得到血流量(一分鍾內流過的血流體積)
下圖就是我的頸動脈彩色多普勒成像(上部分),和脈沖多普勒成像(下部分),並且測量了血流速度的峰值、心率(2倍心率)、血管直徑和血流量(VolFlow)等信息
總結起來,醫學超聲儀器的物理原理:用壓電換能器發射和接收超聲波,通過反射率、接收時間、探針位置得到組織輪廓成像,通過多普勒效應測量血流速度。B超成像是二維的灰度圖,反應組織輪廓,彩超是二維灰度圖上加了血流速度的信息,脈沖多普勒得到的是血流速度隨時間的變化波形。
想起來一個有趣的地方,用脈沖多普勒的時候,儀器會發出跳動的聲音,無論是測量血管還是心臟。我不知道這個聲音,是我心跳或者血流脈沖聲音的放大,還是儀器自帶的聲音,配合我心跳的跳動而播放。
一些自問自答 :
1.血流速度怎麼測量:多普勒效應
2.血流量怎麼得到:血管面積乘以血流速度的積分
3.心率怎麼得到:脈沖多普勒中,兩次血流量最大值的之間間隔為周期
4.心臟容積怎麼得到:描跡自動求面積
5.血管面積怎麼得到:描跡或者測量血管半徑
6.心功能怎麼得到:心收縮和心舒張的左心室心臟容量的比值
7.彩色多普勒和脈沖多普勒的區別:一個是二維成像圖、一個是頻譜
參考資料:
1. 維基網路:醫學超聲檢查
相關文章
我寫了幾篇博客來介紹和記錄我們的四級物理實驗: 用醫學超聲儀器研究運動對人體血流分布的影響
① 為什麼在校醫院做大物四級實驗
② 醫學超聲成像原理
③ 運動對血流分布的影響 實驗設計
④ 運動對人體血流分布的影響 實驗結果
❸ 超聲波探頭的分類
1.直探頭: 單晶縱波直探頭 雙晶縱波直探頭
2.斜探頭: 單晶橫波斜探頭a1<aL<aⅡ ,雙晶橫波斜探頭
單晶縱波斜探頭 aL<a1為小角度縱波斜探頭
aL在a1附近為爬波探頭爬波探頭;沿工件表面傳輸的縱波,速度快、能量大、波長長、探測深度較表面波深,對工件表面光潔度要求較表面波松。(頻率2.5MHZ波長約2.4mm,講義附件11、12、17題部分答案)。
3.帶曲率探頭: 周向曲率 徑向曲率。
周向曲率探頭適合---無縫鋼管、直縫焊管、筒型鍛件、軸類工件等軸向缺陷的檢測。工件直徑小於2000mm時為保證耦合良好探頭都需磨周向曲率。
徑向曲率探頭適合---無縫鋼管、鋼管對接焊縫、筒型鍛件、軸類工件等徑向缺陷的檢測。工件直徑小於600mm時為保證耦合良好探頭都需磨徑向曲率。
4.聚焦探頭: 點聚焦 線聚焦。
5.表面波探頭:(當縱波入射角大於或等於第二臨界角,既橫波折射角度等於90形成表面波).
沿工件表面傳輸的橫波,速度慢、能量低、波長短探測深度較爬波淺,對工件表面光潔度要求較爬波嚴格。
第一章「波的類型」中學到:表面波探傷只能發現距工件表面兩倍波長深度內的缺陷。(頻率2.5MHZ波長約1.3mm,講義附件11、12題部分答案)。
❹ 超聲波探頭有哪些性能指標各是什麼含義
超聲探頭的核心是其塑料外套或者金屬外套中的一塊壓電晶片。構成晶片的材料可以有許多種。晶片的大小,如直徑和厚度也各不相同,因此每個探頭的性能是不同的,我們使用前必須預先了解它的性能。超聲波感測器的主要性能指標包括: (1)工作頻率。工作頻率就是壓電晶片的共振頻率。當加到它兩端的交流電壓的頻率和晶片的共振頻率相等時,輸出的能量最大,靈敏度也最高。 (2)工作溫度。由於壓電材料的居里點一般比較高,特別時診斷用超聲波探頭使用功率較小,所以工作溫度比較低,可以長時間地工作而不產生失效。醫療用的超聲探頭的溫度比較高,需要單獨的製冷設備。 (3)靈敏度。主要取決於製造晶片本身。機電耦合系數大,靈敏度高;反之,靈敏度低。
❺ 請問您怎樣理解超聲波感測器!
超聲波感測器是利用超聲波的特性研製而成的感測器。超聲波是一種振動頻率高於聲波的機械波,由換能晶片在電壓的激勵下發生振動產生的,它具有頻率高、波長短、繞射現象小,特別是方向性好、能夠成為射線而定向傳播等特點。超聲波對液體、固體的穿透本領很大,尤其是在陽光不透明的固體中,它可穿透幾十米的深度。超聲波碰到雜質或分界面會產生顯著反射形成反射成回波,碰到活動物體能產生多普勒效應。因此超聲波檢測廣泛應用在工業、國防、生物醫學等方面。
以超聲波作為檢測手段,必須產生超聲波和接收超聲波。完成這種功能的裝置就是超聲波感測器,習慣上稱為超聲換能器,或者超聲探頭。
超聲波探頭主要由壓電晶片組成,既可以發射超聲波,也可以接收超聲波。小功率超聲探頭多作探測作用。它有許多不同的結構,可分直探頭(縱波)、斜探頭(橫波)、表面波探頭(表面波)、蘭姆波探頭(蘭姆波)、雙探頭(一個探頭反射、一個探頭接收)等。
超聲探頭的核心是其塑料外套或者金屬外套中的一塊壓電晶片。構成晶片的材料可以有許多種。晶片的大小,如直徑和厚度也各不相同,因此每個探頭的性能是不同的,我們使用前必須預先了解它的性能。超聲波感測器的主要性能指標包括:
(1)工作頻率。工作頻率就是壓電晶片的共振頻率。當加到它兩端的交流電壓的頻率和晶片的共振頻率相等時,輸出的能量最大,靈敏度也最高。
(2)工作溫度。由於壓電材料的居里點一般比較高,特別時診斷用超聲波探頭使用功率較小,所以工作溫度比較低,可以長時間地工作而不失效。醫療用的超聲探頭的溫度比較高,需要單獨的製冷設備。
(3)靈敏度。主要取決於製造晶片本身。機電耦合系數大,靈敏度高;反之,靈敏度低。
超聲波感測技術應用在生產實踐的不同方面,而醫學應用是其最主要的應用之一,下面以醫學為例子說明超聲波感測技術的應用。超聲波在醫學上的應用主要是診斷疾病,它已經成為了臨床醫學中不可缺少的診斷方法。超聲波診斷的優點是:對受檢者無痛苦、無損害、方法簡便、顯像清晰、診斷的准確率高等。因而推廣容易,受到醫務工作者和患者的歡迎。超聲波診斷可以基於不同的醫學原理,我們來看看其中有代表性的一種所謂的A型方法。這個方法是利用超聲波的反射。當超聲波在人體組織中傳播遇到兩層聲阻抗不同的介質界面是,在該界面就產生反射回聲。每遇到一個反射面時,回聲在示波器的屏幕上顯示出來,而兩個界面的阻抗差值也決定了回聲的振幅的高低。
在工業方面,超聲波的典型應用是對金屬的無損探傷和超聲波測厚兩種。過去,許多技術因為無法探測到物體組織內部而受到阻礙,超聲波感測技術的出現改變了這種狀況。當然更多的超聲波感測器是固定地安裝在不同的裝置上,「悄無聲息」地探測人們所需要的信號。在未來的應用中,超聲波將與信息技術、新材料技術結合起來,將出現更多的智能化、高靈敏度的超聲波感測器。
❻ 超聲波探頭 工作原理
超聲波探頭主要材料有壓電晶體(電致伸縮)及鎳鐵鋁合金(磁致伸縮)兩類。電致伸縮的材料有鋯鈦酸鉛(PZT)等。壓電晶體組成的超聲波感測器是一種可逆感測器,它可以將電能轉變成機械振盪而產生超聲波,同時它接收到超聲波時,也能轉變成電能,所以它可以分成發送器或接收器。有的超聲波感測器既作發送,也能作接收。這里僅介紹小型超聲波感測器,發送與接收略有差別,它適用於在空氣中傳播,工作頻率一般為23-25KHZ及40-45KHZ。這類感測器適用於測距、遙控、防盜等用途。該種有T/R-40-60,T/R-40-12等(其中T表示發送,R表示接收,40表示頻率為40KHZ,16及12表示其外徑尺寸,以毫米計)。另有一種密封式超聲波感測器(MA40EI型)。它的特點是具有防水作用(但不能放入水中),可以作料位及接近開關用,它的性能較好。超聲波應用有三種基本類型,透射型用於遙控器,防盜報警器、自動門、接近開關等;分離式反射型用於測距、液位或料位;反射型用於材料探傷、測厚等。