❶ 超聲波可以穿透哪些物質
超聲波的傳播是靠振動的,而超聲波所能穿透的東西是根據其波長決定的,波都可以穿過比他波長短的物體。
❷ 超聲波可以以什麼形式傳播
超音波依其波傳送方向的波動方式可分為縱波,橫波,表面波,藍姆ㄋ鬧?其在料件中之傳送,根據能量不滅定律,音波在一種物質中傳送,或由一種物質傳入另一種物質時,由於受到衰減,反射及折射的作用,其能量必然愈來愈弱;但是在材料密度較大的部分,音壓卻會增大〈但因音阻抗亦變大,能量仍是減少〉,反之在疏鬆的部分,其音量變小.
❸ 超聲波有哪些傳播特性
1、超聲波在傳播時,方向性強,能量易於集中。
2、超聲波能在各種不同媒質中傳播,且可傳播足夠遠的距離。
3、超聲波與傳聲媒質的相互作用適中,易於攜帶有關傳聲媒質狀態的信息診斷或對傳聲媒質產生效用及治療。
4、超聲波可在氣體、液體、固體、固熔體等介質中有效傳播。
6、 超聲波會產生反射、干涉、疊加和共振現象。
(3)傳播超聲波的媒介物質是什麼擴展閱讀
超聲波在媒質中的反射、折射、衍射、散射等傳播規律,與可聽聲波的規律沒有本質上的區別。但是超聲波的波長很短,只有幾厘米,甚至千分之幾毫米。
與可聽聲波比較,超聲波具有許多奇異特性:傳播特性──超聲波的波長很短,通常的障礙物的尺寸要比超聲波的波長大好多倍,因此超聲波的衍射本領很差,它在均勻介質中能夠定向直線傳播,超聲波的波長越短,該特性就越顯著。
功率特性──當聲音在空氣中傳播時,推動空氣中的微粒往復振動而對微粒做功。聲波功率就是表示聲波做功快慢的物理量。在相同強度下,聲波的頻率越高,它所具有的功率就越大。由於超聲波頻率很高,所以超聲波與一般聲波相比,它的功率是非常大的。
❹ 超聲波是怎麼形成的什麼物質
所謂超聲波其實就是聲波的一種,只不過它的頻率比一般人耳所能聽到的頻率要高,所以才叫做「超聲波」。人耳所能聽到的頻率一般是20Hz~20000Hz,頻率低於20Hz的聲波叫做「次聲波」,頻率高於20000Hz的聲波叫做「超聲波」。
聲音是怎樣形成的,超聲波就是怎樣形成的。通常我們所聽到的聲音,特別是雜訊,實際上包含了很寬的頻帶,既有次聲、普通聲音,也有超聲,只不過人耳只能聽到普通聲音而已。
由於機械波的很多性質都和頻率密切相關,比如透射率、衰減系數、輻射本領等等,所以人們經常使用處於超聲波段的聲波來達到某些用途(次聲波也是如此)。這時人們可以用特殊的儀器產生窄頻帶的超聲波,以提高利用率。具體的做法一般就是讓聲源以高於20000Hz的頻率振動,輻射出去的自然就是超聲波了。
由於高於20000Hz的聲源用機械方法很難產生,所以通常都是用振盪電路產生的電信號激勵聲源振動。從本質上講,超聲波和電並沒有必然的聯系,只要能產生20000Hz以上的聲源,不管用什麼方法,都能產生超聲波。
❺ 物理問題 聲波在介質中的傳播方式有什麼和什麼
聲波(物理名詞) 發聲體的振動在空氣或其他物質中的傳播叫做聲波。聲波藉助各種介質向四面八方傳播。聲波是一種縱波,是彈性介質中傳播著的壓力振動。但在固體中傳播時,也可以同時有縱波及橫波。 聲波(Sound Wave或Acoustic Wave)是聲音的傳播形式。聲波是一種機械波,由物體(聲源)振動產生,聲波傳播的空間就稱為聲場。在氣體和液體介質中傳播時是一種縱波,但在固體介質中傳播時可能混有橫波。人耳可以聽到的聲波的頻率一般在20赫茲至20000赫茲之間。聲波可以理解為介質偏離平衡態的小擾動的傳播。這個傳播過程只是能量的傳遞過程,而不發生質量的傳遞。如果擾動量比較小,則聲波的傳遞滿足經典的波動方程,是線性波。如果擾動很大,則不滿足線性的聲波方程,會出現波的色散,和激波的產生。 按頻率分類,頻率低於20Hz的聲波稱為次聲波;頻率20Hz~20kHz的聲波稱為可聽波;頻率20kHz~1GHz的聲波稱為超聲波;頻率大於1GHz的聲波稱為特超聲或微波超聲。 與正弦波的關系正弦波是最簡單的波動形式。優質的音叉振動發出聲音的時候產生的是正弦聲波。正弦聲波屬於純音。任何復雜的聲波都是多種正弦波疊加而成的復合波,它們是有別於純音的復合音。正弦波各種復雜聲波的基本單元。與沖擊波的區別請注意,聲波不是沖擊波,聲波前進的過程是相鄰空氣粒子之間的接力賽,它們把波動形式向前傳遞,它們自己仍舊在原地振盪,也就是說空氣粒子並不跟著聲波前進!同樣,在語音研究中要區分氣流與聲波,它們是兩回事。在發音器官里,聲帶、舌尖或小舌的顫動,以及輔音雜訊的形成等,都離不開氣流的作用,但是氣流不是聲波的代名詞。所謂「*濁音氣流」、「*清音氣流」的說法似乎包含了極其含混的意思。另外,即使沒有其他聲源體的作用,空氣粒子總是在做無規則的震盪,或者說它們總是在騷動,它們激發起微弱的「白雜訊」。絕對靜寂的大氣空間是不存在的。所謂背景雜訊還包括自然界或人類生活環境里許多聲源體雜亂的聲音,對於言語交際來說它們沒有信息價值。居室四壁或陡峭的山坡還有回聲效應,雜訊被放大、被增強了。言語聲和它的滯後的回聲疊加在一起,變成復雜的回響聲。電聲儀器設備里也都有白雜訊。那種沒有通信價值的雜訊很強烈的時候人們會心煩意亂。有意思的是,在雜訊極小的消聲室待久了,人會感到不安寧。音樂中恰當使用沙錘之類的雜訊帶來的是藝術欣賞價值。人類語言里的許多輔音都包含雜訊,它們很重要,能夠起區分輔音的作用。與縱波的關系「聲源」在空氣中振動時,一會兒壓縮空氣,使其變得「稠密」;一會兒空氣膨脹,變得「稀疏」,形成一系列疏、密變化的波,將振動能量傳送出去。這種媒介質點的振動方向與波的傳播方向一致的波,稱為「縱波」。不過要注意,聲波雖然一般是縱波,但在固體中傳播時,也可以同時有縱波及橫波,橫波速度約為縱波速度的50%-60%。在空氣中的聲波是縱波,原因是氣體及相當多的液體(合稱流體)不能承受切力,因此聲波在流體中傳播時不可能為橫波;但固體不僅可承受壓(張)應力,也可以承受切應力,因此在固體中可以同時有縱波及橫波。地震波其實就是在地殼中傳播的聲波(確切講是次聲波),只是它的頻率通常不在我們可聽聞的范圍內(某些動物則聽聞得到)雖然次聲波看不見,聽不見,可它卻無處不在.地震、火山爆發、風暴、海浪沖擊、槍炮發射、熱核爆炸等都會產生次聲波,科學家藉助儀器可以「聽到」它。 傳播介質除了空氣,水、金屬、木頭等彈性介質也都能夠傳遞聲波,它們都是聲波的良好介質。在真空狀態中因為沒有任何彈性介質,所以聲波就不能傳播了。傳播原理揚聲器、各種樂器以及人和動物的發音器官等都是聲源體。地震震中、閃電源、雨滴、刮風、隨風飄動的樹葉、昆蟲的翅膀等各種可以活動的物體都可能是聲源體。它們引起的聲波都比正弦波復雜,屬於復合波。地震產生多種復雜的波動,其中包括聲波,實際上那種聲波本身是人耳聽不著的,它的頻率太低了(例如1Hz)。人對聲音的感覺有一定頻率范圍,大約每秒鍾振動20次到20000次范圍內,即頻率范圍是20Hz--20000Hz,如果物體振動頻率低於20Hz或高於20000Hz人耳就聽不到了,高於20000Hz的頻率就叫做超聲波,而低於20Hz的頻率就叫做次聲波。所以說不是所有物體的振動所發出的聲音我們都能聽到的。另外要能聽到聲音也必須有傳播聲音的介質。聲波是大氣壓力之外的一種超壓變化。空氣粒子振動的方式跟聲源體振動的方式一致,當聲波到達人的耳鼓的時候就引起耳鼓同樣方式的振動。驅動耳鼓振動的能量來自聲源體,它就是普通的機械能。不同的聲音就是不同的振動方式,它們能夠起區別不同信息的作用。人耳能夠分辨風聲、雨聲和不同人的聲音,也能分辨各種言語聲,它們都是來自聲源體的不同信息 聲波的衰一個聲音在傳播過程中將越來越微弱,這就是聲波的衰減。造成聲波衰減的原因有以下三個:擴散衰減物體振動發出的聲波向四周傳播,聲波能量逐漸擴散開來。能量的擴散使得單位面積上所存在的能量減小,聽到的聲音就變得微弱。單位面積上的聲波能量隨著聲源距離的平方而遞減。吸收衰減聲波在固體介質中傳播時,由於介質的粘滯性而造成質點之間的內摩擦,從而使一部分聲能轉變為熱能;同時,由於介質的熱傳導,介質的稠密和稀疏部分之間進行熱交換,從而導致聲能的損耗,這就是介質的吸收現象。介質的這種衰減稱為吸收衰減。通常認為,吸收衰減與聲波頻率的一次方、頻率的平方成正比。散射衰減當介質中存在顆粒狀結構(如液體中的懸浮粒子、氣泡,固體中的顆粒狀結構、缺陷、攙雜物等)而導致的聲波的衰減稱散射衰減。通常認為當顆粒的尺寸遠小於波長時,散射衰減與頻率的四次方成正比;當顆粒尺寸與波長相近時,散射衰減與頻率的平方成正比
❻ 超聲波的介紹
超聲波
我們知道,當物體振動時會發出聲音。科學家們將每秒鍾振動的次數稱為聲音的頻率,它的單位是赫茲。我們人類耳朵能聽到的聲波頻率為20~20,000赫茲。因此,當物體的振動超過一定的頻率,即高於人耳聽閾上限時,人們便聽不出來了,這樣的聲波稱為「超聲波」。通常用於醫學診斷的超聲波頻率為1~5兆赫。超聲波具有方向性好,穿透能力強,易於獲得較集中的聲能,在水中傳播距離遠等特點。可用於測距,測速,清洗,焊接,碎石等
雖然說人類聽不出超聲波,但不少動物卻有此本領。它們可以利用超聲波「導航」、追捕食物,或避開危險物。大家可能看到過夏天的夜晚有許多蝙蝠在庭院里來回飛翔,它們為什麼在沒有光亮的情況下飛翔而不會迷失方向呢?原因就是蝙蝠能發出2~10萬赫茲的超聲波,這好比是一座活動的「雷達站」。蝙蝠正是利用這種「雷達」判斷飛行前方是昆蟲,或是障礙物的。
我們人類直到第一次世界大戰才學會利用超聲波,這就是利用「聲納」的原理來探測水中目標及其狀態,如潛艇的位置等。此時人們向水中發出一系列不同頻率的超聲波,然後記錄與處理反射回聲,從回聲的特徵我們便可以估計出探測物的距離、形態及其動態改變。醫學上最早利用超聲波是在1942年,奧地利醫生杜西克首次用超聲技術掃描腦部結構;以後到了60年代醫生們開始將超聲波應用於腹部器官的探測。如今超聲波掃描技術已成為現代醫學診斷不可缺少的工具。
醫學超聲波檢查的工作原理與聲納有一定的相似性,即將超聲波發射到人體內,當它在體內遇到界面時會發生反射及折射,並且在人體組織中可能被吸收而衰減。因為人體各種組織的形態與結構是不相同的,因此其反射與折射以及吸收超聲波的程度也就不同,醫生們正是通過儀器所反映出的波型、曲線,或影象的特徵來辨別它們。此外再結合解剖學知識、正常與病理的改變,便可診斷所檢查的器官是否有病。
目前,醫生們應用的超聲診斷方法有不同的形式,可分為A型、B型、M型及D型四大類。
A型:是以波形來顯示組織特徵的方法,主要用於測量器官的徑線,以判定其大小。可用來鑒別病變組織的一些物理特性,如實質性、液體或是氣體是否存在等。
B型:用平面圖形的形式來顯示被探查組織的具體情況。檢查時,首先將人體界面的反射信號轉變為強弱不同的光點,這些光點可通過熒光屏顯現出來,這種方法直觀性好,重復性強,可供前後對比,所以廣泛用於婦產科、泌尿、消化及心血管等系統疾病的診斷。
M型:是用於觀察活動界面時間變化的一種方法。最適用於檢查心臟的活動情況,其曲線的動態改變稱為超聲心動圖,可以用來觀察心臟各層結構的位置、活動狀態、結構的狀況等,多用於輔助心臟及大血管疫病的診斷。
D型:是專門用來檢測血液流動和器官活動的一種超聲診斷方法,又稱為多普勒超聲診斷法。可確定血管是否通暢、管腔有否狹窄、閉塞以及病變部位。新一代的D型超聲波還能定量地測定管腔內血液的流量。近幾年來科學家又發展了彩色編碼多普勒系統,可在超聲心動圖解剖標志的指示下,以不同顏色顯示血流的方向,色澤的深淺代表血流的流速。現在還有立體超聲顯象、超聲CT、超聲內窺鏡等超聲技術不斷涌現出來,並且還可以與其他檢查儀器結合使用,使疾病的診斷准確率大大提高。超聲波技術正在醫學界發揮著巨大的作用,隨著科學的進步,它將更加完善,將更好地造福於人類。
頻率高於20000 Hz(赫茲)的聲波。研究超聲波的產生、傳播 、接收,以及各種超聲效應和應用的聲學分支叫超聲學。產生
超聲波的裝置有機械型超聲發生器(例如氣哨、汽笛和液哨等)、利用電磁感應和電磁作用原理製成的電動超聲發生器、
以及利用壓電晶體的電致伸縮效應和鐵磁物質的磁致伸縮效應製成的電聲換能器等。
超聲效應 當超聲波在介質中傳播時,由於超聲波與介質的相互作用,使介質發生物理的和化學的變化,從而產生
一系列力學的、熱的、電磁的和化學的超聲效應,包括以下4種效應:
①機械效應。超聲波的機械作用可促成液體的乳化、凝膠的液化和固體的分散。當超聲波流體介質中形成駐波時 ,懸浮在流體中的微小顆粒因受機械力的作用而凝聚在波節處,在空間形成周期性的堆積。超聲波在壓電材料和磁致伸縮材料中傳播時,由於超聲波的機械作用而引起的感生電極化和感生磁化(見電介質物理學和磁致伸縮)。
②空化作用。超聲波作用於液體時可產生大量小氣泡 。一個原因是液體內局部出現拉應力而形成負壓,壓強的降低使原來溶於液體的氣體過飽和,而從液體逸出,成為小氣泡。另一原因是強大的拉應力把液體「撕開」成一空洞,稱為空化。空洞內為液體蒸氣或溶於液體的另一種氣體,甚至可能是真空。因空化作用形成的小氣泡會隨周圍介質的振動而不斷運動、長大或突然破滅。破滅時周圍液體突然沖入氣泡而產生高溫、高壓,同時產生激波。與空化作用相伴隨的內摩擦可形成電荷,並在氣泡內因放電而產生發光現象。在液體中進行超聲處理的技術大多與空化作用有關。
③熱效應。由於超聲波頻率高,能量大,被介質吸收時能產生顯著的熱效應。
④化學效應。超聲波的作用可促使發生或加速某些化學反應。例如純的蒸餾水經超聲處理後產生過氧化氫;溶有氮氣的水經超聲處理後產生亞硝酸;染料的水溶液經超聲處理後會變色或退色。這些現象的發生總與空化作用相伴隨。超聲波還可加速許多化學物質的水解、分解和聚合過程。超聲波對光化學和電化學過程也有明顯影響。各種氨基酸和其他有機物質的水溶液經超聲處理後,特徵吸收光譜帶消失而呈均勻的一般吸收,這表明空化作用使分子結構發生了改變 。
超聲應用 超聲效應已廣泛用於實際,主要有如下幾方面:
①超聲檢驗。超聲波的波長比一般聲波要短,具有較好的方向性,而且能透過不透明物質,這一特性已被廣泛用於超聲波探傷、測厚、測距、遙控和超聲成像技術。超聲成像是利用超聲波呈現不透明物內部形象的技術 。把從換能器發出的超聲波經聲透鏡聚焦在不透明試樣上,從試樣透出的超聲波攜帶了被照部位的信息(如對聲波的反射、吸收和散射的能力),經聲透鏡匯聚在壓電接收器上,所得電信號輸入放大器,利用掃描系統可把不透明試樣的形象顯示在熒光屏上。上述裝置稱為超聲顯微鏡。超聲成像技術已在醫療檢查方面獲得普遍應用,在微電子器件製造業中用來對大規模集成電路進行檢查,在材料科學中用來顯示合金中不同組分的區域和晶粒間界等。聲全息術是利用超聲波的干涉原理記錄和重現不透明物的立體圖像的聲成像技術,其原理與光波的全息術基本相同,只是記錄手段不同而已(見全息術)。用同一超聲信號源激勵兩個放置在液體中的換能器,它們分別發射兩束相乾的超聲波:一束透過被研究的物體後成為物波,另一束作為參考波。物波和參考波在液面上相干疊加形成聲全息圖,用激光束照射聲全息圖,利用激光在聲全息圖上反射時產生的衍射效應而獲得物的重現像,通常用攝像機和電視機作實時觀察。
②超聲處理。利用超聲的機械作用、空化作用、熱效應和化學效應,可進行超聲焊接、鑽孔、固體的粉碎、乳化 、脫氣、除塵、去鍋垢、清洗、滅菌、促進化學反應和進行生物學研究等,在工礦業、農業、醫療等各個部門獲得了廣泛應用。
③基礎研究。超聲波作用於介質後,在介質中產生聲弛豫過程,聲弛豫過程伴隨著能量在分子各自電度間的輸運過程,並在宏觀上表現出對聲波的吸收(見聲波)。通過物質對超聲的吸收規律可探索物質的特性和結構,這方面的研究構成了分子聲學這一聲學分支。普通聲波的波長遠大於固體中的原子間距,在此條件下固體可當作連續介質 。但對頻率在1012赫以上的 特超聲波 ,波長可與固體中的原子間距相比擬,此時必須把固體當作是具有空間周期性的點陣結構。點陣振動的能量是量子化的 ,稱為聲子(見固體物理學)。特超聲對固體的作用可歸結為特超聲與熱聲子、電子、光子和各種准粒子的相互作用。對固體中特超聲的產生、檢測和傳播規律的研究,以及量子液體——液態氦中聲現象的研究構成了近代聲學的新領域——
聲波是屬於聲音的類別之一,屬於機械波,聲波是指人耳能感受到的一種縱波,其頻率范圍為16Hz-20KHz。當聲波的頻率低於16Hz時就叫做次聲波,高於20KHz則稱為超聲波聲波。
超聲波具有如下特性:
1) 超聲波可在氣體、液體、固體、固熔體等介質中有效傳播。
2) 超聲波可傳遞很強的能量。
3) 超聲波會產生反射、干涉、疊加和共振現象。
4) 超聲波在液體介質中傳播時,可在界面上產生強烈的沖擊和空化現象。
超聲波是聲波大家族中的一員。
聲波是物體機械振動狀態(或能量)的傳播形式。所謂振動是指物質的質點在其平衡位置附近進行的往返運動。譬如,鼓面經敲擊後,它就上下振動,這種振動狀態通過空氣媒質向四面八方傳播,這便是聲波。
超聲波是指振動頻率大於20KHz以上的,人在自然環境下無法聽到和感受到的聲波。
超聲波治療的概念:
超聲治療學是超聲醫學的重要組成部分。超聲治療時將超聲波能量作用於人體病變部位,以達到治療疾患和促進機體康復的目的。
在全球,超聲波廣泛運用於診斷學、治療學、工程學、生物學等領域。賽福瑞家用超聲治療機屬於超聲波治療學的運用范疇。
(一)工程學方面的應用:水下定位與通訊、地下資源勘查等
(二)生物學方面的應用:剪切大分子、生物工程及處理種子等
(三)診斷學方面的應用:A型、B型、M型、D型、雙功及彩超等
(四)治療學方面的應用:理療、治癌、外科、體外碎石、牙科等
超聲波的特點:
1、超聲波在傳播時,方向性強,能量易於集中。
2、超聲波能在各種不同媒質中傳播,且可傳播足夠遠的距離。
3、超聲與傳聲媒質的相互作用適中,易於攜帶有關傳聲媒質狀態的信息(診斷或對傳聲媒質產生效應。(治療)
超聲波是一種波動形式,它可以作為探測與負載信息的載體或媒介(如B超等用作診斷);超聲波同時又是一種能量形式,當其強度超過一定值時,它就可以通過與傳播超聲波的媒質的相互作用,去影響,改變以致破壞後者的狀態,性質及結構(用作治療)。
超聲波的發展史:
一、國際方面:
自19世紀末到20世紀初,在物理學上發現了壓電效應與反壓電效應之後,人們解決了利用電子學技術產生超聲波的辦法,從此迅速揭開了發展與推廣超聲技術的歷史篇章。
1922年,德國出現了首例超聲波治療的發明專利。
1939年發表了有關超聲波治療取得臨床效果的文獻報道。
40年代末期超聲治療在歐美興起,直到1949年召開的第一次國際醫學超聲波學術會議上,才有了超聲治療方面的論文交流,為超聲治療學的發展奠定了基礎。1956年第二屆國際超聲醫學學術會議上已有許多論文發表,超聲治療進入了實用成熟階段。
二、國內方面:
國內在超聲治療領域起步稍晚,於20世紀50年代初才只有少數醫院開展超聲治療工作,從1950年首先在北京開始用800KHz頻率的超聲治療機治療多種疾病,至50年代開始逐步推廣,並有了國產儀器。公開的文獻報道始見於1957年。到了70年代有了各型國產超聲治療儀,超聲療法普及到全國各大型醫院。
40多年來,全國各大醫院已積累了相當數量的資料和比較豐富的臨床經驗。特別是20世紀80年代初出現的超聲體外機械波碎石術和超聲外科,是結石症治療史上的重大突破。如今已在國際范圍內推廣應用。高強度聚焦超聲無創外科,已使超聲治療在當代醫療技術中占據重要位置。而在21世紀(HIFU)超聲聚焦外科已被譽為是21世紀治療腫瘤的最新技術。
超聲波治病機理:
1.機械效應:超聲在介質中前進時所產生的效應。(超聲在介質中傳播是由反射而產生的機械效應)它可引起機體若干反應。超聲振動可引起組織細胞內物質運動,由於超聲的細微按摩,使細胞漿流動、細胞震盪、旋轉、摩擦、從而產生細胞按摩的作用,也稱為「內按摩」這是超聲波治療所獨有的特性,可以改變細胞膜的通透性,刺激細胞半透膜的彌散過程,促進新陳代謝、加速血液和淋巴循環、改善細胞缺血缺氧狀態,改善組織營養、改變蛋白合成率、提高再生機能等。使細胞內部結構發生變化,導致細胞的功能變化,使堅硬的結締組織延伸,松軟。
超聲波的機械作用可軟化組織,增強滲透,提高代謝,促進血液循環,刺激神經系統和細胞功能,因此具有超聲波獨特的治療意義。
2.溫熱效應:人體組織對超聲能量有比較大的吸收本領,因此當超聲波在人體組織中傳播過程中,其能量不斷地被組織吸收而變成熱量,其結果是組織的自身溫度升高。
產熱過程既是機械能在介質中轉變成熱能的能量轉換過程。即內生熱。超聲溫熱效應可增加血液循環,加速代謝,改善局部組織營養,增強酶活力。一般情況下,超聲波的熱作用以骨和結締組織為顯著,脂肪與血液為最少。
3.理化效應:超聲的機械效應和溫熱效應均可促發若干物理化學變化。實踐證明一些理化效應往往是上述效應的繼發效應。TS-C型治療機通過理化效應繼發出下列五大作用:
A.彌散作用:超聲波可以提高生物膜的通透性,超聲波作用後,細胞膜對鉀,鈣離子的通透性發生較強的改變。從而增強生物膜彌散過程,促進物質交換,加速代謝,改善組織營養。
B.觸變作用:超聲作用下,可使凝膠轉化為溶膠狀態。對肌肉,肌腱的軟化作用,以及對一些與組織缺水有關的病理改變。如類風濕性關節炎病變和關節、肌腱、韌帶的退行性病變的治療。
C.空化作用:空化形成,或保持穩定的單向振動,或繼發膨脹以致崩潰,細胞功能改變,細胞內鈣水平增高。成纖維細胞受激活,蛋白合成增加,血管通透性增加,血管形成加速,膠原張力增加。
D.聚合作用與解聚作用:水分子聚合是將多個相同或相似的分子合成一個較大的分子過程。大分子解聚,是將大分子的化學物變成小分子的過程。可使關節內增加水解酶和原酶活性增加。
E.消炎,修復細胞和分子:超聲作用下,可使組織PH值向鹼性方面發展。緩解炎症所伴有的局部酸中毒。超聲可影響血流量,產生致炎症作用,抑制並起到抗炎作用。使白細胞移動,促進血管生成。膠原合成及成熟。促進或抑制損傷的修復和癒合過程。從而達到對受損細胞組織進行清理、激活、修復的過程。
量子聲學。
超聲波還可以進行雷達探測.清洗較為精細的物品,如鍾表,可以利用超聲波來擊碎病人體內膽結石,還可以利用超聲波測距.
超聲波檢測還用於電阻焊的焊點強度的檢測。
❼ 超聲波 是一種什麼形式的波
超聲波是高頻的聲波,一般是大於20000HZ的聲波都可以稱為超聲波。聲波是靠介質傳播的,所以真空不傳播。
❽ 什麼波長頻率的超聲波能穿透水和雪,但是遇石頭金屬玻璃等物質就反射回來!
什麼波長、頻率的超聲波都能穿透水和雪,遇石頭、金屬、玻璃等物質都能反射回來!!!能否接收到反射信號,那就看發聲器的功率是否夠大,接收儀器的分析精度、量程是否滿足要求!只要功率足夠或分析精度、量程滿足需要,什麼波長、頻率的超聲波都能穿透水和雪!當傳播介質發生變化時,如遇石頭、金屬、玻璃,甚至是一條魚、一隻蝦等都能反射回來,並被發現。
❾ 通過物質為媒介的聲音震動有什麼特徵與利用空氣震動的有多大的區別
第一章、 聲現象
1、一切正在發聲的物體都在振動;振動停止,發聲也停止,可見聲音是由物體振動產生的。
2、聲音能靠任何氣體、液體、固體物質作媒介傳播出去,這些作為傳播媒介的物質常簡稱為介質。
3、聲音要靠介質傳播,真空不能傳播聲音,聲音在不同介質中傳播速度是不同的;在同一種介質中,溫度不同,聲音傳播的速度也不同;一般來說,聲音在固體中傳播速度最快,其次是液體,最慢的是氣體。
4、在15°C時,聲音在空氣中傳播速度是340m/s。
5、聲以波的形式傳播著,我們把它叫做聲波。
6、聲音能夠被反射,當聲音被高大物體反射回來,再傳入人耳多,我們就聽到了回聲。如果回聲到達人耳比原聲晚0.1秒以上,人耳能把回聲跟原聲區分開,人耳就可以聽到回聲(空曠的地方);如果回聲到達人耳比原聲到達人耳的時間間隔小於0.1秒,回聲和原聲混合在一起,則使原聲加強(狹窄的地方)。
7、人們感覺到的聲音的高低叫做音調。音調跟發聲體振動的頻率有關系,頻率越高,音調越高;頻率越低,音調越低。
8、物體在一秒內振動的次數叫做頻率。物體振動得越快,頻率越高。
9、頻率的單位是赫茲符號是HZ。
10、人耳的聽覺范圍是20HZ到20000HZ。小於20HZ的叫次聲波,大於20000HZ的叫超聲波。
11、人耳感覺到的聲音的大小叫做響度。響度跟發聲體的振幅有關系,振幅越大,響度越大;振幅越小,響度越小。響度還跟距離發聲體的遠近有關系。
12、不同的物體發出的聲音,即使音調、響度都相同,聲音還是有區別的,不同發聲體發出樂音的音色不同。
13、雜訊是物體做無規則振動時發出的聲音。
14、從環保的角度看,凡是妨礙人們正常休息、學習、工作的聲音,以及對人們要聽的聲音其干擾作用的聲音,都屬於雜訊。
15、為了保護聽力,應控制雜訊不超過90dB;為了保證工作和學習,應控制雜訊不超過70dB;為了保證休息和睡眠,應控制雜訊不超過50dB。
16、引起聽覺的階段:聲源的振動產生聲音——空氣等介質的傳播——耳朵鼓膜的振動。
17、控制雜訊的方法:在聲源處防止雜訊產生——阻斷雜訊的傳播——防止雜訊進入耳朵。
18、聽到聲音的兩個途徑分別是:空氣傳導和骨傳導。
19、人的耳朵能判斷出發聲體的方向,這是由於雙耳效應。立體聲也是運用了雙耳效應原理。
20、利用聲可以傳遞信息或傳遞能量。傳遞信息的例子有:聲吶、B超等;傳遞能量的例子有:清洗精密儀器、清除體內結石等。