『壹』 超聲波是什麼用於什麼領域
[編輯本段]超聲波的簡介
我們知道,當物體振動時會發出聲音。科學家們將每秒鍾振動的次數稱為聲音的頻率,它的單位是赫茲。我們人類耳朵能聽到的聲波頻率為20~20,000赫茲。當聲波的振動頻率大於20000赫茲或小於20赫茲時,我們便聽不見了。因此,我們把頻率高於20000赫茲的聲波稱為「超聲波」。通常用於醫學診斷的超聲波頻率為1~5兆赫。超聲波具有方向性好,穿透能力強,易於獲得較集中的聲能,在水中傳播距離遠等特點。可用於測距,測速,清洗,焊接,碎石等。在醫學,軍事,工業,農業上有很多的應用。
理論研究表明,在振幅相同的條件下,一個物體振動的能量與振動頻率成正比,超聲波在介質中傳播時,介質質點振動的頻率很高,因而能量很大.在我國北方乾燥的冬季,如果把超聲波通入水罐中,劇烈的振動會使罐中的水破碎成許多小霧滴,再用小風扇把霧滴吹入室內,就可以增加室內空氣濕度.這就是超聲波加濕器的原理.咽喉炎.氣管炎等疾病,呼喚斤年時斤百 很難血流到達患病的部位.利用加濕器的原理,把葯液霧化,讓病人吸入,能夠提高療效.利用超聲波巨大的能量還可以使人體內的結石做劇烈的受迫振動而破碎,從而減緩病痛,達到治癒的目的。
現在,人們利用超聲波來為飛機、輪船導航,尋找地下的寶藏。超聲波就像一位無聲的功臣,廣泛地應用於工業、農業、醫療和軍事等領域。斯帕拉捷怎麼也不會想到,自己的實驗,會給人類帶來如此巨大的恩惠。
這個資料絕對好,也沒有那麼長,
讓這個成為最佳答案吧!!忒感謝了!!
『貳』 什麼是超聲波是干什麼用的
超聲波
我們知道,當物體振動時會發出聲音。科學家們將每秒鍾振動的次數稱為聲音的頻率,它的單位是赫茲。我們人類耳朵能聽到的聲波頻率為20~20,000赫茲。因此,當物體的振動超過一定的頻率,即高於人耳聽閾上限時,人們便聽不出來了,這樣的聲波稱為「超聲波」。通常用於醫學診斷的超聲波頻率為1~5兆赫。超聲波具有方向性好,穿透能力強,易於獲得較集中的聲能,在水中傳播距離遠等特點。可用於測距,測速,清洗,焊接,碎石等
雖然說人類聽不出超聲波,但不少動物卻有此本領。它們可以利用超聲波「導航」、追捕食物,或避開危險物。大家可能看到過夏天的夜晚有許多蝙蝠在庭院里來回飛翔,它們為什麼在沒有光亮的情況下飛翔而不會迷失方向呢?原因就是蝙蝠能發出2~10萬赫茲的超聲波,這好比是一座活動的「雷達站」。蝙蝠正是利用這種「雷達」判斷飛行前方是昆蟲,或是障礙物的。
我們人類直到第一次世界大戰才學會利用超聲波,這就是利用「聲納」的原理來探測水中目標及其狀態,如潛艇的位置等。此時人們向水中發出一系列不同頻率的超聲波,然後記錄與處理反射回聲,從回聲的特徵我們便可以估計出探測物的距離、形態及其動態改變。醫學上最早利用超聲波是在1942年,奧地利醫生杜西克首次用超聲技術掃描腦部結構;以後到了60年代醫生們開始將超聲波應用於腹部器官的探測。如今超聲波掃描技術已成為現代醫學診斷不可缺少的工具。
醫學超聲波檢查的工作原理與聲納有一定的相似性,即將超聲波發射到人體內,當它在體內遇到界面時會發生反射及折射,並且在人體組織中可能被吸收而衰減。因為人體各種組織的形態與結構是不相同的,因此其反射與折射以及吸收超聲波的程度也就不同,醫生們正是通過儀器所反映出的波型、曲線,或影象的特徵來辨別它們。此外再結合解剖學知識、正常與病理的改變,便可診斷所檢查的器官是否有病。
目前,醫生們應用的超聲診斷方法有不同的形式,可分為A型、B型、M型及D型四大類。
A型:是以波形來顯示組織特徵的方法,主要用於測量器官的徑線,以判定其大小。可用來鑒別病變組織的一些物理特性,如實質性、液體或是氣體是否存在等。
B型:用平面圖形的形式來顯示被探查組織的具體情況。檢查時,首先將人體界面的反射信號轉變為強弱不同的光點,這些光點可通過熒光屏顯現出來,這種方法直觀性好,重復性強,可供前後對比,所以廣泛用於婦產科、泌尿、消化及心血管等系統疾病的診斷。
M型:是用於觀察活動界面時間變化的一種方法。最適用於檢查心臟的活動情況,其曲線的動態改變稱為超聲心動圖,可以用來觀察心臟各層結構的位置、活動狀態、結構的狀況等,多用於輔助心臟及大血管疫病的診斷。
D型:是專門用來檢測血液流動和器官活動的一種超聲診斷方法,又稱為多普勒超聲診斷法。可確定血管是否通暢、管腔有否狹窄、閉塞以及病變部位。新一代的D型超聲波還能定量地測定管腔內血液的流量。近幾年來科學家又發展了彩色編碼多普勒系統,可在超聲心動圖解剖標志的指示下,以不同顏色顯示血流的方向,色澤的深淺代表血流的流速。現在還有立體超聲顯象、超聲CT、超聲內窺鏡等超聲技術不斷涌現出來,並且還可以與其他檢查儀器結合使用,使疾病的診斷准確率大大提高。超聲波技術正在醫學界發揮著巨大的作用,隨著科學的進步,它將更加完善,將更好地造福於人類。
頻率高於20000 Hz(赫茲)的聲波。研究超聲波的產生、傳播 、接收,以及各種超聲效應和應用的聲學分支叫超聲學。產生
超聲波的裝置有機械型超聲發生器(例如氣哨、汽笛和液哨等)、利用電磁感應和電磁作用原理製成的電動超聲發生器、
以及利用壓電晶體的電致伸縮效應和鐵磁物質的磁致伸縮效應製成的電聲換能器等。
超聲效應 當超聲波在介質中傳播時,由於超聲波與介質的相互作用,使介質發生物理的和化學的變化,從而產生
一系列力學的、熱的、電磁的和化學的超聲效應,包括以下4種效應:
①機械效應。超聲波的機械作用可促成液體的乳化、凝膠的液化和固體的分散。當超聲波流體介質中形成駐波時 ,懸浮在流體中的微小顆粒因受機械力的作用而凝聚在波節處,在空間形成周期性的堆積。超聲波在壓電材料和磁致伸縮材料中傳播時,由於超聲波的機械作用而引起的感生電極化和感生磁化(見電介質物理學和磁致伸縮)。
②空化作用。超聲波作用於液體時可產生大量小氣泡 。一個原因是液體內局部出現拉應力而形成負壓,壓強的降低使原來溶於液體的氣體過飽和,而從液體逸出,成為小氣泡。另一原因是強大的拉應力把液體「撕開」成一空洞,稱為空化。空洞內為液體蒸氣或溶於液體的另一種氣體,甚至可能是真空。因空化作用形成的小氣泡會隨周圍介質的振動而不斷運動、長大或突然破滅。破滅時周圍液體突然沖入氣泡而產生高溫、高壓,同時產生激波。與空化作用相伴隨的內摩擦可形成電荷,並在氣泡內因放電而產生發光現象。在液體中進行超聲處理的技術大多與空化作用有關。
③熱效應。由於超聲波頻率高,能量大,被介質吸收時能產生顯著的熱效應。
④化學效應。超聲波的作用可促使發生或加速某些化學反應。例如純的蒸餾水經超聲處理後產生過氧化氫;溶有氮氣的水經超聲處理後產生亞硝酸;染料的水溶液經超聲處理後會變色或退色。這些現象的發生總與空化作用相伴隨。超聲波還可加速許多化學物質的水解、分解和聚合過程。超聲波對光化學和電化學過程也有明顯影響。各種氨基酸和其他有機物質的水溶液經超聲處理後,特徵吸收光譜帶消失而呈均勻的一般吸收,這表明空化作用使分子結構發生了改變 。
超聲應用 超聲效應已廣泛用於實際,主要有如下幾方面:
①超聲檢驗。超聲波的波長比一般聲波要短,具有較好的方向性,而且能透過不透明物質,這一特性已被廣泛用於超聲波探傷、測厚、測距、遙控和超聲成像技術。超聲成像是利用超聲波呈現不透明物內部形象的技術 。把從換能器發出的超聲波經聲透鏡聚焦在不透明試樣上,從試樣透出的超聲波攜帶了被照部位的信息(如對聲波的反射、吸收和散射的能力),經聲透鏡匯聚在壓電接收器上,所得電信號輸入放大器,利用掃描系統可把不透明試樣的形象顯示在熒光屏上。上述裝置稱為超聲顯微鏡。超聲成像技術已在醫療檢查方面獲得普遍應用,在微電子器件製造業中用來對大規模集成電路進行檢查,在材料科學中用來顯示合金中不同組分的區域和晶粒間界等。聲全息術是利用超聲波的干涉原理記錄和重現不透明物的立體圖像的聲成像技術,其原理與光波的全息術基本相同,只是記錄手段不同而已(見全息術)。用同一超聲信號源激勵兩個放置在液體中的換能器,它們分別發射兩束相乾的超聲波:一束透過被研究的物體後成為物波,另一束作為參考波。物波和參考波在液面上相干疊加形成聲全息圖,用激光束照射聲全息圖,利用激光在聲全息圖上反射時產生的衍射效應而獲得物的重現像,通常用攝像機和電視機作實時觀察。
②超聲處理。利用超聲的機械作用、空化作用、熱效應和化學效應,可進行超聲焊接、鑽孔、固體的粉碎、乳化 、脫氣、除塵、去鍋垢、清洗、滅菌、促進化學反應和進行生物學研究等,在工礦業、農業、醫療等各個部門獲得了廣泛應用。
③基礎研究。超聲波作用於介質後,在介質中產生聲弛豫過程,聲弛豫過程伴隨著能量在分子各自電度間的輸運過程,並在宏觀上表現出對聲波的吸收(見聲波)。通過物質對超聲的吸收規律可探索物質的特性和結構,這方面的研究構成了分子聲學這一聲學分支。普通聲波的波長遠大於固體中的原子間距,在此條件下固體可當作連續介質 。但對頻率在1012赫以上的 特超聲波 ,波長可與固體中的原子間距相比擬,此時必須把固體當作是具有空間周期性的點陣結構。點陣振動的能量是量子化的 ,稱為聲子(見固體物理學)。特超聲對固體的作用可歸結為特超聲與熱聲子、電子、光子和各種准粒子的相互作用。對固體中特超聲的產生、檢測和傳播規律的研究,以及量子液體——液態氦中聲現象的研究構成了近代聲學的新領域——
量子聲學。
超聲波還可以進行雷達探測.清洗較為精細的物品,如鍾表,可以利用超聲波來擊碎病人體內膽結石,還可以利用超聲波測距.
『叄』 什麼是超聲波
超聲波,它是一種特殊類型的超聲波,超聲波顧名思義,它就是超過人能聽到聲音的上限。大家知道,人的耳朵是有一個范圍,耳朵范圍它是在2萬赫茲以下,而超聲波是超了這個2萬赫茲,所以叫做超聲波。
超聲波它可以用於人體的檢查。在臨床上,我們就是利用超聲波這個原理,探頭就是有一個探頭,在人的身體上劃來劃去。探頭就可以把電能轉變成超聲波,利用探頭發生超聲波,超聲波進入人體以後,因為人體里邊會存著好多好多的界面,超聲波進入界面以後,會發生反射、折射、散射、背向散射等等。
當探頭發出超聲波以後,進到人體里,人體的組織對超聲波,發生好多的這種反射、折射等等。有一部分超聲波會返回到探頭,超聲波被人體接收以後,就可以經過一系列的處理,就在屏幕上顯示出圖像。
就利用顯示回來的圖像,進行人體的監查,發現有沒有病變,是什麼樣的病變,進行診斷。所以說超聲波是一種特殊類型的波,它在臨床上常用於人體的檢查,來進行疾病的診斷。
『肆』 超聲波是一種什麼波
一、超聲波
特點:
1、超聲波在傳播時,方向性強,能量易於集中。
2、超聲波能在各種不同媒質中傳播,且可傳播足夠遠的距離。
3、超聲波與傳聲媒質的相互作用適中,易於攜帶有關傳聲媒質狀態的信息診斷或對傳聲媒質產生效用及治療。
4、超聲波可在氣體、液體、固體、固熔體等介質中有效傳播。
5、超聲波可傳遞很強的能量。
6、超聲波會產生反射、干涉、疊加和共振現象。
相關應用:
1、細胞破碎
超聲波破碎細胞有操作簡單,重復性好,節省時間等優點,多用於微生物和組織細胞破碎。超聲波頻率高於15-20KHz,在菌懸液中形成空化效應,使細胞產生急劇震盪而導致破裂,用於提取細胞內含物,如:大腸桿菌制備酶等。
2、超聲波化學合成
超聲波的空化效應過程中,空氣泡產生高達5000K的高溫,大於200MPa的壓力。這就成為超聲波化學合成的能量來源,利用這些能量可以在一些微粒表面合成出納米粒子。
3、超聲波在化妝品領域的應用
超聲波對化妝品的乳化和分散效果,形成更小的乳化微粒,使化妝品更深入滲透到肌膚層中,讓肌膚更好吸收,發揮更好的效力和作用。使用超聲波分散,在不需要使用乳化劑的情況下就能使蠟及石蠟乳化,化妝水等油的微粒子分散,微粒直徑可以在1um以下。
4、超聲波對酒的醇化—催陳技術
新酒的口感辛辣,味道差,需要經過較長時間的儲存陳化,產生一系列的物理和化學變化及締合過程,使辛辣、刺激性變小,酒味甘綿柔和,香味增加,口味協調,即為生酒的老熟。通過使用17.5-22KHz的超聲波處理5-10min,可以酒的老熟時間縮短1/3到1/2。
5、超聲波清洗
超聲波清洗是基於空化作用,即在清洗液中無數氣泡快速形成並迅速內爆,由此產生的沖擊將浸沒在清洗液中待清洗物體表面的污物剝落下來。隨著超聲波頻率的提高,氣泡數量增加而爆破沖擊力減弱,因此,高頻超聲波特別適用於小顆粒污垢的清洗,而不破壞其工作表面。
二、次聲波
特點:
1、次聲波的特點是來源廣、傳播遠、能夠繞過障礙物傳得很遠。次聲的聲波頻率很低,在20Hz以下,波長卻很長,傳播距離也很遠。它比一般的聲波、光波和無線電波都要傳得遠。
2、次聲波具有極強的穿透力,不僅可以穿透大氣、海水、土壤,而且還能穿透堅固的鋼筋水泥構成的建築物,甚至連坦克、軍艦、潛艇和飛機都不在話下。
3、次聲波的傳播速度和可聞聲波相同,由於次聲波頻率很低。大氣對其吸收甚小,當次聲波傳播幾千千米時,其吸收還不到萬分之幾,所以它傳播的距離較遠,能傳到幾千米至十幾萬千米以外。
應用:
1、利用所接收到的被測聲源產生的次聲波,可以探測聲源的位置、大小和研究其他特性。例如,通過接收核爆炸、火箭發射或者台風產生的次聲波,來探測出這些次聲源的有關參量。
2、次聲波在大氣層中傳播時,很容易受到大氣介質的影響,它與大氣層中的風和溫度分布等因素有著密切的聯系。因此,可以通過測定自然或人工產生的次聲波在大氣中的傳播特性,探測出某些大規模氣象的性質和規律。這種方法的優點在於可以對大范圍大氣進行連續不斷的探測和監視。
3、人和其他生物不僅能夠對次聲波產生某些反應,而且他(或它)們的某些器官也會發出微弱的次聲波。因此,可以利用測定這些次聲波的特性來了解人體或其他生物相應器官的活動情況。
(4)什麼是超聲波納米夏被擴展閱讀
國內方面發展:
國內在超聲治療領域起步稍晚,於20世紀50年代初才只有少數醫院開展超聲治療工作,從1950年首先在北京開始用800KHz頻率的超聲治療機治療多種疾病。
至50年代開始逐步推廣,並有了國產儀器。公開的文獻報道始見於1957年。到了70年代有了各型國產超聲治療儀,超聲療法普及到全國各大型醫院。
40多年來,全國各大醫院已積累了相當數量的資料和比較豐富的臨床經驗。特別是20世紀80年代初出現的超聲體外機械波碎石術和超聲外科,是結石症治療史上的重大突破。
如今已在國際范圍內推廣應用。高強度聚焦超聲無創外科,已使超聲治療在當代醫療技術中占據重要位置。而在21世紀(HIFU)超聲聚焦外科已被譽為是21世紀治療腫瘤的最新技術。
『伍』 什麼是超聲波
聲波、超聲波,都是機械波。
人耳能聽到的聲波的頻率范圍是 20Hz 到 20kHz。
超聲波與聲波相比較,其頻率高於20kHz。
因為超聲波的頻率超過人耳聞域的頻率上限,稱為超聲波。
另外,頻率低於20Hz的機械波,稱為次聲波。
人耳聽不到超聲波,也聽不到次聲波。
『陸』 什麼叫超聲波,什麼叫次聲波
一、超聲波
超聲波是一種頻率高於20000赫茲的聲波,它的方向性好,穿透能力強,易於獲得較集中的聲能,在水中傳播距離遠,可用於測距、測速、清洗、焊接、碎石、殺菌消毒等。在醫學、軍事、工業、農業上有很多的應用。超聲波因其頻率下限大於人的聽覺上限而得名。
二、次聲波
頻率小於20Hz(赫茲)的聲波叫做次聲波。次聲波不容易衰減,不易被水和空氣吸收。而次聲波的波長往往很長,因此能繞開某些大型障礙物發生衍射。某些次聲波能繞地球2至3周。某些頻率的次聲波由於和人體器官的振動頻率相近甚至相同,容易和人體器官產生共振,對人體有很強的傷害性,危險時可致人死亡。
(6)什麼是超聲波納米夏被擴展閱讀
特點:
(一)、超聲波
(1)、超聲波在傳播時,方向性強,能量易於集中。
(2)、超聲波能在各種不同媒質中傳播,且可傳播足夠遠的距離。
(3)、超聲波與傳聲媒質的相互作用適中,易於攜帶有關傳聲媒質狀態的信息診斷或對傳聲媒質產生效用及治療。
(4)、超聲波可在氣體、液體、固體、固熔體等介質中有效傳播。
(5)、超聲波可傳遞很強的能量。
(6)、超聲波會產生反射、干涉、疊加和共振現象。
(二)、次聲波
次聲波的特點是來源廣、傳播遠、能夠繞過障礙物傳得很遠。次聲的聲波頻率很低,在20Hz以下,波長卻很長,傳播距離也很遠。它比一般的聲波、光波和無線電波都要傳得遠。次聲波具有極強的穿透力,不僅可以穿透大氣、海水、土壤,而且還能穿透堅固的鋼筋水泥構成的建築物,甚至連坦克、軍艦、潛艇和飛機都不在話下。
次聲波的傳播速度和可聞聲波相同,由於次聲波頻率很低。大氣對其吸收甚小,當次聲波傳播幾千千米時,其吸收還不到萬分之幾,所以它傳播的距離較遠,能傳到幾千米至十幾萬千米以外。
『柒』 超聲波是什麼意思請簡短說。
超聲波是一種頻率高於20000赫茲的聲波,它的方向性好,穿透能力強,易於獲得較集中的聲能,在水中傳播距離遠,可用於測距、測速、清洗、焊接、碎石、殺菌消毒等。在醫學、軍事、工業、農業上有很多的應用。超聲波因其頻率下限大於人的聽覺上限而得名。
超聲波的波長相對來說比聲波要短,通常的障礙物都會比超聲波的波長大很多,所以說超聲波的衍射能力不是很強,在介質一定密度不變的情況下,超聲波能夠沿著波的方向一致沿直線傳波,超聲波的波長相對來說越短的話,直射能力就越好。
當聲音在空氣中傳播時,推動空氣中的微粒往復振動而對微粒做功。聲波功率就是表示聲波做功快慢的物理量。
在相同強度下,聲波的頻率越高,它所具有的功率就越大,所以說超聲波跟聲波相比呢,超聲波的功率比聲波要大很多的。
(7)什麼是超聲波納米夏被擴展閱讀
超聲波在液體中隨著液體的縫隙傳播開時,液體的分子受到超聲波的能量的傳遞,而具有能量,分子相互作用而產生大量的氣泡,這些氣泡構成了空化的前提條件,能量聚集到一定的程度的時候氣泡破裂產生巨大的能量把整個液體破費,空化作用常常用於超聲波清洗機、以及小型超聲波清洗機的與原理應用。
超聲波的波長比一般聲波要短,具有較好的方向性,而且能透過不透明物質,這一特性已被廣泛用於超聲波探傷、測厚、測距、遙控和超聲成像技術。
超聲成像是利用超聲波呈現不透明物內部形象的技術 。把從換能器發出的超聲波經聲透鏡聚焦在不透明試樣上,從試樣透出的超聲波攜帶了被照部位的信息(如對聲波的反射、吸收和散射的能力)。
經聲透鏡匯聚在壓電接收器上,所得電信號輸入放大器,利用掃描系統可把不透明試樣的形象顯示在熒光屏上。
超聲波在,漁業上有很多的應用。可用於測距、測速、測障、清洗、焊接、碎石、殺菌消毒、檢查金屬產品的缺陷、焊接鋁金屬、洗衣服、在坡璃上鑽孔、以及尋找沉沒了的船隻等。
『捌』 夏季空調被 超聲波絎縫與線絎縫 哪種好
超聲波的縫合是靠瞬時的沖擊熱融化面料的部分組織使之實現粘連。比方許多無紡布的縫合,但是不可以用於棉織品。棉織品就需要普通縫合。
同時需要注意的是超聲波縫合處的硬化現象,普通服裝也不適合超聲波縫合,只能用於一次性的情況。
『玖』 什麼是超聲波
超聲波是一種頻率高於20000赫茲的聲波,它的方向性好,穿透能力強,易於獲得較集中的聲能,在水中傳播距離遠,可用於測距、測速、清洗、焊接、碎石、殺菌消毒等。在醫學、軍事、工業、農業上有很多的應用。超聲波因其頻率下限大於人的聽覺上限而得名。
超聲波作用於介質後,在介質中產生聲弛豫過程,聲弛豫過程伴隨著能量在分子各自電度間的輸運過程,並在宏觀上表現出對聲波的吸收(見聲波)。
通過物質對超聲的吸收規律可探索物質的特性和結構,這方面的研究構成了分子聲學這一聲學分支。普通聲波的波長遠大於固體中的原子間距,在此條件下固體可當作連續介質。但對頻率在1012赫以上的 特超聲波 ,波長可與固體中的原子間距相比擬,此時必須把固體當作是具有空間周期性的點陣結構。