㈠ 五軸數控機床如何對刀,用刀尖跟隨功能RTCP實現刀具補償功能。
如果有RTCP功能的話,跟三軸一樣對刀沒有RTCP功能的,要加刀長
㈡ 五軸機床如何對刀呢
五軸機床,以5軸木材雕刻機為例,如果有rtcp功能的話,跟三軸一樣對刀;
㈢ 數控機床對刀詳細的過程
方法是多種的,而且互有聯系,沒辦法只介紹一種。
1、對刀方法:數控加工的對刀,對其處理的好壞直接影響到加工零件的精度,還會影響數控機床的操作。
所謂對刀,就是在工件坐標系中使刀具的刀位點位於起刀點(對刀點)上,使其在數控程序的控制下,由此刀具所切削出的加工表面相對於定位基準有正確的尺寸關系,從而保證零件的加工精度要求。在數控加工中,對刀的基本方法有試切法、對刀儀對刀、ATC對刀和自動對刀等。
2、試切法:根據數控機床所用的位置檢測裝置不同,試切法分為相對式和絕對式兩種。在相對式試切法對刀中,可採用三種方法:
一是用量具(如鋼板尺等)直接測量,對准對刀尺寸,這種對刀方法簡便但不精確;
二是通過刀位點與定位塊的工作面對齊後,移開刀具至對刀尺寸,這種方法的對刀准確度取決於刀位點與定位塊工作面對齊的精度;
三是將工件加工面先光一刀,測出工件尺寸,間接算出對刀尺寸,這種方法最為精確。在絕對式試切法對刀中,需採用基準刀,然後以直接或間接的方法測出其他刀具的刀位點與基準刀之間的偏差,作為其他刀具的設定刀補值。以上試切法,採用「試切——測量——調整(補償)」的對刀模式,故佔用機床時間較多,效率較低,但由於方法簡單,所需輔助設備少,因此廣泛被用於經濟型低檔數控機床中。
3、對刀儀對刀:對刀儀對刀分為機內對刀儀對刀和機外對刀儀對刀兩種。機內對刀儀對刀是將刀具直接安裝在機床某一固定位置上(對車床,刀具直接安裝在刀架上或通過刀夾再安裝在刀架上),此方法比較多地用於車削類數控機床中。
而機外對刀儀對刀必須通過刀夾再安裝在刀架上(車床),連同刀夾一起,預先在機床外面校正好,然後把刀裝上機床就可以使用了,此方法目前主要用於鏜銑類數控機床中,如加工中心等。
採用對刀儀對刀需添置對刀儀輔助設備,成本較高,裝卸刀具費力,但可節省機床的對刀時間,提高了對刀精度,一般用於精度要求較高的數控機床中。
4、ATC對刀:AIC對刀是在機床上利用對刀顯微鏡自動計算出刀具長度的方法。由於操縱對刀鏡以及對刀過程還是手動操作和目視,故仍有一定的對刀誤差。
與對刀儀對刀相比,只是裝卸刀具要方便輕鬆些。自動對刀是利用CNC裝置的刀具檢測功能,自動精確地測出刀具各個坐標方向的長度,自動修正刀具補償值,並且不用停頓就直接加工工件。
與前面的對刀方法相比,這種方法減少了對刀誤差,提高了對刀精度和對刀效率,但需由刀檢感測器和刀位點檢測系統組成的自動對刀系統,而且CNC系統必須具備刀具自動檢測的輔助功能,系統較復雜,投入資金大,一般用於高檔數控機床中。
5、自動對刀:自動對刀是利用CNC裝置的刀具檢測自動修正刀具補償值功能,自動精確地測出刀具各個坐標方向的長度,並且不用停頓就直接加工工件。自動對刀亦稱刀尖檢口功能。
在加工中心上一次安裝工件後,需用刀庫中的多把刀具加工工件的多個表面。為提高對刀精度和對刀效率,一般採用機外對刀儀對刀、ATC對刀和自動對刀等方法,其中機外對儀對刀一般廣泛用於中檔鏗銑類加工中心上。
在採用對刀儀對刀時,一般先選擇基準芯棒對准好工件表面,以確定工件坐標原點,然後選擇某一個方便對刀的面,採用動態(刀轉)對刀方式。

(3)帶刀尖跟隨的五軸機床怎麼對刀擴展閱讀
例子如下:
例如,當加工零件時,如果按φ38㎜→φ36㎜→φ34㎜的次序安排車削,不僅會增加刀具返回對刀點所需的空行程時間,而且還可能使台階的外直角處產生毛刺(飛邊)。
對這類直徑相差不大的台階軸,當第一刀的切削深度(圖中最大切削深度可為3㎜左右)未超限時,宜按φ34㎜→φ36㎜→φ38㎜的次序先近後遠地安排車削。
㈣ 數控車床加工零件如何對刀
數控車床對刀方法
對刀的原理與方法
編程原點、加工原點的概念
編程原點地根據加工圖樣選定的編制零件程序的原點,即編程坐標系的原點。
數控機床運行程序進行自動加工時,刀具運動的軌跡是程序給定的坐標值控制的,這種坐標值的參照系稱為加工坐標系,它的坐標原點稱為加工坐標原點。
零件被定位裝夾於機床後,相應的編程坐標原點在機床坐標系中的位置應與工件的加工原點重合,編程人員在編製程序時,需根據零件圖樣選定編程原點,建立編程坐標系,並在程序中用指令指定編程原點在機床中的位置,即工件的加工原點,建立起工件的加工坐標系。
對刀的原理
對於數控機床來說,加工前首先要確定刀具與工件的相對位置,它是通過對刀點來實現的。對刀點是指通過對刀確定刀具與工件相對位置的基準點,對刀點往往就是零件的加工原點,它可以設在被加工零件上,也可以設在夾具與零件定位基準有一定尺寸聯系的某一位置上。
對刀點的選擇原則:(1)使程序編制簡單;(2)容易找正,便於確定零件的加工原點的位置;(3)在加工時檢查方便、可靠;(4)有利於提高加工精度。
在使用對刀點確定加工原點時,就需要進行「對刀」。對刀是指「刀位點」與「對刀點」重合的操作,「刀位點」是指刀具的定位基準點,對於車刀來說,其刀位點是刀尖。對刀的目的是確定對刀點(或工件原點)在機床坐標系中的絕對坐標值,測量刀具的刀位偏差值。
當加工同一工件要使用多把不同的刀具時,在換刀位置不變的情況下,不同的刀具其刀位點到工件基準點的相對坐標值是不同的,這就要求不同的刀具在不同的起始位置開始加工時,都能保證程序正常運行。為了解決這個問題,機床數控系統配備了刀具補正的功能,利用刀具補正功能,只要事先把每把刀相對於某一預先選定的基準刀的位置偏差測量出來,輸入到數控系統的刀具參數補正欄指定組號里,在加工程序中利用T指令,即可在刀具軌跡中自動補償刀具位置偏差。刀具位置偏差的測量同樣亦需通過對刀來進行。
對刀的方法
在數控加工中,對刀的基本方法有手動對刀、對刀儀對刀、ATC對刀和自動對刀等。
手動對刀的基礎是通過試切零件來對刀,採用「試切—測量—調整」的對刀模式。手動對刀要較多地佔用機床時間,但由於方法簡單,所需輔助設備少,因此普遍應用於經濟型數控機床中。採用對刀儀對刀需對刀儀輔助設備,成本較高,但可節省機床的對刀時間,提高對刀的精度,一般用於精度要求較高的數控機床中。ATC對刀由於操縱對刀鏡以及對刀過程還是手動操作,故仍有一定的對刀誤差。自動對刀與前面的對刀方法相比,減少了對刀誤差,提高了對刀精度和對刀效率,但CNC系統必須具備刀具自動檢測的輔助功能,系統較復雜,一般用於高檔數控機床中。
經濟型數控車床的手動對刀方法
GSK928CNC控制系統是廣州數控設備廠開發的第二代數控系統,下面以GSK928系統數控車床為例,說明手動對刀的具體操作方法。
簡單的對刀過程
手動(MANUAL)方式下,可按以下順序進行對刀,得出刀具偏置量。 (1)進入主菜單,進入手動方式(MANUAL);
(2)選定對刀用的基準點(刀尖容易到達又方便觀察的位置);
(3)選一把刀作為基準刀,例如1號刀,在可以換刀的位置鍵入T10命令(選1號刀,無刀偏);
(4)移動刀架,將基準刀的刀尖移到對刀基準點,按「命令COMM」鍵,顯示命令菜單,執行NEWXZ命令(設置新系統坐標),將系統的坐標設置為(0,0);
(5)按「命令COMM」鍵,執行T.SIZE命令(用系統坐標設置刀具偏置),可將基準刀對應的刀偏值置為(0,0);
(6)移動刀架到可以換刀的位置,用T20命令換2號刀; (7)移動刀架讓刀尖對准對刀基準點; (8)按「命令COMM」,執行T.SIZE命令,可將刀具對應的刀偏值置為當前系統坐標值(正好是刀偏值); (9)重復(6)至(8)步驟,可得到所有刀具的刀偏值。
若使用光學對刀儀,可將對刀儀的中心線作為對刀基本點,從而得到較為精確的刀偏值。 試切對刀過程
(1)用「命令COMM」、T.TEST功能設置刀偏
手動方式下,按以下順序進行試切對刀可得出較為精確的刀具偏置。 ①裝夾好工件和刀具;
②進入手動(MANUAL)方式;
③選擇好基準刀(如1號刀),用T10命令換刀;
④移動刀架使刀靠近工件端面,開啟主軸車端面,將新端面作為Z軸方向基準位置;
⑤車外圓長度為5~10mm,不退刀,主軸停,測量該位置X方向直徑值和Z方向離基準點距離,如圖1所示;

(4)用前述方法將系統X坐標設為「0」,然後退刀使刀具離開工件;
(5)停車並測量工件外徑D1,計算100-D1值。
(6)將刀架移到坐標X=100-D1,Z=5,如圖4(c),此點即為刀具起始點位置。
確定刀具起始位置後,就可調入程序進行自動加工了。當執行完G92X100Z5程序段後,數控系統便將工件端面中心確定為工件加工原點。
㈤ 五軸刀尖跟隨功能怎麼用
開啟RTCP功能後,控制器會由原本控制刀座端面改成控制刀尖點,此時下達的指令皆會以刀尖點所在坐標來作控制,此為五軸加工中心特有之功能。

過去還沒有RTCP功能時,若要使用五軸加工中心來加工,需使用CAM4軟體,配合當前刀長來轉出加工程序,但一個加工程序只能對應一個長,此時若有刀長磨耗等誤差需進行補償,必須重新產出新的加工程序,非常沒有效率。
五軸加工中心有了RTCP功能後,CAM軟體只需計算出工件外型輪廓坐標,控制器會自動將刀長以及磨耗值考慮進去,這時候不著刀長如何變化,刀尖點永遠在工件輪廓上加工,圖十七中有兩條加工軌跡,橘色軌跡是未開啟RTCP時,控制器控制刀座端面的軌跡。
藍線即是RTOCP開啟時,控制器控制刀尖點的的跡,正常來說,兩條軌跡的偏青距離為刀長,但是刀長不可能永遠不變,不管是因磨耗變短或者是因受熱變長,控制刀座端面的加工方式都不會將這些變化考慮進去,這樣加工出來的工件其精度必定不佳。
因此,若要使用五軸加工中心進行加工,建議配合RTCP功能,不僅提高工件精度以及加工效率,也能讓五軸加工中心發揮其最大功效。
㈥ 數控車床車刀怎麼對刀
數控車床因控制系統的不同,在坐標系建立和參考點設定方面,操作步驟有所不同,
但數控車床對刀方法基本相同,首先,將工件在三爪卡盤上裝夾好之後,用手動方法操作機床,具體步驟如下:
1)回參考點操作採用ZERO(回參考點)方式進行回參考點的操作,建立機床坐標系。此時CRT上將顯示刀架中心(對刀參考點)在機床坐標系中的當前位置的坐標值。

2)試切對刀先用已選好的刀具將工件外圓表面車一刀,保持X向尺寸不變,Z向退刀,按設置編程零點鍵,CRT屏幕上顯示X、Z坐標值都清成零(即X0,Z0);然後,停止主軸,測量工件外圓直徑D。如圖2所示。再將工件端面車一刀,當CRT上顯示的X坐標值為-(D/2)時,按設置編程零點鍵,CRT屏幕上顯示X、Z坐標值都清成零(即X0,Z0),系統內部完成了編程零點的設置功能。
3)建立工件坐標系刀尖(車刀的刀位點)當前位置就在編程零點(即工件原點)上。
㈦ 數控機床有幾種對刀方法詳細步驟
數控機床對刀方法 車床分有對刀器和沒有對刀器,但是對刀原理都一樣,先說沒有對刀器的吧. 車床本身有個機械原點,你對刀時一般要試切的啊,比如車外徑一刀後Z向退出,測量車件的外徑是多少,然後在G畫面里找到你所用刀號把游標移到X輸入X...按測量機床就知道這個刀位上的刀尖位置了,內徑一樣,Z向就簡單了,把每把刀都在Z向碰一個地方然後測量Z0就可以了. 這樣所有刀都有了記錄,確定加工零點在工件移裡面(offshift),可以任意一把刀決定工件原點. 這樣對刀要記住對刀前要先讀刀. 有個比較方便的方法,就是用夾頭對刀,我們知道夾頭外徑,刀具去碰了輸入外徑就可以,對內徑時可以拿一量塊用手壓在夾頭上對,同樣輸入夾頭外徑就可以了. 如果有對刀器就方便多了,對刀器就相當於一個固定的對刀試切工件,刀具碰了就記錄進去位置了. 所以如果是多種類小批量加工最好買帶對刀器的.節約時間. 1. 試切法對刀 試切法對刀是實際中應用的最多的一種對刀方法。下面以採用MITSUBISHI 50L數控系統的RFCZ12車床為例,來介紹具體操作方法。 工件和刀具裝夾完畢,驅動主軸旋轉,移動刀架至工件試切一段外圓。然後保持X坐標不變移動Z軸刀具離開工件,測量出該段外圓的直徑。將其輸入到相應的刀具參數中的刀長中,系統會自動用刀具當前X坐標減去試切出的那段外圓直徑,即得到工件坐標系X原點的位置。再移動刀具試切工件一端端面,在相應刀具參數中的刀寬中輸入Z0,系統會自動將此時刀具的Z坐標減去剛才輸入的數值,即得工件坐標系Z原點的位置。 例如,2#刀刀架在X為150.0車出的外圓直徑為25.0,那麼使用該把刀具切削時的程序原點X值為150.0-25.0=125.0;刀架在Z為180.0時切的端面為0,那麼使用該把刀具切削時的程序原點Z值為180.0-0=180.0。分別將(125.0,180.0)存入到2#刀具參數刀長中的X與Z中,在程序中使用T0202就可以成功建立出工件坐標系。 事實上,找工件原點在機械坐標系中的位置並不是求該點的實際位置,而是找刀尖點到達(0,0)時刀架的位置。採用這種方法對刀一般不使用標准刀,在加工之前需要將所要用刀的刀具全部都對好。 2. 對刀儀自動對刀 現在很多車床上都裝備了對刀儀,使用對刀儀對刀可免去測量時產生的誤差,大大提高對刀精度。由於使用對刀儀可以自動計算各把刀的刀長與刀寬的差值,並將其存入系統中,在加工另外的零件的時候就只需要對標准刀,這樣就大大節約了時間。需要注意的是使用對刀儀對刀一般都設有標准刀具,在對刀的時候先對標准刀。 下面以採用FANUC 0T系統的日本WASINO LJ-10MC車削中心為例介紹對刀儀工作原理及使用方法。對刀儀工作原理如圖3所示。刀尖隨刀架向已設定好位置的對刀儀位置檢測點移動並與之接觸,直到內部電路接通發出電信號(通常我們可以聽到嘀嘀聲並且有指示燈顯示)。在2#刀尖接觸到a點時將刀具所在點的X坐標存入到圖2所示G02的X中,將刀尖接觸到b點時刀具所在點的Z坐標存入到G02的Z中。其他刀具的對刀按照相同的方法操作。 事實上,在上一步的操作中只對好了X的零點以及該刀具相對於標准刀在X方向與Z方向的差值,在更換工件加工時再對Z零點即可。由於對刀儀在機械坐標系中的位置總是一定的,所以在更換工件後,只需要用標准刀對Z坐標原點就可以了。操作時提起Z軸功能測量按鈕「Z-axis shift measure」,CRT出現如圖4所示的界面。 不好意思啦,知道上不能發圖
㈧ 操作數控車床怎樣對刀
用外圓車刀先試車一外圓,記住當前X坐標,測量外圓直徑。
用外圓車刀先試車一外圓,記住當前X坐標,測量外圓直徑後,用X坐標減外圓直徑,所的值輸入offset界面的幾何形狀X值里。用外圓車刀先試車一外圓端面,記住當前Z坐標,輸入offset界面的幾何形狀Z值里。
通過對刀將刀偏值寫入參數從而獲得工件坐標系。這種方法操作簡單,可靠性好,他通過刀偏與機械坐標系緊密的聯系在一起,只要不斷電、不改變刀偏值,工件坐標系就會存在且不會變,即使斷電,重啟後回參考點,工件坐標系還在原來的位置。

(8)帶刀尖跟隨的五軸機床怎麼對刀擴展閱讀:
操作數控車床的相關要求規定:
1、在對刀時,將顯示的與參考點偏差值個加上100後寫入其對應刀補,每一把刀都如此,這樣每一把刀的刀補就都是相對於參考點的。
2、G92起點設為X100 Z100,試驗後可行。這種方法的缺點是每一次加工的起點都是參考點,刀具移動距離較長,但由於這是G00 快速移動,還可以接受。
3、在對基準刀時將顯示的與參考點偏差及對刀直徑都記錄下來,系統一旦重啟,可以手動的將刀具移動到G92 起點位置。
㈨ 數控車床對刀的操作過程
數控車床對刀的操作有試切對刀和機外對刀儀這兩種對刀方法。
1、試切對刀的操作步驟:
(1)選擇機床的手動操作模式;
(2)啟動主軸,試切工件外圓,保持X方向不移動;
(3)停主軸,測量出工件的外徑值;
(4)選擇機床的MDI操作模式;
(5)按下「off set sitting」按鈕;
(6)按下屏幕下方的「坐標系」軟鍵;
(7)游標移至「G54」;
(8)輸入X及測量的直徑值;
(9)按下屏幕下方的「測量」軟鍵;
(10)啟動主軸, 試切工件端面, 保持Z方向不移動;

(9)帶刀尖跟隨的五軸機床怎麼對刀擴展閱讀
數控機床是數字控制機床(Computer numerical control machine tools)的簡稱,是一種裝有程序控制系統的自動化機床。該控制系統能夠邏輯地處理具有控制編碼或其他符號指令規定的程序,並將其解碼,用代碼化的數字表示,通過信息載體輸入數控裝置。經運算處理由數控裝置發出各種控制信號,控制機床的動作,按圖紙要求的形狀和尺寸,自動地將零件加工出來。
數控機床較好地解決了復雜、精密、小批量、多品種的零件加工問題,是一種柔性的、高效能的自動化機床,代表了現代機床控制技術的發展方向,是一種典型的機電一體化產品。
參考鏈接:數控工作室-數控機床網路-數控機床(自動化機床)
㈩ 數控車床對刀訣竅是什麼
1、試切對刀法
這種方法簡單方便,但會在工件表面留下切削痕跡,且對刀精度較低。以對刀點(此處與工件坐標系原點重合)在工件表面中心位置為例採用雙邊對刀方式。
(1)x,y向對刀。
①將工件通過夾具裝在工作台上,裝夾時,工件的四個側面都應留出對刀的位置。
②啟動主軸中速旋轉,快速移動工作台和主軸,讓刀具快速移動到靠近工件左側有一定安全距離的位置,然後降低速度移動至接近工件左側。
③靠近工件時改用微調操作(一般用0.01mm)來靠近,讓刀具慢慢接近工件左側,使刀具恰好接觸到工件左側表面(觀察,聽切削聲音、看切痕、看切屑,只要出現一種情況即表示刀具接觸到工件),再回退0.01mm。記下此時機床坐標系中顯示的坐標值,如-240.500。
④沿z正方向退刀,至工件表面以上,用同樣方法接近工件右側,記下此時機床坐標系中顯示的坐標值,如-340.500。
⑤據此可得工件坐標系原點在機床坐標系中坐標值為{-240.500+(-340.500)}/2=-290.500。
⑥同理可測得工件坐標系原點在機床坐標系中的坐標值。
(2)z向對刀。
①將刀具快速移至工件上方。
②啟動主軸中速旋轉,快速移動工作台和主軸,讓刀具快速移動到靠近工件上表面有一定安全距離的位置,然後降低速度移動讓刀具端面接近工件上表面。
③靠近工件時改用微調操作(一般用0.01mm)來靠近,讓刀具端面慢慢接近工件表面(注意刀具特別是立銑刀時最好在工件邊緣下刀,刀的端面接觸工件表面的面積小於半圓,盡量不要使立銑刀的中心孔在工件表面下刀),使刀具端面恰好碰到工件上表面,再將軸再抬高,記下此時機床坐標系中的z值,-140.400,則工件坐標系原點W在機床坐標系中的坐標值為-140.400。
(3)將測得的x,y,z值輸入到機床工件坐標系存儲地址G5*中(一般使用G54~G59代碼存儲對刀參數)。
(4)進入面板輸入模式(MDI),輸入「G5*」,按啟動鍵(在自動模式下),運行G5*使其生效。
(5)檢驗對刀是否正確。
2、塞尺、標准芯棒、塊規對刀法
此法與試切對刀法相似,只是對刀時主軸不轉動,在刀具和工件之間加人塞尺(或標准芯棒、塊規),以塞尺恰好不能自由抽動為准,注意計算坐標時這樣應將塞尺的厚度減去。因為主軸不需要轉動切削,這種方法不會在工件表面留下痕跡,但對刀精度也不夠高。
3、採用尋邊器、偏心棒和軸設定器等工具對刀法
操作步驟與採用試切對刀法相似,只是將刀具換成尋邊器或偏心棒。這是最常用的方法。效率高,能保證對刀精度。想學數控編程,在群192-96-35-72可以幫助你。使用尋邊器時必須小心,讓其鋼球部位與工件輕微接觸,同時被加工工件必須是良導體,定位基準面有較好的表面粗糙度。z軸設定器一般用於轉移(間接)對刀法。
4、轉移(間接)對刀法
加工一個工件常常需要用到不止一把刀,第二把刀的長度與第一把刀的裝刀長度不一樣,需要重新對零,但有時零點被加工掉,無法直接找回零點,或不容許破壞已加工好的表面,還有某些刀具或場合不好直接對刀,這時候可採用間接找零的方法。
(1)對第一把刀
①對第一把刀的時仍然先用試切法、塞尺法等。記下此時工件原點的機床坐標z1。第一把刀加工完後,停轉主軸。
②把對刀器放在機床工作台平整檯面上(如虎鉗大表面)。
③在手輪模式下,利用手搖移動工作台至適合位置,向下移動主軸,用刀的底端壓對刀器的頂部,表盤指針轉動,最好在一圈以內,記下此時軸設定器的示數並將相對坐標軸清零。
④確抬高主軸,取下第一把刀。
(2)對第二把刀。
①裝上第二把刀。
②在手輪模式下,向下移動主軸,用刀的底端壓對刀器的頂部,表盤指針轉動,指針指向與第一把刀相同的示數A位置。
③記錄此時軸相對坐標對應的數值z0(帶正負號)。
④抬高主軸,移走對刀器。
⑤將原來第一把刀的G5*里的z1坐標數據加上z0 (帶正負號),得到一個新的坐標。
⑥這個新的坐標就是要找的第二把刀對應的工件原點的機床實際坐標,將它輸人到第二把刀的G5*工作坐標中,這樣,就設定好第二把刀的零點。其餘刀與第二把刀的對刀方法相同。
註:如果幾把刀使用同一G5*,則步驟⑤,⑥改為把z0存進二號刀的長度參數里,使用第二把刀加工時調用刀長補正G43H02即可。
5、頂尖對刀法
(1)x,y向對刀。
①將工件通過夾具裝在機床工作台上,換上頂尖。
②快速移動工作台和主軸,讓頂尖移動到近工件的上方,尋找工件畫線的中心點,降低速度移動讓頂尖接近它。
③改用微調操作,讓頂尖慢慢接近工件畫線的中心點,直到頂尖尖點對准工件畫線的中心點,記下此時機床坐標系中的x, y坐標值。
(2)卸下頂尖,裝上銑刀,用其他對刀方法如試切法、塞尺法等得到z軸坐標值。
6、百分表(或千分表)對刀法
百分表(或千分表)對刀法(一般用於圓形工件的對刀)
(1)x,y向對刀。
將百分表的安裝桿裝在刀柄上,或將百分表的磁性座吸在主軸套筒上,移動工作台使主軸中心線(即刀具中心)大約移到工件中心,調節磁性座上伸縮桿的長度和角度,使百分表的觸頭接觸工件的圓周面,(指針轉動約0.1mm)用手慢慢轉動主軸,使百分表的觸頭沿著工件的圓周面轉動,觀察百分表指針的便移情況。
慢慢移動工作台的軸和軸,多次反復後,待轉動主軸時百分表的指針基本在同一位置(表頭轉動一周時,其指針的跳動量在允許的對刀誤差內,如0.02mm),這時可認為主軸的中心就是軸和軸的原點。
(2)卸下百分表裝上銑刀,用其他對刀方法如試切法、塞尺法等得到z軸坐標值。
7、專用對刀器對刀法
傳統對刀方法有安全性差(如塞尺對刀,硬碰硬刀尖易撞壞)佔用機時多(如試切需反復切量幾次),人為帶來的隨機性誤差大等缺點,已經適應不了數控加工的節奏,更不利於發揮數控機床的功能。
用專用對刀器對刀有對刀精度高、效率高、安全性好等優點,把繁瑣的靠經驗保證的對刀工作簡單化了,保證了數控機床的高效高精度特點的發揮,已成為數控加工機上解決刀具對刀不可或缺的一種專用工具。

(10)帶刀尖跟隨的五軸機床怎麼對刀擴展閱讀
對刀原理
對刀的目的是為了建立工件坐標系,直觀的說法是,對刀是確立工件在機床工作台中的位置,實際上就是求對刀點在機床坐標系中的坐標。
對於數控車床來說,在加工前首先要選擇對刀點,對刀點是指用數控機床加工工件時,刀具相對於工件運動的起點。對刀點既可以設在工件上(如工件上的設計基準或定位基準),也可以設在夾具或機床上,若設在夾具或機床上的某一點,則該點必須與工件的定位基準保持一定精度的尺寸關系。
對刀時,應使指刀位點與對刀點重合,所謂刀位點是指刀具的定位基準點,對於車刀來說,其刀位點是刀尖。對刀的目的是確定對刀點(或工件原點)在機床坐標系中的絕對坐標值,測量刀具的刀位偏差值。對刀點找正的准確度直接影響加工精度。
在實際加工工件時,使用一把刀具一般不能滿足工件的加工要求,通常要使用多把刀具進行加工。在使用多把車刀加工時,在換刀位置不變的情況下,換刀後刀尖點的幾何位置將出現差異,這就要求不同的刀具在不同的起始位置開始加工時,都能保證程序正常運行。
為了解決這個問題,機床數控系統配備了刀具幾何位置補償的功能,利用刀具幾何位置補償功能,只要事先把每把刀相對於某一預先選定的基準刀的位置偏差測量出來,輸入到數控系統的刀具參數補正欄指定組號里,在加工程序中利用T指令,即可在刀具軌跡中自動補償刀具位置偏差。刀具位置偏差的測量同樣也需通過對刀操作來實現。