Ⅰ 超聲波探傷儀怎麼使用如何操作
超聲波探傷儀在焊縫探傷中怎麼用?

1、探測面的修整:應清除焊接工作表面飛濺物、氧化皮、凹坑及銹蝕等,光潔度一般低於▽4。焊縫兩側探傷面的修整寬度一般為大於等於2KT+50mm,(K:探頭K值,T:工件厚度)。一般的根據焊件母材選擇K值為2.5探頭。例如:待測工件母材厚度為10mm,那麼就應在焊縫兩側各修磨100mm。
2、耦合劑的選擇應考慮到粘度、流動性、附著力、對工件表面無腐蝕、易清洗,而且經濟,綜合以上因素選擇漿糊作為耦合劑。
3、由於母材厚度較薄因此探測方向採用單面雙側進行。
4、由於板厚小於20mm所以採用水平定位法來調節儀器的掃描速度。
5、在探傷操作過程中採用粗探傷和精探傷。為了大概了解缺陷的有無和分布狀態、定量、定位就是精探傷。使用鋸齒形掃查、左右掃查、前後掃查、轉角掃查、環繞掃查等幾種掃查方式以便於發現各種不同的缺陷並且判斷缺陷性質。
6、對探測結果進行記錄,如發現內部缺陷對其進行評定分析。焊接對頭內部缺陷分級應符合現行國家標准GB11345-89《鋼焊縫手工超聲波探傷方法和探傷結果分級》的規定,來評判該焊否合格。如果發現有超標缺陷,向車間下達整改通知書,令其整改後進行復驗直至合格。
Ⅱ 超聲探傷的超聲探傷方法詳解
a.始脈波b.底脈波c.缺陷脈波
圖 超聲探傷
超聲波在傳播過程中,當遇到兩種不同介質的界面或不同密度的材料時,便會在交界面上發生折射或反射。反射式探傷法是利用超聲波在工件的傳播中,能分別在工件的內部缺陷及其背面發生反射,而反射回來的超聲波通過超聲波接收器後,又將聲波轉為電能,在熒光屏上顯示三者各自的波形圖,始脈波「a」位置即是工件的表面,是發射超聲波的起點,進入工件內部的超聲波與工件背面的波形圖即底脈波「b」之間。若無其他波形出現,則說明在該工件中未發現缺陷。反之,在始脈波與工件底脈波之間,若有其他波形出現,則說明工件內部缺陷,即缺陷脈波「c」。此時,可根據波峰的位置、大小與形狀,估算出工件缺陷的位置、大小與形狀。 (1)耦合劑的選擇。
探傷時,為了克服探頭與工件表面之間的空氣膜,使超聲波順利傳入工件,需要在工件表面塗耦合劑。對耦合
劑的要求,應符合下列幾點。
①透聲性良好,耦合介質的聲阻抗應高一些。
②對工件應無腐蝕作用,對後道工序無影響。
③流動性好,來源方便,價格低廉。
④對操作人員的健康無損害。
目前常用的耦合劑有機油和水等。
(2)探傷操作。
先將超聲探傷儀放在鋼板上,用探頭沿垂直於鋼板的軋制方向,作間距為100mm的平行線移動,並用水或機油作為耦合劑探傷。當監視到有缺陷波形出現時,還應在其兩側進行探查,以確定缺陷面積,並用顯示筆記錄在鋼板上。
(3)缺陷的判定。
①熒光屏上無底脈波而只有缺陷脈波的多次反射。
②熒光屏上缺陷脈波和底脈波同時存在。
③熒光屏上無底脈波而只有缺陷脈波的多個紊亂的缺陷脈波。 用於製造壓力容器殼體的碳素鋼和低合金鋼鋼板,凡符合下列條件之一的,必須進行超聲檢測。
①盛裝介質毒性程度為極度、高度危害的壓力容器。
②盛裝介質為液化石油氣且硫化氫含量大於100mg/L的壓力容器。
③最高工作壓力大於等於10MPa的壓力容器。
④GB150第2章和附錄C、GB151《管殼式換熱器》、GB12337《鋼制球形儲罐》及其他國家標准和行業標准中規定的必須進行超聲檢測的。
⑤移動式壓力容器。
鋼板的超聲檢測應按JB4730《壓力容器無損檢測》的規定進行。用於①、②、⑤所述容器的鋼板的合格等級應不低於Ⅱ級;用於③款所述容器的鋼板的合格等級應不低於Ⅲ級,用於④款所述容器的鋼板,合格等級應符合GB150、GB151或GB12337的規定。

Ⅲ 超聲探傷的應用
超聲波探傷在鋼閘門檢測上的應用
鋼閘門在水利工程中大量使用,主要以優質鋼板為基材,通過焊接手段製做而成,表面採用橡膠止水、防腐方式為表面進行噴沙除銹及熱噴鋅,廣泛應用於水電站、水庫、排灌、河道、環境保護、污水處理、水產養殖等水利工程。鋼閘門的焊接質量直接關繫到閘門下遊人民群眾生命、財產的安全,因此剛閘門的焊接質量和焊接檢測方法至關重要。超聲波探傷作為無損檢測檢測方法之一,是在不破壞加工表面的基礎上,應用超聲波儀器或設備來進行檢測,既可以檢查肉眼不能檢查的工件內部缺陷,也可以大大提高檢測的准確性和可靠性。超聲波是一種機械波,有很高的頻率,頻率比超過20 千赫茲,其能量遠遠大於振幅相同的可聞聲波的能量,具有很強的穿透能力。用於探傷的超聲波,頻率為0.4- 25 兆赫茲,其中用得最多的是1- 5 兆赫茲。由於能夠快速便捷、無損傷、精確地進行工件內部多種缺陷的檢測、定位,並且超聲波探傷具有探測距離大,探傷裝置體積小,重量輕,便於攜帶到現場探傷,檢測速度快,而且探傷中只消耗耦合劑和磨損探頭,總的檢測費用較低等特點,所以它的應用越來越廣泛。利用超聲波探傷,主要有穿透法探傷和反射法探傷兩種方式。穿透法探傷使用兩個探頭,一個用來發射超聲波,一個用來接收超聲波。檢測時,兩個探頭分置在工件兩側,根據超聲波穿透工件後能量的變化來判別工件內部質量。反射法探傷高頻發生器產生的高頻脈沖激勵信號作用在探頭上,所產生的波向工件內部傳播,如工件內部存在缺陷,波的一部分作為缺陷波被反射回來,發射波的其餘部分作為底波也將反射回來。根據發射波、缺陷波、底波相對於掃描基線的位置可確定缺陷位置;根據缺陷波的幅度可確定缺陷的大小;根據缺陷波的形狀可分析缺陷的性質;如工件內部無缺陷,則只有發射波和底波。探傷過程中,首先要了解圖紙對焊接質量的技術要求。鋼結構的驗收標準是依據GB50205- 95《鋼結構工程施工及驗收規范》來執行的。標准規定:對於圖紙要求焊縫焊接質量等級為一級時評定等級為Ⅱ級時規范規定要求做100%超聲波探傷;對於圖紙要求焊縫焊接質量等級為二級時評定等級為Ⅲ級時規范規定要求做20%超聲波探傷;對於圖紙要求焊縫焊接質量等級為三級時不做超聲波內部缺陷檢查。在此值得注意的是超聲波探傷用於全熔透焊縫,其探傷比例按每條焊縫長度的百分數計算,並且不小於200mm。對於局部探傷的焊縫如果發現有不允許的缺陷時,應在該缺陷兩端的延伸部位增加探傷長度,增加長度不應小於該焊縫長度的10%且不應小於200mm,當仍有不允許的缺陷時,應對該焊縫進行100%的探傷檢查。另外還應該知道待測工件母材厚度、接頭型式及坡口型式。一般地母材厚度在8- 16mm 之間,坡口型式有I型、單V型、X型等幾種形式。在弄清楚以上這此東西後才可以進行探傷前的准備工作。在每次探傷操作前都必須利用標准試塊(CSK- IA、CSK- ⅢA)校準儀器的綜合性能,校準面板曲線,以保證探傷結果的准確性。1)探測面的修整:應清除焊接工作表面飛濺物、氧化皮、凹坑及銹蝕等,光潔度一般低於▽4。焊縫兩側探傷面的修整寬度一般為大於等於2KT+50mm, (K:探頭K值,T:工件厚度)。一般的根據焊件母材選擇K值為2.5 探頭。例如:待測工件母材厚度為10mm,那麼就應在焊縫兩側各修磨100mm。2)耦合劑的選擇應考慮到粘度、流動性、附著力、對工件表面無腐蝕、易清洗,而且經濟,綜合以上因素選擇漿糊作為耦合劑。3)由於母材厚度較薄因此探測方向採用單面雙側進行4)由於板厚小於20mm所以採用水平定位法來調節儀器的掃描速度。5)在探傷操作過程中採用粗探傷和精探傷。為了大概了解缺陷的有無和分布狀態、定量、定位就是精探傷。使用鋸齒形掃查、左右掃查、前後掃查、轉角掃查、環繞掃查等幾種掃查方式以便於發現各種不同的缺陷並且判斷缺陷性質。6)對探測結果進行記錄,如發現內部缺陷對其進行評定分析。焊接對頭內部缺陷分級應符合現行國家標准GB11345- 89《鋼焊縫手工超聲波探傷方法和探傷結果分級》的規定,來評判該焊否合格。如果發現有超標缺陷,向車間下達整改通知書,令其整改後進行復驗直至合格。一般的焊縫中常見的缺陷有:氣孔、夾渣、未焊透、未熔合和裂紋等。到目前為止還沒有一個成熟的方法對缺陷的性質進行准確的評判,只是根據熒光屏上得到的缺陷波的形狀和反射波高度的變化結合缺陷的位置和焊接工藝對缺陷進行綜合估判。對於內部缺陷的性質的估判以及缺陷的產生的原因和防止措施大體有以下幾點:1) 氣孔。單個氣孔回波高度低,波形為單縫,較穩定。從各個方向探測,反射波大體相同,但稍一動探頭就消失,密集氣孔會出現一簇反射波,波高隨氣孔大小而不同,當探頭作定點轉動時,會出現此起彼落的現象。產生這類缺陷的原因主要是焊材未按規定溫度干,焊條葯皮變質脫落、焊芯銹蝕,焊絲清理不幹凈,手工焊時電流過大,電弧過長等。防止這類缺陷防止的措施有:不使用葯皮開裂、剝落、變質及焊芯銹蝕的焊條,生銹的焊絲必須除銹後才能使用。所用焊接材料應按規定溫度烘乾,坡口及其兩側清理干凈,並要選用合適的焊接電流、電弧電壓和焊接速度等。2) 夾渣。點狀夾渣回波信號與點狀氣孔相似,條狀夾。渣回波信號多呈鋸齒狀波幅不高,波形多呈樹枝狀,主峰邊上有小峰,探頭平移波幅有變動,從各個方向探測時反射波幅不相同。這類缺陷產生的原因有:焊接電流過小,速度過快,熔渣來不及浮起,被焊邊緣和各層焊縫清理不幹凈,其本金屬和焊接材料化學成分不當,含硫、磷較多等。防止措施有:正確選用焊接電流,焊接件的坡口角度不要太小,焊前必須把坡口清理干凈,多層焊時必須層層清除焊渣;並合理選擇運條角度焊接速度等。3) 未焊透。反射率高,波幅也較高,探頭平移時,波形較穩定,在焊縫兩側探傷時均能得到大致相同的反射波幅。其產生原因一般是:坡口純邊間隙太小,焊接電流太小或運條速度過快,坡口角度小,運條角度不對以及電弧偏吹等。防止措施有:合理選用坡口型式、裝配間隙和採用正確的焊接工藝等。4)未熔合。探頭平移時,波形較穩定,兩側探測時,反射波幅不同,有時只能從一側探到。其產生的原因:坡口不幹凈,焊速太快,電流過小或過大,焊條角度不對,電弧偏吹等。防止措施:正確選用坡口和電流,坡口清理干凈,正確操作防止焊偏等。5) 裂紋。回波高度較大,波幅寬,會出現多峰,探頭平移時反射波連續出現波幅有變動,探頭轉時,波峰有上下錯動現象。熱裂紋產生的原因是:焊接時熔池的冷卻速度很快,造成偏析;焊縫受熱不均勻產生拉應力。防止措施:限制母材和焊接材料中易偏析元素和有害雜質的含量,主要限制硫含量,提高錳含量;提高焊條或焊劑的鹼度,以降低雜質含量,改善偏析程度;改進焊接結構形式,採用合理的焊接順序,提高焊縫收縮時的自由度。

Ⅳ 利用超聲波探傷鋼結構,耦合劑應該用哪些合適呢 水洗潔精還是油我現在用的工業漿糊 有什麼好的嗎
1.水:鋼結構不能用水做耦合劑,因為表面狀況不允許
2.漿糊:便宜,而且容易清理,但是耦合效果沒有機油/透平油好
3.洗潔精成本太高,而且刷起來不方便
3.油:機油、透平油都可以,有點是耦合效果好,可靠性高。缺點是要是在刷油漆前作探傷清理會比較費事,如果不用刷油漆用油可靠性比漿糊好,而且成本比漿糊高。
Ⅳ 如何正確選購超聲波探傷儀
探基正空傷儀的選擇:
1、對於定位要求高的選擇水平線清衫性誤差小的儀器;
2、對於定量搏瞎要求高的選擇垂直線性誤差小、精度高的儀器;
3、對於大型工件探傷,選擇靈敏度餘量高、信噪比高、功率大的儀器;
4、為了有效發現近表面的缺陷和區分相鄰缺陷,選擇盲區小、分辨力好的儀器;(盲區一般在:5mm~10mm,可用二次回波避免盲區或使用雙晶探頭);
5、對於現場探傷,選擇重量輕、亮度好、抗干擾能力強的儀器(高亮屏優於彩屏)
探傷儀探頭的選擇:
1、縱波直探頭:主要用於探測與探測面平行的缺陷(板材、鑄件、鍛件);
2、橫波斜探頭:主要用於探測與探測面成一定角度的缺陷(例如焊縫)。
Ⅵ 實施超聲探傷時,應如何選擇超聲探頭
超聲波探傷中,超聲波的發射和接收都是通過探頭來實現的。探頭的種類很多,結構型式也不一樣。探傷前應根據被檢對象的形狀、衰減和技術要求來選擇探頭。探頭的選擇包括探頭型式、頻率、晶片尺寸和斜探頭K值的選擇等。
探頭型式的選擇
常用的探頭型式有縱波直探頭、橫波斜探頭表面波探頭、雙晶探頭、聚焦探頭等。一般根據工件的形狀和可能出現缺陷的部位、方向等條件來選擇探頭的型式,使聲束軸線盡量與缺陷垂直。
縱波直探頭只能發舉敬射和接收縱波,束軸線垂直於探測面,主要用於探測與探測面平行的缺陷,如鍛件、鋼板中的夾層、折疊等缺陷。
橫波斜探頭是通過波形轉換來實現橫波探傷的。主要用於探測與深測面垂直或成一定角的缺陷。如焊縫生中的未焊透、夾渣、未溶合等缺陷。
表面波探頭用於探測工件表面缺陷,雙拿凱晶探頭用於探測工件近表面缺陷。聚焦探頭用於水浸探測管材或板材。
探頭頻率的選擇
超聲波探傷頻率在O.5~10MHz之間,選擇范圍大。一般選擇頻率時應考慮以下因索。
(1)由於波的繞射,使超聲波探傷靈敏度約為,因此提高頻率,有利於發現正敏慎更小的缺陷。
(2)頻率高,脈沖寬度小,分辨力高,有利於區分相鄰缺陷。
(3)可知,頻率高,波長短,則半擴散角小,聲束指向性好,能量集中,有利於發現缺陷並對缺陷定位。
(4)可知,頻率高,波長短,近場區長度大,對探傷不利。
(5)可知,頻率增加,衰減急劇增加。
由以上分析可知,頻率的離低對探傷有較大的影響。頻率高,靈敏度和分辨力高,指向性好,對探傷有利。但頻率高,近場區長度大,衰減大,又對探傷不利。實際探傷中要全面分析考慮各方面的因索,合理選擇頻率。一般在保證探傷靈敏度的前提下盡可能選用較低的頻率。
對於晶粒較細的鍛件、軋製件和焊接件等,一般選用較高的頻率,長用2.5~5.0MHz。對晶粒較粗大的鑄件、奧氏體鋼等宜選用較低的頻率,常用O.5~2.5MHz。如果頻率過高,就會引起嚴重衰減,示波屏上出現林狀回波,信噪比下降,甚至無法探傷。
探頭晶片尺寸的選擇中科朴道超聲波探傷儀
探頭圓晶片尺寸一般為φ10~φ30mm,晶片大小對探傷也有一定的影響,選擇晶片尺寸時要考慮以下因素。
(l)可知,晶片尺寸增加,半擴散角減少,波束指向性變好,超聲波能量集中,對探傷有利。
(2)由N=等可知,晶片尺寸增加,近場區長度迅速增加,對探傷不利。
(3)晶片尺寸大,輻射的超聲波能量大,探頭未擴散區掃查范圍大,遠距離掃查范圍相對變小,發現遠距離缺陷能力增強。
以上分析說明晶片大小對聲柬指向性,近場區長度、近距離掃查范圍和遠距離缺陷檢出能力有較大的影響。實際探傷中,探傷面積范圍大的工件時,為了提高探傷效率宜選用大晶片探頭。探傷厚度大的工件時,為了有效地發現遠距離的缺陷宜選用大晶片探頭。探傷小型工件時,為了提高缺陷定位定量精度宜選用小晶片探頭。探傷表面不太平整,曲率較大的工件時,為了減少耦合損失宜選用小晶片探頭。
橫渡斜探頭K值的選擇
在橫波探傷中,探頭的K值對探傷靈敏度、聲束軸線的方向,一次波的聲程(入射點至底面反射點的距離)有較大的影響。由圖l.39可知,對於用有機玻璃斜探頭探傷鋼制工傳,βs=40°(K=O.84)左右時,聲壓往復透射率最高,即探傷靈敏度最高。由K=tgβs可知,K值大,βs大,一次波的聲程大。因此在實際探傷中,當工件厚度較小時,應選用較大的K值,以便增加一次波的聲程,避免近場區探傷。當工件厚度較大時,應選用較小的K值。
Ⅶ 怎樣選擇超聲波探頭和試塊,有什麼標准,依據是什麼
看一下網路的資料:
超聲波探頭
以構造分類
1.直探頭: 單晶縱波直探頭 雙晶縱波直探頭
2.斜探頭: 單晶橫波斜探頭a1<aL<aⅡ , 雙晶橫波斜探頭
單晶縱波斜探頭 aL<a1為小角度縱波斜探頭
aL在a1附近為爬波探頭 爬波探頭;沿工件表面傳輸的縱波,速度快、能量大、波長長探測深度較表面波深,對工件表面光潔度要求較表面波松。(頻率2.5MHZ波長約2.4mm,講義附件11、12、17題部分答案)。
3.帶曲率探頭: 周向曲率 徑向曲率。
周向曲率探頭適合---無縫鋼管、直縫焊管、筒型鍛件、軸類工件等軸向缺陷的檢測。工件直徑小於2000mm時為保證耦合良好探頭都需磨周向曲率。
徑向曲率探頭適合---無縫鋼管、鋼管對接焊縫、筒型鍛件、軸類工件等徑向缺陷的檢測。工件直徑小於600mm時為保證耦合良好探頭都需磨徑向曲率。
4.聚焦探頭: 點聚焦 線聚焦。
5.表面波探頭:(當縱波入射角大於或等於第二臨界角,既橫波折射角度等於90形成表面波).
沿工件表面傳輸的橫波,速度慢、能量低、波長短探測深度較爬波淺,對工件表面光潔度要求較爬波嚴格。
第一章「波的類型」中學到:表面波探傷只能發現距工件表面兩倍波長深度內的缺陷。(頻率2.5MHZ波長約1.3mm,講義附件11、12題部分答案)。
壓電材料的主要性能參數
1.壓電應變常數d33:
d33=Dt/U在壓電晶片上加U這么大的應力,壓電晶片在厚度上發生了Dt的變化量,d33越大,發射靈敏度越高(82頁最下一行錯)。
2.壓電電壓常數g33:
g33=UP/P在壓電晶片上加P這么大的應力.在壓電晶片上產生UP這么大的電壓,g33越大,接收靈敏度越高。
3.介電常數e:
e=Ct/A[C-電容、t-極板距離(晶片厚度)、A-極板面積(晶片面積)];
C小→e小→充、放電時間短.頻率高。
4.機電偶合系數K:
表示壓電材料機械能(聲能)與電能之間的轉換效率。
對於正壓電效應:K=轉換的電能/輸入的機械能。
對於逆壓電效應:K=轉換的機械能/輸入的電能.
晶片振動時,厚度和徑向兩個方向同時伸縮變形,厚度方向變形大,探測靈敏度高,徑向方向變形大,雜波多,分辨力降低,盲區增大,發射脈沖變寬.(講義附件16、19題部分答案)。
聲 速: 324.0 M/S 工件厚度: 16.00MM 探頭頻率: 2.500MC
探頭K值: 1.96 探頭前沿: 7.00MM 坡口類型: X
坡口角度: 60.00 對焊寬度: 2.00MM 補 償: -02 dB
判 廢: +05dB 定 量: -03dB 評 定: -09 dB
焊口編號: 0000 缺陷編號: 1. 檢測日期: 05.03.09
聲 速: 324.0 M/S 工件厚度: 16.00 MM 探頭頻率: 5.00 MC
探頭K值: 1.95 探頭前沿: 7.00 MM 坡口類型: X
坡口角度: 60.00 對焊寬度: 2.00 MM 補 償: -02 dB
判 廢: +05 dB 定 量: -03 dB 評 定: -09 dB
焊口編號: 0000 缺陷編號: 1. 檢測日期: 05.03.09
5.機械品質因子qm:
qm=E貯/E損,壓電晶片諧振時,貯存的機械能與在一個周期內(變形、恢復)損耗的能量之比稱……損耗主要是分子內摩擦引起的。
qm大,損耗小,振動時間長,脈沖寬度大,分辨力低。
qm小,損耗大,振動時間短,脈沖寬度小,分辨力高。
6.頻率常數Nt:
Nt=tf0,壓電晶片的厚度與固有頻率的乘積是一個常數,晶片材料一定,厚度越小,頻率越高. (講義附件16、19題部分答案)。
7.居里溫度Tc:
壓電材料的壓電效應,只能在一定的溫度范圍內產生,超過一定的溫度,壓電效應就會消失,使壓電效應消失的溫度稱居里溫度(主要是高溫影響)。
8.超聲波探頭的另一項重要指標:信噪比---有用信號與無用信號之比必須大於18 dB。(為什麼?)
探頭型號
(應注意的問題)
1.橫波探頭只報K值不報頻率和晶片尺寸。
2.雙晶探頭只報頻率和晶片尺寸不報F(菱形區對角線交點深度)值。
例:用雙晶直探頭檢12mm厚的板材,翼板厚度12mm的T型角焊縫,怎樣選F值?
講義附件(2題答案)。
應用舉例
1.斜探頭近場N=a´b´COSb/plCOSa。 λ =CS/¦.
直探頭近場N=D/4l。 λ=CL/¦.
2.橫波探傷時聲束應用范圍:1.64N-3N。
縱波探傷時聲束應用范圍:³3N。
雙晶直探頭探傷時,被檢工件厚度應在F菱形區內。
3.K值的確定應能保證一次聲程的終點越過焊縫中心線,與焊縫中心
線的交點到被檢工件內表面的距離應為被檢工件厚度的三分之一。
4.檢測16mm厚的工件用5P 9×9 K2、2.5P9X9K2、2.5P13X13K2那一種探頭合適(聚峰斜楔).以5P9X9K2探頭為例。
(1).判斷一次聲程的終點能否越過焊縫中心線?
(焊縫余高全寬+前沿)/工件厚度
(2).利用公式:
N?(工件內剩餘近場長度)=N(探頭形成的近場長度)—N?(探頭內部佔有的近場長度) =axbxcosβ/πxλxcosα–Ltgα/tgβ,計算被檢工件內部佔有的近場長度。講義附件(14題答案)。
A. 查教材54頁表:
材料 K值 1.0 1.5 2.0 2.5 3
有機玻璃 COSb/ COSa 0.88 0.78 0.68 0.6 0.52
聚碸 COSb/ COSa 0.83 0.704 0.6 0.51 0.44
有機玻璃 tga /tgb 0.75 0.66 0.58 0.5 0.44
聚碸 tga /tgb 0.62 0.52 0.44 0.38 0.33
COSb/COSa、tga/tgb與K值的關系
查表可知cosβ/cosα=0.6, tgα/tgβ=0.44, 計算可知α=41.35°.
B. λ=Cs/?=3.24/5=0.65mm
C. 參考圖計算可知:
tgα=L1/4.5, L1=tg41.35°X4.5=0.88X4.5=3.96mm.
cosα=2.5/L2, L2=2.5/cos41.5°=2.5/0.751=3.33mm,
L=L1+L2=7.3mm, Ltgα/tgβ=7.3×0.44=3.21mm,(N?)
由(1)可知,IS=35.8mm, 2S=71.6mm
N=axbxcosβ/pxλxcosa=9×9×0.6/3.14×0.65=23.81mm,
1.64N=39.1mm, 3N=71.43mm.
工件內部剩餘的近場(N?)=N-N?=20.6mm(此范圍以內均屬近場探傷).
(1.64N-N?)與IS比較, (3N-N?)與2S比較,
使用2.5P13X13K2探頭檢測16mm厚工件,1.64N與3N和5P9X9K2探頭基本相同,但使用中仍存在問題,2.5P9X9K2探頭存在什麼問題?
一.探傷過程中存在的典型問題:
不同探頭同一試塊的測量結果
反射體深度 1#探頭 2#探頭
橫波折射角 聲程 橫波折射角 聲程
mm ( ) mm ( ) mm
20 21.7 21.7 32.8 24.3
40 24.4 45.0 32.5 49.8
60 25.8 70 30.9 75.6
80 28.9 101.8 29.1 102.0
注:1.晶片尺寸13´13 2.晶片尺寸10´20.
試驗中發現:同一探頭(入射角不變)在不同深度反射體上測得的橫波折射角不同,進一步試驗還發現,折射角的變化趨勢與晶片的結構尺寸有關,對不同結構尺寸的晶片,折射角的變化趨勢不同,甚至完全相反,而對同一
晶片,改變探頭縱波入射角,其折射角變化趨勢基本不變,上表是兩個晶片尺寸不同的探頭在同一試塊上測量的結果.
1#探頭聲束中心軌跡 2#探頭聲束中心軌跡
1.縱波與橫波探頭概念不清.
第一臨界角:由折射定律SinaL/CL1=SinbL/CL2,當CL2>CL1時,bL>aL,隨著aL增加,bL也增加,當aL增加到一定程度時,bL=90,這時所對應的縱波入射角稱為第一臨界角aI,
aI=SinCL1/CL2=Sin2730/5900=27.6,當aL<aI時,第二介質中既有折射縱波L¢¢又有折射橫波S¢¢.
第二臨界角:由折射定律SinaL/CL1=SinbS/CS2, 當Cs2>CL1時,bS>aL,隨著aL增加,bS也增加,當aL增加一定程度時,bS=90,這時所對應的縱波入射角稱為第二臨界角aⅡ.aⅡ
=SinCL1/CS2=Sin2730/3240=57.7.當aL=aI--aⅡ時,第二介質中只有折射橫波S,沒有折射縱波L,常用橫波探頭的製作原理。
利用折射定律判斷1#探頭是否為橫波探頭。
A. 存橫波探傷的條件:Sin27.6/2730=Sinb/3240, Sinb=Sin27.6´3240/2730=0.55,b=33.36,K=0.66。
B.折射角為21.7時: Sina/2730=Sin21.7/3240,Sina=Sin21.7´2730/3240,a=18.15,
小於第一臨界角27.6。
折射角為28.9時:
Sina/2730=Sin28.9/3240,Sina= Sin28.9´2730/3240,a=24,也小於第一臨界角27.6。
C.如何解釋1#探頭隨反射體深度增加,折射角逐漸增大的現象,由A、B
可知,1#探頭實際為縱波斜探頭,同樣存在上半擴散角與下半擴散角,而且上半擴散角大於下半擴散角。(講義附件9題答案)。
縱波入射角aL由0逐漸向第一臨界角aI(27.6)增加時,第二介質中的縱波能量逐漸減弱,橫波能量逐漸增強,在聲束的一定范圍內,q下區域內的縱波能量大於q上區域內的縱波能量,探測不同深度的孔,實際上是由q下區域內的縱波分量獲得反射回波最高點。
由超聲場橫截面聲壓分布情況來看,A點聲壓在下半擴散角之內,B點聲壓在上半擴散角之內,且A點聲壓高於B點聲壓。再以近場長度N的概念來分析,2.5P 13´13 K1探頭N=36.5mm,由此可知反射體深度20mm時,聲程約21.7mm,b=21.7時N=40.07mm為近場探傷。
在近場內隨著反射體深度增加聲程增大,A點與B點的能量逐漸向C點增加,折射角度小的探頭角度逐漸增大,折射角度大的探頭角度逐漸減少。
2.盲目追求短前沿:
以2.5P 13´13 K2探頭為例,b=15mm與b=11mm,斜楔為有機玻璃材料;
(1).檢測20mm厚,X口對接焊縫,缺陷為焊縫層間未焊透.
(2).信噪比的關系:有用波與雜波幅度之比必須大於18dB.
(3).為什麼一次標記點與二次標記點之間有固定波?
由54頁表可知:COSb/COSa=0.68,K2探頭b=63.44°,
COS63.44°=0.447,COSa=0.447/0.68=0.66,
COSa=6.5/LX,前沿LX=6.5/0.66=9.85mm。(講義附件6題答案)。
3.如何正確選擇雙晶直探頭:
(1).構造、聲場形狀、菱形區的選擇;
(2).用途:為避開近場區,主要檢測薄板工件中面積形缺陷.
(3).發射晶片聯接儀器R口,接收晶片聯接T口(匹配線圈的作用).
4.探頭應用舉例:
二.超聲波探頭的工作原理:
1.通過壓電效應發射、接收超聲波。
2.640V的交變電壓加至壓電晶片銀層,使面積相同間隔一定距離的兩塊金屬極板分別帶上等量異種電荷形成電場,有電場就存在電場力,壓電晶片處在電場中,在電場力的作用下發生形變,在交變電場力的作用下,發生變形的效應,稱為逆壓電效應,也是發射超聲波的過程。
3.超聲波是機械波,機械波是由振動產生的,超聲波發現缺陷引起缺陷振動,其中一部分沿原路返回,由於超聲波具有一定的能量,再作用到壓電晶體上,使壓電晶體在交變拉、壓力作用下產生交變電場,這種效應稱為正壓電效應,是接收超聲波的過程。正、逆壓電效應統稱為壓電效應。
※以儀器的電路來說,只能放大電壓或電流信號,不能放大聲信號。
試塊
※強調等效試塊的作用。
1.常用試塊的結構尺寸、各部位的用途,存在問題;(講義附件8、10、13、18題答案)。
2.三角槽與線切割裂紋的區別;
3.立孔與工件中缺陷的比較:
4.幾種自製試塊的使用方法;
A.奧氏體試塊:
B.雙孔法校準(主要用於縱波斜探頭探傷,如螺栓)(講義附件5、7題答案)。
計算公式:令h2/h1=n;
a=[n(t1+f/2)-(t2+f/2)]/(n-1) …… 1式
t1與t2為一次聲程分別發現h1與h2孔時的聲程(包含a);
COSb=h1/(t1+f/2-a),b=COSh1/(t1+f/2-a);
tgb=K,K=tgCOSh1/(t1+f/2-a) …… 2式
b=(L2-nL1)/(n-1) …… 3式
C.外圓雙孔法校準原理(外徑f>100mm的工件周向探傷用):
計算公式:q=( - )180/Rp …… 1式
…… 2式
j=Sin[Sinq(R-h2)/A¢B] …… 3式
b=Sin(R-h1)Sinj/R …… 4式
tgb=K=tgSin(R-h1)Sinj/R …… 5式
=ÐeR/57.3- …… 6式
Ðe=Ðj-Ðb.
D.雙弧單孔法校準(外徑Φ<100mm的工件周向探傷用):
(1)距離校準同CSK-ⅠA校圓弧;
(2).K值校準 b=COS[R2+(S+f/2)-(R-h)]/2R2(S+f/2) tgb=K
(講義附件3、15題答案)。
常用的兩種探傷方法
1.曲線法;
2.幅值法.
Ⅷ 超聲波探傷標准
標准規定:對於圖紙要求焊縫焊接質量等級為一級時評定等級為Ⅱ級時規范規定要求做100%超聲波探傷;
對於圖紙要求焊縫焊接質量等級為二級時評定等級為Ⅲ級時規范規定要求做20%超聲波探傷;
對於圖紙要求焊縫焊接質量等級為三級時不做超聲波內部缺陷檢查。
探傷過程中,首先要了解圖紙對焊接質量的技術要求。鋼結構的驗收標準是依據GB50205- 2001《鋼結構工程施工質量驗收規范》來執行的。

(8)超聲波探傷耦合怎麼選擇擴展閱讀
在每次探傷操作前都必須利用標准試塊(CSK- IA、CSK- ⅢA)校準儀器的綜合性能,校準面板曲線,以保證探傷結果的准確性。
(1)探測面的修整:應清除焊接工作表面飛濺物、氧化皮、凹坑及銹蝕等,光潔度一般低於▽4。焊縫兩側探傷面的修整寬度一般為大於等於2KT+50mm, (K:探頭K值,T:工件厚度);
一般的根據焊件母材選擇K值為2.5 探頭。例如:待測工件母材厚度為10mm,那麼就應在焊縫兩側各修磨100mm。
(2)耦合劑的選擇應考慮到粘度、流動性、附著力、對工件表面無腐蝕、易清洗,而且經濟,綜合以上因素選擇漿糊作為耦合劑。
(3)由於母材厚度較薄因此探測方向採用單面雙側進行
(4)由於板厚小於20mm所以採用水平定位法來調節儀器的掃描速度。
(5)在探傷操作過程中採用粗探傷和精探傷。為了大概了解缺陷的有無和分布狀態、定量、定位就是精探傷。使用鋸齒形掃查、左右掃查、前後掃查、轉角掃查、環繞掃查等幾種掃查方式以便於發現各種不同的缺陷並且判斷缺陷性質。
Ⅸ 超聲波探傷中耦合劑多採用什麼
這要分兩面來說,工業耦合劑主要是以機油、變壓器油、潤滑脂、甘油、水玻璃(硅酸鈉Na2SiO3)或者工業膠水、化學漿糊,或者是商品化的超聲檢測專用耦合劑等作為耦合劑。醫用耦合劑是一種由新一代水性高分子凝膠組成的醫用產品。它的PH值為中性,對人體無毒無害,就像素問牌耦合劑就是採用這樣一種成分做的。
Ⅹ 使用超聲波探測儀為什麼要先用耦合劑
因為探頭與被測材料之間的高頻超聲的能量是通過耦合劑來傳遞的。
為了使超聲波進入材料和從材料中反射,探頭必須與被測材料盡量靠近,並且在探頭和被測材料之間要有介質。在鋼材的超聲波探傷中,多用水作耦合劑。檢測期間,所有探頭處在離鋼材表面同一水平面,聲音耦合由水來完成。
耦合劑用於排除探頭和被測物體之間的空氣,使超聲波能有效地穿入工件達到檢測目的。
根據使用情況選擇合適種類的耦合劑。當使用在光滑材料表面時,可以使用低黏度的耦合劑;當使用在粗糙表面、垂直表面及頂表面時,應使用黏度高的耦合劑。
高溫工件應選用高溫耦合劑。並且,校準和測量時應選擇同一種耦合劑。耦猜宴合劑應適量使用,塗抹均勻,一般應將耦合劑塗在被測材料的表面,但當測量溫度較高時,耦合劑應塗在探頭上。

(10)超聲波探傷耦合怎麼選擇擴展閱讀
耦合劑的好壞與得到的聲像圖質量密切相關。質量不好的耦合劑可使超聲能量損失,分辨力降低,圖像模糊,甚至刺激皮膚和損壞探頭。
工業耦合劑是用來源孫排除探頭和被測物體之間的空氣,使超聲波能有效地穿入工件達到檢測目的。